
 Application Note

R01AN6974EJ0100 Rev.1.00 Page 1 of 106
Jun.30.2023

RA Family

Introduction
Today, as automatic electronic controls systems continue to expand into many diverse applications, the requirement of
reliability and safety are becoming an ever increasing factor in system design.

For example, the introduction of the IEC60730 safety standard for household appliances requires manufactures to
design automatic electronic controls that ensure safe and reliable operation of their products.

The IEC60730 standard covers all aspects of product design but Annex H is of key importance for design of
Microcontroller based control systems. This provides three software classifications for automatic electronic controls:

1. Class A: Control functions, which are not intended to be relied upon for the safety of the equipment.
 Examples: Room thermostats, humidity controls, lighting controls, timers, and switches.

2. Class B: Control functions, which are intended to prevent unsafe operation of the controlled equipment.
 Examples: Thermal cut-offs and door locks for laundry equipment.

3. Class C: Control functions, which are intended to prevent special hazards
 Examples: Automatic burner controls and thermal cut-outs for closed.

This Application Note provides guidelines of how to use flexible sample software routines to assist with compliance
with IEC60730 class C safety standards. These routines have been certified by VDE Test and Certification Institute
GmbH and a copy of the Test Certificate is available in the download package for this Application Note.

The software routines provided are to be used after reset and also during the program execution. This document and the
accompanying sample code provide an example of how to do this.

R01AN6974EJ0100
Rev.1.00

Jun.30.2023
IEC 60730/60335 Self Test Library for RA MCU
(CM33 Class-C)

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 2 of 106
Jun.30.2023

Target
• Device:

- Renesas RA Family (Arm® Cortex®-M33) * See Table a for series and groups.

• Development environment (one of the following):
< RA6M4>
- GNU-GCC ARM Embedded 10.3.1.20210824 / e2 studio 2020-10

The term "RA MCU" used in this document refers to the following products.

Table a : RA MCU Self-Test Function List

CPU Core Arm® Cortex®-M33
Series RA6
Group RA6M4

Te
st

 F
un

ct
io

n CPU 〇
ROM 〇
RAM 〇
Clock 〇
Independent Watchdog Timer (IWDT) 〇

Support for Arm® TrustZone®
This self-test library is assumed to be executed in the "secure area" (hereinafter referred to as "Safety Part") in Arm®
TrustZone®.The code of the self-test library is generated by "TrustZone Secure Project" of RA Project Generator
(PG)*.

In addition, the "TrustZone Non-Secure Project" of RA Project Generator (*) creates the final code, including a sample
program that runs in the "non-secure area" (hereafter referred to as the Non-Safety Part).

*: For more information on RA Project Generator, see the RA FSP (Flexible Software Package) documentation.

See the links below for more information on the RA Arm® TrustZone® tool.

https://www.renesas.com/jp/ja/document/apn/ra-arm-trustzone-tooling-primer.

https://www.renesas.com/jp/ja/document/apn/ra-arm-trustzone-tooling-primer

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 3 of 106
Jun.30.2023

Self-test library overview

The self-test library consists of instruction decoding, CPU registers, internal memory, watchdog timer, and
monitoring functions for the system clock.

As described below, the anomaly monitoring process provides an application program interface (API) for each module
that monitors. Use each function according to the purpose.

The self-test library functions are divided into modules according to IEC60730Class-C. The anomaly monitoring
process can be performed standalone by selecting each test function in turn.

In addition, we adopted a method that separates the inside of the Arm TrustZone compatible microcomputer into a
safe part (secure area) and a non-safe part (non-secure area).
It is assumed that this self-test library will be implemented in the safe part (secure area).

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 4 of 106
Jun.30.2023

The RA6 series (with Arm® Cortex®-M33) self-test library implemet funtions of the following main self-testing.

• Instruction decoding
Verify that the corresponding instruction of Arm Cortex-M33 works properly according to the specifications.
See “IEC 60730-1:2013+A1:2015+A2:2020 Annex H – H2.18.5 equivalence class test”.

• CPU Register
Test the CPU registers listed in "Table 1.1 CPU Test target(Overview)エラー! 参照元が見つかりません。".
The internal data path is verified during the normal operation test of the above registers.
See “IEC 60730-1:2013+A1:2015+A2:2020 Annex H - Table H.11.12.7 1.CPU”.

• Invariable memory
Test the internal Flash memory of the MCU.
See “IEC 60730-1:2013+A1:2015+A2:2020 Annex H – H2.19.4.2 CRC – double word”

• Variable memory
Test Internal SRAM
The RAM test uses the WALKPAT algorithm and the Extended March C-algorithm.
See “IEC 60730-1:2013+A1:2015+A2:2020 Annex H – H.2.19.7 walkpat memory test”

• System Clock

Test the operation and frequency of the system clock based on the reference clock source (this test requires an
independent internal or external reference clock).
See “IEC Reference - IEC 60730-1:2013+A1:2015+A2:2020 Annex H – H2.18.10.1 Frequency monitoring”

• CPU／Program Counter(PC)
In order to confirm that the program is executing the sequence within the specified time, it is confirmed using the
built-in watchdog timer that operates with a clock independent of the CPU.
See “IEC 60730-1:2013+A1:2015+A2:2020 Annex H – H2.18.10.3 independent time-slot and
logicalmonitoring”

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 5 of 106
Jun.30.2023

About S / W mapping of self-test library and test sample software
This program creates two projects, TrustZone Secure project and TrustZone non-secure project, as shown below, and
allocates the programs to Non-safety part and Safety Part.

This self-test library need to be placed in the Safety part.

◆Non safety part(Non-Secure)
 ■User Application
 ■Initialize process for Non-Safety part at Power-On(P-ON) startup.

◆Safety part(Secure)
 ■Initialize process for Safety part at Power-On(P-ON) startup.
 ■Initial settings related to self-test library (periodic timer (AGT5), interrupt, etc.)
 ■Each self-test at P-ON startup (CPU, RAM, ROM, Clock test, etc.)
 ■Periodical self-tests (CPU, RAM, ROM test,etc.)

Figure a (Ex.) Image of placement of self-test library processing in non-safety section and safe section

* When calling the function of the safety part from the non-safety part, see "Renesas RA Family RA Arm ® Trust

 Zone ® Tooling Primer"

[Reference URL] :

https://www.renesas.com/jp/ja/document/apn/ra-arm-trustzone-tooling-primer?language=en&r=1353811

Safety part Non safety part

Initialoze process for Non-
Safety part

User Application

Call area from Non-
safety part

(Non-secure callable)

Periodical Selt Tests

・CPU RegisterTest

・CPU Instruction Test

・ROM Test

・RAM Test

Self Tests at P-ON startup

・CPU Register Test

・CPU Instruction Test

・ROM Test

・RAM Test

・クロックテスト

Timer Interrupt(PRI level = 0)

Initialize process for Safety
part at P-ON startup

Initial settings related to
periodical self-test (timer
interrupt settings, etc.)

https://www.renesas.com/jp/ja/document/apn/ra-arm-trustzone-tooling-primer?language=en&r=1353811

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 6 of 106
Jun.30.2023

Table of Contents

1. Tests .. 8

1.1 CPU ... 8

1.1.1 CPU instruction test and CPU register test ... 8
1.1.2 Test Error ... 21
1.1.3 CPU Software API ... 22

1.2 ROM .. 61

1.2.1 CRC32 Algorithm ... 61
1.2.2 Multi Checksum ... 61
1.2.3 CRC Software API ... 62

1.3 RAM .. 66

1.3.1 RAM Block Configuration ... 66
1.3.2 Reserved Area ... 67
1.3.3 RAM Test Algorithm ... 69
1.3.4 RAM Software API ... 72

1.4 Clock ... 77

1.4.1 Main Clock Frequency Monitoring by CAC .. 77
1.4.2 Oscillation Stop Detection of Main Clock ... 77
1.4.3 CLock Software API ... 78

1.5 Independent Watchdog Timer (IWDT).. 81

1.5.1 IWDT Software API .. 82

2. Example Usage .. 84

2.1 CPU ... 85

2.1.1 Power-On ... 85
2.1.2 Periodic .. 85
2.1.3 Preparation for CPU testing ... 85

2.2 ROM .. 87

2.2.1 Reference CRC Value Calculation in Advance ... 87
2.2.2 Setting for the support Multi-checksum ... 96
2.2.3 Power-On ... 97
2.2.4 Periodic .. 97

2.3 RAM .. 98

2.3.1 Power-On ... 98
2.3.2 Periodic .. 98

2.4 Clock ... 99

2.5 Independent Watchdog Timer (IWDT).. 101

2.5.1 OFS0 Register Setting Example (IWDT Related) ... 101
2.5.2 Example of registering and writing an NMI interrupt callback function .. 103

Website and Support .. 105

Reference Documents .. 105

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 7 of 106
Jun.30.2023

Revision History .. 106

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 8 of 106
Jun.30.2023

1. Tests
1.1 CPU

The objective of the CPU test is to detect random permanent faults from CPU core.
Main functions of CPU Test are described below.
 ●CPU instruction test)
 ●CPU register test

1.1.1 CPU instruction test and CPU register test
Table 1.16 describes the outline of each test of the CPU test performed by this self-test library.
The related registers and instruction codes are tested by executing of each test, and by checking the execution results,
CPU fault can be detect.

Test targets(Overview) are CPU instructions and registers listed in Table 1.1.

Table 1.1 CPU Test target(Overview)

Test target Arm® Cortex®-M33(CM33)
Instruction Profile ARMv8-M

Mainline
Instruction set Cortex-M33

Instruction Set
DSP SIMD only

FSP Single and double
 precision instructions

Register General purpose registers R0 – R12 ✓

Stack Pointer SP(R13) ✓

Link Register LR(R14) ✓

Program Counter PC(R15) ✓

Single-precision Floating-point Registers S0 – S31 ✓

Floating-point Status Control Register FPSCR ✓

Application Program Status Register APSR ✓

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 9 of 106
Jun.30.2023

The list of the Armv8-M registers and their test support status is listed in the below "Table 1.2 - Table 1.3".

See the "Arm®v8-M Architecture Reference Manual" (Reference Document [2]) for detailed information on each
register.

[Notation]

✓ : To be tested

(blank) : Not to be tested

N/A : Not applicapable

Table 1.2 Armv8-M Registers Tested/Not Tested by CPU Test (1 of 2)

No. Component Register Description Tested by
CPU test

1 Special and

general-purpose

registers

APSR Application Program Status Register ✓

BASEPRI Base Priority Mask Register

CONTROL Control Register

EPSR Execution Program Status Register

FAULTMASK Fault Mask Register

FPSCR Floating-point Status and Control Register ✓

IPSR Interrupt Program Status Register

LO_BRANCH_INFO Loop and branch tracking information N/A

LR(R14) Link Register ✓

MSPLIM Main Stack Pointer Limit Register

PC(R15) Program Counter ✓

PRIMASK Exception Mask Register

PSPLIM Process Stack Pointer Limit Register

Rn (R0 - R12) General-Purpose Register n ✓

SP (R13) Current Stack Pointer Register ✓

SP Stack Pointer (Non-secure)

S0 – S31 Single-precision Floating-point Registers ✓

VPR
Vector Predication Status and Control

Register
N/A

XPSR Combined Program Status Registers

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 10 of 106
Jun.30.2023

Table 1.3 Armv8-M Registers Tested/Not Tested by CPU Test (2 of 2)

No. Component Register
Tested by

CPU test

2 Payloads All registers

3 Instrumentation Macrocell All registers

4 Data Watchpoint and Trace All registers

5 Flash Patch and Breakpoint All registers

6 Performance Monitoring Unit All registers N/A

7 Reliability, Availability and Serviceability Extension Fault Status Register
(Registers starting at address 0xE0005000) All registers N/A

8 Implementation Control Block All registers

9 SysTick Timer All registers

10 Nested Vectored Interrupt Controller All registers

11 System Control Block All registers

12 Memory Protection Unit All registers

13 Security Attribution Unit All registers

14 Debug Control Block All registers

15 Software Interrupt Generation All registers

16 Reliability, Availability and Serviceability Extension Fault Status Register
(Registers starting at address 0xE000EF04) All registers

17 Floating-Point Extension All registers

18 Cache Maintenance Operations All registers

19 Debug Identification Block All registers

20 Implementation Control Block (NS alias) All registers

21 SysTick Timer (NS alias) All registers

22 Nested Vectored Interrupt Controller (NS alias) All registers

23 System Control Block (NS alias) All registers

24 Memory Protection Unit (NS alias) All registers

25 Debug Control Block (NS alias) All registers

26 Software Interrupt Generation (NS alias) All registers

27
Reliability, Availability and Serviceability Extension Fault Status Register (NS

Alias)
All registers

28 Floating-Point Extension (NS alias) All registers

29 Cache Maintenance Operations (NS alias) All registers

30 Debug Identification Block (NS alias) All registers

31 Trace Port Interface Unit All registers

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 11 of 106
Jun.30.2023

The list of the Armv8-M instructions and their test support status is listed in the below "Table 1.4 - Table 1.13".
See the "Arm® Cortex®-M33 Devices Generic User Guide " (Reference Document [1]) for detailed information on
each instructons.

Note that the main purpose is not to test individual instructions, but to detect random permanent failure of the CPU
core.

[Notation]
✓ : To be tested
(blank) : Not to be tested
N/A : Not applicapable

Table 1.4 Armv8-M Instructions Tested/Not Tested by CPU Test (1 of 10)

No. Instruction
Tested by

CPU test
No. Instruction

Tested by

CPU test

1 ADC (immediate) * 21 BIC (immediate) *

2 ADC (register) ✓ 22 BIC (register) ✓

3 ADD (SP plus immediate) ✓ 23 BKPT

4 ADD (SP plus register) * 24 BL ✓

5 ADD (immediate) * 25 BLX, BLXNS ✓

6 ADD (immediate, to PC) * 26 BX, BXNS ✓

7 ADD (register) ✓ 27 CBNZ, CBZ ✓

8 ADR ✓ 28 CDP, CDP2

9 AND (immediate) * 29 CINC N/A

10 AND (register) ✓ 30 CINV N/A

11 ASR (immediate) ✓ 31 CLREX ✓

12 ASR (register) * 32 CLRM N/A

13 ASRL (immediate) N/A 33 CLZ ✓

14 ASRL (register) N/A 34 CMN (immediate) *

15 ASRS (immediate) * 35 CMN (register) ✓

16 ASRS (register) ✓ 36 CMP (immediate) *

17 B ✓ 37 CMP (register) ✓

18 BF, BFX, BFL, BFLX, BFCSEL N/A 38 CNEG N/A

19 BFC ✓ 39 CPS

20 BFI ✓ 40 CSDB N/A

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 12 of 106
Jun.30.2023

Table 1.5 Armv8-M Instructions Tested/Not Tested by CPU Test (2 of 10)

No
. Instruction

Tested by

CPU test
No. Instruction

Tested by

CPU test

41 CSEL N/A 71 LDC, LDC2 (literal) N/A

42 CSET N/A 72 LDM, LDMIA, LDMFD ✓

43 CSETM N/A 73 LDMDB, LDMEA ✓

44 CSINC N/A 74 LDR (immediate) ✓

45 CSINV N/A 75 LDR (literal) *

46 CSNEG N/A 76 LDR (register) ✓

47 CX1 N/A 77 LDRB (immediate) ✓

48 CX1D N/A 78 LDRB (literal) *

49 CX2 N/A 79 LDRB (register) *

50 CX2D N/A 80 LDRBT ✓

51 CX3 N/A 81 LDRD (immediate) ✓

52 CX3D N/A 82 LDRD (literal) *

53 DBG 83 LDREX ✓

54 DMB 84 LDREXB ✓

55 DSB 85 LDREXH ✓

56 EOR (immediate) * 86 LDRH (immediate) ✓

57 EOR (register) ✓ 87 LDRH (literal) ✓

58 ESB N/A 88 LDRH (register) *

59 FLDMDBX, FLDMIAX 89 LDRHT ✓

60 FSTMDBX, FSTMIAX 90 LDRSB (immediate) *

61 ISB 91 LDRSB (literal) ✓

62 IT ✓ 92 LDRSB (register) ✓

63 LCTP N/A 93 LDRSBT ✓

64 LDA ✓ 94 LDRSH (immediate) ✓

65 LDAB ✓ 95 LDRSH (literal) *

66 LDAEX ✓ 96 LDRSH (register) ✓

67 LDAEXB ✓ 97 LDRSHT ✓

68 LDAEXH ✓ 98 LDRT ✓

69 LDAH ✓ 99 LE, LETP N/A

70 LDC, LDC2 (immediate) N/A 100 LSL (immediate) ✓

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 13 of 106
Jun.30.2023

Table 1.6 Armv8-M Instructions Tested/Not Tested by CPU Test (3 of 10)

No. Instruction
Tested by

CPU test
No. Instruction

Tested by

CPU test

101 LSL (register) * 131 PKHBT, PKHTB ✓

102 LSLL (immediate) N/A 132 PLD (literal)

103 LSLL (register) N/A 133 PLD, PLDW (immediate)

104 LSLS (immediate) * 134 PLD, PLDW (register)

105 LSLS (register) ✓ 135 PLI (immediate, literal)

106 LSR (immediate) ✓ 136 PLI (register)

107 LSR (register) * 137 POP (multiple registers) ✓

108 LSRL (immediate) N/A 138 POP (single register) ✓

109 LSRS (immediate) * 139 PSSBB N/A

110 LSRS (register) ✓ 140 PUSH (multiple registers) ✓

111 MCR, MCR2 141 PUSH (single register) ✓

112 MCRR, MCRR2 142 QADD ✓

113 MLA ✓ 143 QADD16 ✓

114 MLS ✓ 144 QADD8 ✓

115 MOV (immediate) ✓ 145 QASX ✓

116 MOV (register) * 146 QDADD ✓

117 MOV, MOVS
(register-shifted register)

* 147 QDSUB ✓

118 MOVT ✓ 148 QSAX ✓

119 MRC, MRC2 149 QSUB ✓

120 MRRC, MRRC2 150 QSUB16 ✓

121 MRS ✓ 151 QSUB8 ✓

122 MSR (register) ✓ 152 RBIT ✓

123 MUL ✓ 153 REV ✓

124 MVN (immediate) * 154 REV16 ✓

125 MVN (register) ✓ 155 REVSH ✓

126 NOP 156 ROR (immediate) ✓

127 ORN (immediate) * 157 ROR (register) *

128 ORN (register) ✓ 158 RORS (immediate) *

129 ORR (immediate) * 159 RORS (register) ✓

130 ORR (register) ✓ 160 RRX ✓

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 14 of 106
Jun.30.2023

Table 1.7 Armv8-M Instructions Tested/Not Tested by CPU Test (4 of 10)

No. Instruction
Tested by

CPU test
No. Instruction

Tested by

CPU test

161 RRXS ✓ 191 SMUAD, SMUADX ✓

162 RSB (immediate) ✓ 192 SMULBB, SMULBT, SMULTB,
SMULTT

✓

163 RSB (register) * 193 SMULL ✓

164 SADD16 ✓ 194 SMULWB, SMULWT ✓

165 SADD8 ✓ 195 SMUSD, SMUSDX ✓

166 SASX ✓ 196 SQRSHR (register) N/A

167 SBC (immediate) * 197 SQRSHRL (register) N/A

168 SBC (register) ✓ 198 SQSHL (immediate) N/A

169 SBFX ✓ 199 SQSHLL (immediate) N/A

170 SDIV ✓ 200 SRSHR (immediate) N/A

171 SEL ✓ 201 SRSHRL (immediate) N/A

172 SEV 202 SSAT ✓

173 SG 203 SSAT16 ✓

174 SHADD16 ✓ 204 SSAX ✓

175 SHADD8 ✓ 205 SSBB N/A

176 SHASX ✓ 206 SSUB16 ✓

177 SHSAX ✓ 207 SSUB8 ✓

178 SHSUB16 ✓ 208 STC, STC2 N/A

179 SHSUB8 ✓ 209 STL ✓

180 SMLABB, SMLABT,
SMLATB, SMLATT

✓ 210 STLB ✓

181 SMLAD, SMLADX ✓ 211 STLEX ✓

182 SMLAL ✓ 212 STLEXB ✓

183 SMLALBB, SMLALBT,
SMLALTB, SMLALTT

✓ 213 STLEXH ✓

184 SMLALD, SMLALDX ✓ 214 STLH ✓

185 SMLAWB, SMLAWT ✓ 215 STM, STMIA, STMEA ✓

186 SMLSD, SMLSDX ✓ 216 STMDB, STMFD ✓

187 SMLSLD, SMLSLDX ✓ 217 STR (immediate) ✓

188 SMMLA, SMMLAR ✓ 218 STR (register) ✓

189 SMMLS, SMMLSR ✓ 219 STRB (immediate) ✓

190 SMMUL, SMMULR ✓ 220 STRB (register) ✓

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 15 of 106
Jun.30.2023

Table 1.8 Armv8-M Instructions Tested/Not Tested by CPU Test (5 of 10)

No. Instruction
Tested by

CPU test
No. Instruction

Tested by

CPU test

221 STRBT ✓ 251 UBFX ✓

222 STRD (immediate) ✓ 252 UDF

223 STREX ✓ 253 UDIV ✓

224 STREXB ✓ 254 UHADD16 ✓

225 STREXH ✓ 255 UHADD8 ✓

226 STRH (immediate) ✓ 256 UHASX ✓

227 STRH (register) ✓ 257 UHSAX ✓

228 STRHT ✓ 258 UHSUB16 ✓

229 STRT ✓ 259 UHSUB8 ✓

230 SUB (SP minus immediate) ✓ 260 UMAAL ✓

231 SUB (SP minus register) * 261 UMLAL ✓

232 SUB (immediate) ✓ 262 UMULL ✓

233 SUB (immediate, from PC) * 263 UQADD16 ✓

234 SUB (register) * 264 UQADD8 ✓

235 SVC 265 UQASX ✓

236 SXTAB ✓ 266 UQRSHL (register) N/A

237 SXTAB16 ✓ 267 UQRSHLL (register) N/A

238 SXTAH ✓ 268 UQSAX ✓

239 SXTB ✓ 269 UQSHL (immediate) N/A

240 SXTB16 ✓ 270 UQSHLL (immediate) N/A

241 SXTH ✓ 271 UQSUB16 ✓

242 TBB, TBH ✓ 272 UQSUB8 ✓

243 TEQ (immediate) * 273 URSHR (immediate) N/A

244 TEQ (register) ✓ 274 URSHRL (immediate) N/A

245 TST (immediate) * 275 USAD8 ✓

246 TST (register) ✓ 276 USADA8 ✓

247 TT, TTT, TTA, TTAT 277 USAT ✓

248 UADD16 ✓ 278 USAT16 ✓

249 UADD8 ✓ 279 USAX ✓

250 UASX ✓ 280 USUB16 ✓

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 16 of 106
Jun.30.2023

Table 1.9 Armv8-M Instructions Tested/Not Tested by CPU Test (6 of 10)

No. Instruction
Tested by

CPU test
No. Instruction

Tested by

CPU test

281 USUB8 ✓ 301 VAND N/A

282 UXTAB ✓ 302 VBIC (immediate) N/A

283 UXTAB16 ✓ 303 VBIC (register) N/A

284 UXTAH ✓ 304 VBRSR N/A

285 UXTB ✓ 305 VCADD (floating-point) N/A

286 UXTB16 ✓ 306 VCADD N/A

287 UXTH ✓ 307 VCLS N/A

288 VABAV N/A 308 VCLZ N/A

289 VABD (floating-point) N/A 309 VCMLA (floating-point) N/A

290 VABD N/A 310 VCMP (floating-point) N/A

291 VABS (floating-point) N/A 311 VCMP (vector) N/A

292 VABS (vector) N/A 312 VCMP ✓

293 VABS ✓ 313 VCMPE ✓

294 VADC N/A 314 VCMUL (floating-point) N/A

295 VADD (floating-point) N/A 315 VCTP N/A

296 VADD (vector) N/A 316 VCVT (between double-
precision and single-precision)

N/A

297 VADD ✓ 317 VCVT (between floating-point
and fixed-point) (vector)

N/A

298 VADDLV N/A 318 VCVT (between floating-point
and fixed-point)

✓

299 VADDV N/A 319 VCVT (between floating-point
and integer)

N/A

300 VAND (immediate) N/A 320 VCVT (between single and half-
precision floating-point)

N/A

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 17 of 106
Jun.30.2023

Table 1.10 Armv8-M Instructions Tested/Not Tested by CPU Test (7 of 10)

No. Instruction
Tested by

CPU test
No. Instruction

Tested by

CPU test

321 VCVT (floating-point to
integer)

✓ 346 VFNMA ✓

322 VCVT (from floating-point to
integer)

N/A 347 VFNMS ✓

323 VCVT (integer to floating-
point)

✓ 348 VHADD N/A

324 VCVTA ✓ 349 VHCADD N/A

325 VCVTB 350 VHSUB N/A

326 VCVTM ✓ 351 VIDUP, VIWDUP N/A

327 VCVTN ✓ 352 VINS N/A

328 VCVTP ✓ 353 VLD2 N/A

329 VCVTR ✓ 354 VLD4 N/A

330 VCVTT 355 VLDM ✓

331 VCX1 (vector) N/A 356 VLDR (System Register) N/A

332 VCX1 N/A 357 VLDR ✓

333 VCX2 (vector) N/A 358 VLDRB, VLDRH, VLDRW N/A

334 VCX2 N/A 359 VLDRB, VLDRH, VLDRW,
VLDRD (vector)

N/A

335 VCX3 (vector) N/A 360 VLLDM

336 VCX3 N/A 361 VLSTM

337 VDDUP, VDWDUP N/A 362 VMAX, VMAXA N/A

338 VDIV ✓ 363 VMAXNM ✓

339 VDUP N/A 364 VMAXNM, VMAXNMA (floating-
point)

N/A

340 VEOR N/A 365 VMAXNMV, VMAXNMAV
(floating-point)

N/A

341 VFMA (vector by scalar plus
vector, floating-point)

N/A 366 VMAXV, VMAXAV N/A

342 VFMA ✓ 367 VMIN, VMINA N/A

343 VFMA, VFMS (floating-point) N/A 368 VMINNM ✓

344 VFMAS (vector by vector
plus scalar, floating-point)

N/A 369 VMINNM, VMINNMA (floating-
point)

N/A

345 VFMS ✓ 370 VMINNMV, VMINNMAV
(floating-point)

N/A

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 18 of 106
Jun.30.2023

Table 1.11 Armv8-M Instructions Tested/Not Tested by CPU Test (8 of 10)

No. Instruction
Tested by

CPU test
No. Instruction

Tested by

CPU test

371 VMINV, VMINAV N/A 386 VMOV (general-purpose
register to vector lane)

N/A

372 VMLA (vector by scalar plus
vector)

N/A 387
VMOV (half of doubleword
register to single general-
purpose register)

N/A

373 VMLA ✓ 388 VMOV (immediate) (vector) N/A

374 VMLADAV N/A 389 VMOV (immediate) ✓

375 VMLALDAV N/A 390 VMOV (register) (vector) N/A

376 VMLALV N/A 391 VMOV (register) ✓

377 VMLAS (vector by vector
plus scalar)

N/A 392
VMOV (single general-purpose
register to half of doubleword
register)

N/A

378 VMLAV N/A 393
VMOV (two 32-bit vector lanes
to two general-purpose
registers)

N/A

379 VMLS ✓ 394
VMOV (two general-purpose
registers to two 32-bit vector
lanes)

N/A

380 VMLSDAV N/A 395 VMOV (vector lane to general-
purpose register)

N/A

381 VMLSLDAV N/A 396 VMOVL N/A

382
VMOV (between general-
purpose register and half-
precision register)

N/A 397 VMOVN N/A

383
VMOV (between general-
purpose register and single-
precision register)

✓ 398 VMOVX N/A

384
VMOV (between two
general-purpose registers
and a doubleword register)

N/A 399 VMRS ✓

385
VMOV (between two
general-purpose registers
and two single-precision
registers)

✓ 400 VMSR ✓

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 19 of 106
Jun.30.2023

Table 1.12 Armv8-M Instructions Tested/Not Tested by CPU Test (9 of 10)

No. Instruction
Tested by

CPU test
No. Instruction

Tested by

CPU test

401 VMUL (floating-point) N/A 431 VQDMLSDH, VQRDMLSDH N/A

402 VMUL (vector) N/A 432 VQDMULH, VQRDMULH N/A

403 VMUL ✓ 433 VQDMULL N/A

404 VMULH, VRMULH N/A 434 VQMOVN N/A

405 VMULL (integer) N/A 435 VQMOVUN N/A

406 VMULL (polynomial) N/A 436 VQNEG N/A

407 VMVN (immediate) N/A 437 VQRSHL N/A

408 VMVN (register) N/A 438 VQRSHRN N/A

409 VNEG (floating-point) N/A 439 VQRSHRUN N/A

410 VNEG (vector) N/A 440 VQSHL, VQSHLU N/A

411 VNEG ✓ 441 VQSHRN N/A

412 VNMLA ✓ 442 VQSHRUN N/A

413 VNMLS ✓ 443 VQSUB N/A

414 VNMUL ✓ 444 VREV16 N/A

415 VORN (immediate) N/A 445 VREV32 N/A

416 VORN N/A 446 VREV64 N/A

417 VORR (immediate) N/A 447 VRHADD N/A

418 VORR N/A 448 VRINT (floating-point) N/A

419 VPNOT N/A 449 VRINTA ✓

420 VPOP ✓ 450 VRINTM ✓

421 VPSEL N/A 451 VRINTN ✓

422 VPST N/A 452 VRINTP ✓

423 VPT (floating-point) N/A 453 VRINTR ✓

424 VPT N/A 454 VRINTX ✓

425 VPUSH ✓ 455 VRINTZ ✓

426 VQABS N/A 456 VRMLALDAVH N/A

427 VQADD N/A 457 VRMLALVH N/A

428 VQDMLADH, VQRDMLADH N/A 458 VRMLSLDAVH N/A

429
VQDMLAH, VQRDMLAH
(vector by scalar plus
vector)

N/A 459 VRSHL N/A

430
VQDMLASH, VQRDMLASH
(vector by vector plus
scalar)

N/A 460 VRSHR N/A

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 20 of 106
Jun.30.2023

Table 1.13 Armv8-M Instructions Tested/Not Tested by CPU Test (10 of 10)

No. Instruction
Tested by

CPU test
No. Instruction

Tested by

CPU test

461 VRSHRN N/A 474 VST4 N/A

462 VSBC N/A 475 VSTM ✓

463 VSCCLRM N/A 476 VSTR (System Register) N/A

464 VSEL ✓ 477 VSTR ✓

465 VSHL N/A 478 VSTRB, VSTRH, VSTRW N/A

466 VSHLC N/A 479 VSTRB, VSTRH, VSTRW,
VSTRD (vector)

N/A

467 VSHLL N/A 480 VSUB (floating-point) N/A

468 VSHR N/A 481 VSUB (vector) N/A

469 VSHRN N/A 482 VSUB ✓

470 VSLI N/A 483 WFE

471 VSQRT ✓ 484 WFI

472 VSRI N/A 485 WLS, DLS, WLSTP, DLSTP N/A

473 VST2 N/A 486 YIELD

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 21 of 106
Jun.30.2023

1.1.2 Test Error
The CPU test will jump to this function if an error is detected.

This error handling function is the struction of closed loop and should not be return.

All the test functions follow the rules of register preservation following a C function call. Therefore the user can call
these functions like any normal C function without any additional responsibilities for saving register values beforehand.

extern void CPU_Test_ErrorHandler(void);

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 22 of 106
Jun.30.2023

1.1.3 CPU Software API
The software API source files related to CPU testing are shown in Table 1.14.

When the CPU Test API is executed, the related CPU registers and instructions codes are tested.

A CPU fault can be detected by checking the execution result output to the argument.

It need to set the configuration of CPU tests before compiling your code. The CPU test configuration directive and each
CPU test is shown in Table 1.15 and Table 1.16.

For details, refer to “2.1.3 Preparation for CPU testing”.

Table 1.14 Source files of CPU Software API

File Name
r_cpu_diag_config.h Definition of CPU Test Directive.

cpu_test.c CPU test implementation part

r_cpu_diag_0.asm
r_cpu_diag_1.asm
r_cpu_diag_2.asm
r_cpu_diag_3.asm
r_cpu_diag_4.asm
r_cpu_diag_5.asm
r_cpu_diag_6.asm
r_cpu_diag_7_1.asm
r_cpu_diag_7_2.asm
r_cpu_diag_7_3.asm
r_cpu_diag_8.asm
r_cpu_diag_9.asm
r_cpu_diag_10.asm
r_cpu_diag_11.asm
r_cpu_diag_12.asm
r_cpu_diag_13.asm
r_cpu_diag_14_1.asm
r_cpu_diag_14_2.asm
r_cpu_diag_15_1.asm
r_cpu_diag_15_2.asm
r_cpu_diag_15_3.asm
r_cpu_diag_15_4.asm
r_cpu_diag_15_5.asm
r_cpu_diag_15_6.asm
r_cpu_diag_16.asm

Definition of CPU Test core function.

Note:
Please note that some tests consist of multiple files
like r_cpu_diag_7_1.asm, r_cpu_diag_7_2.asm.

r_cpu_diag_0.h
r_cpu_diag_1.h
r_cpu_diag_2.h
r_cpu_diag_3.h
r_cpu_diag_4.h
r_cpu_diag_5.h
r_cpu_diag_6.h
r_cpu_diag_7_1.h
r_cpu_diag_7_2.h
r_cpu_diag_7_3.h
r_cpu_diag_8.h

Declaration of CPU Test core function.

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 23 of 106
Jun.30.2023

r_cpu_diag_9.h
r_cpu_diag_10.h
r_cpu_diag_11.h
r_cpu_diag_12.h
r_cpu_diag_13.h
r_cpu_diag_14_1.h
r_cpu_diag_14_2.h
r_cpu_diag_15_1.h
r_cpu_diag_15_2.h
r_cpu_diag_15_3.h
r_cpu_diag_15_4.h
r_cpu_diag_15_5.h
r_cpu_diag_15_6.h
r_cpu_diag_16.h
r_cpu_diag.c Definition of CPU Test API function.

r_cpu_diag.h Declaration of CPU Test API function.

r_cpu_diag.inc Definition of Assembler macro.

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 24 of 106
Jun.30.2023

Table 1.15 Directives for Software Configuration for CPU Test

File Name
BUILD_R_CPU_DIAG_0 When set to “1”, the CPU test function: R_CPU_Diag0 is

constructed.
BUILD_R_CPU_DIAG_1 When set to “1”, the CPU test function: R_CPU_Diag1 is

constructed.
BUILD_R_CPU_DIAG_2 When set to “1”, the CPU test function: R_CPU_Diag2 is

constructed.
BUILD_R_CPU_DIAG_3 When set to “1”, the CPU test function: R_CPU_Diag3 is

constructed.
BUILD_R_CPU_DIAG_4_1 *1 When set to “1”, the CPU test function: R_CPU_Diag4_1

is constructed.
BUILD_R_CPU_DIAG_4_2 *1 When set to “1”, the CPU test function: R_CPU_Diag4_2

is constructed.
BUILD_R_CPU_DIAG_5 When set to “1”, the CPU test function: R_CPU_Diag5 is

constructed.
BUILD_R_CPU_DIAG_6 When set to “1”, the CPU test function: R_CPU_Diag6 is

constructed.
BUILD_R_CPU_DIAG_7_1 *1 When set to “1”, the CPU test function: R_CPU_Diag7_1

is constructed.
BUILD_R_CPU_DIAG_7_2 *1 When set to “1”, the CPU test function: R_CPU_Diag7_2

is constructed.
BUILD_R_CPU_DIAG_7_3 *1 When set to “1”, the CPU test function: R_CPU_Diag7_3

is constructed.
BUILD_R_CPU_DIAG_8 When set to “1”, the CPU test function: R_CPU_Diag8 is

constructed.
BUILD_R_CPU_DIAG_9 When set to “1”, the CPU test function: R_CPU_Diag9 is

constructed.
BUILD_R_CPU_DIAG_10 When set to “1”, the CPU test function: R_CPU_Diag10 is

constructed.
BUILD_R_CPU_DIAG_11 When set to “1”, the CPU test function: R_CPU_Diag11 is

constructed.
BUILD_R_CPU_DIAG_12 When set to “1”, the CPU test function: R_CPU_Diag12 is

constructed.
BUILD_R_CPU_DIAG_13 When set to “1”, the CPU test function: R_CPU_Diag13 is

constructed.
BUILD_R_CPU_DIAG_14_1 *1 When set to “1”, the CPU test function: R_CPU_Diag14_1

is constructed.
BUILD_R_CPU_DIAG_14_2 *1 When set to “1”, the CPU test function: R_CPU_Diag14_2

is constructed.
BUILD_R_CPU_DIAG_15_1 *1 When set to “1”, the CPU test function: R_CPU_Diag15_1

is constructed.
BUILD_R_CPU_DIAG_15_2 *1 When set to “1”, the CPU test function: R_CPU_Diag15_2

is constructed.
BUILD_R_CPU_DIAG_15_3 *1 When set to “1”, the CPU test function: R_CPU_Diag15_3

is constructed.
BUILD_R_CPU_DIAG_15_4 *1 When set to “1”, the CPU test function: R_CPU_Diag15_4

is constructed.
BUILD_R_CPU_DIAG_15_5 *1 When set to “1”, the CPU test function: R_CPU_Diag15_5

is constructed.
BUILD_R_CPU_DIAG_15_6 *1 When set to “1”, the CPU test function: R_CPU_Diag15_6

is constructed.
BUILD_R_CPU_DIAG_16 *1 When set to “1”, the CPU test function: R_CPU_Diag16 is

constructed.
*1

See Table 1.16.
Please note that some tests have multiple directives like BUILD_R_CPU_DIAG_7_1, BUILD_R_CPU_DIAG_7_2.

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 25 of 106
Jun.30.2023

Table 1.16 CPU Test Target

Test No index *1 Function name *2 Objective of the Test
0 0 R_CPU_Diag0 Four basic arithmetic operations (add, sub, mul and div)

1 1 R_CPU_Diag1 Sign/Zero extension operations
2 2 R_CPU_Diag2 Branch, logical, comparison and conditional operations

3 3 R_CPU_Diag3 Bit manipulation and data transfer

4 4
5

R_CPU_Diag4_1
R_CPU_Diag4_2

Memory access (Load/Store) without exclusive

5 6 R_CPU_Diag5 Memory access (Load/Store) with exclusive and privileged

6 7 R_CPU_Diag6 System related

7 8
9
10

R_CPU_Diag7_1
R_CPU_Diag7_2
R_CPU_Diag7_3

Registers R0 - R12, MSP(R13), LR(R14), and APSR

8 11 R_CPU_Diag8 Multiply-accumulate and multiply-subtract operations (MAC
and MSB)

9 12 R_CPU_Diag9 Combined arithmetic operations

10 13 R_CPU_Diag10 Saturating and rounding operations

11 14 R_CPU_Diag11 Floating-point four basic arithmetic, absolute value and
comparison operations

12 15 R_CPU_Diag12 Floating-point multiply-accumulate and multiply-subtract
operation

13 16 R_CPU_Diag13 Floating-point rounding and data type conversion

14 17
18

R_CPU_Diag14_1
R_CPU_Diag14_2

Floating-point memory access and data transfer

15 19
20
21
22
23

24

R_CPU_Diag15_1
R_CPU_Diag15_2
R_CPU_Diag15_3
R_CPU_Diag15_4
R_CPU_Diag15_5
R_CPU_Diag15_6

Registers S0 - S31 and FPSCR

16 25 R_CPU_Diag16 CPU register test using WALKPAT

*1) Test is required for all indexes when the test spans over multiple indexes.

*2) See Table 1.15 for software configuration directives for code generation of each function.

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 26 of 106
Jun.30.2023

 cpu_test.c File

Syntax

void CPU_Test_ClassC(void)

Description

Perform the CPU tests in the following order :

1. Saves the current stack limit register.
SaveMspPt = __get_MSPLIM();
SavePspPt = __get_PSPLIM();

2. Disable the CPU stack pointer monitoring function.
__set_MSPLIM(0);
__set_PSPLIM(0);

3. Pass parameters and call function R_CPU_Diag.

4. Check the value of the argument "result".

5. If the result is OK, return to 3. above. (tothe following test)
When all the CPU tests are completed, go to 6 below.
If an error is detected, the external function CPU_Test_ErrorHandler will be called.
See Individual Tests for more information.

6. The stack limit register saved in above "1" is restored and this function is terminated.

7. CPU_Test_PC

8. Finished the function when all tests have been performed.
If all tests was not performed, the external function CPU_Test_ErrorHandler is called.

Input Parameters

NONE N/A
Output Parameters

const uint32_t
forceFail

Forced FAIL Option
When set to 0, the function fails forcibly.

0 : Enabled

1 : Disabled

The default value is fixed at "1" (Disabled).
* If you want to test the forced FAIL, change the value to fixed at "0".

Return Values
NONE N/A

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 27 of 106
Jun.30.2023

Syntax

void CPU_Test_PC(void)

Description

This function tests the program counter (PC) register.
This checks that the PC is working reliably.
The function returns the inverted value of the specified parameter so that it can verify that the function was actually
executed. This return value is checked for correctness.
If an error is detected, the external function CPU_Test_ErrorHandler is called.

Input Parameters
NONE N/A

Output Parameters
NONE N/A

Return Values
NONE N/A

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 28 of 106
Jun.30.2023

 r_cpu_diag.c File

Syntax

void R_CPU_Diag(uint32_t index, const uint32_t forceFail, int32_t *result)

Description

Use the index argument to execute the test function that corresponds to the CPU test number.

See Table 1.16 for the argument index, test number, and test function.

1. Set "resultTemp" to the initial value.

When the test function is performed, the test result is saved in "resultTemp".
2. It check if the value of the argument "Index" is valid.

If it is invalid, it exit the process after setting "FAIL(=0)" in the test result.
3. Perform the function of the corresponding CPU test according to the value of the argument “index”.
4. Set the test result to "* result" and exit the function.

Input Parameters

uint32_t index
CPU Test No(Refer to Table 1.16)
Returns FAIL when argument value is invalid.

const uint32_t
forceFail

Forced FAIL Option
When set to 0, the function fails forcibly.

0 : Enabled
Others : Disabled

int32_t *result Pointer to store Test result

Output Parameters
int32_t *result Test result (0 : FAIL / 1 : PASS)

Return Values
NONE N/A

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 29 of 106
Jun.30.2023

Syntax

uint32_t R_CPU_Diag_GetVersion(void)

Description

This function returns version information of CPU Test software
Version is defined in the "r_cpu_diag.h" file.

Input Parameters
NONE N/A

Output Parameters

uint32_t version
CPU Test Software version
(0xXXXXYYYY XXXX : Major, YYYY: Minor)

Return Values
uint32_t 0xXXXXYYYY XXXX : Major, YYYY: Minor

Syntax

static void norm_null(const uint32_t forceFail, int32_t *result)

Description
This function is a dummy function of the CPU test function excluded from compilation by the directive.
Set the test result to PASS.

Input Parameters

const uint32_t
forceFail

Forced FAIL Option
When set to 0, the function fails forcibly.

0 : Enabled
Others : Disabled

int32_t *result Pointer to store Test result

Output Parameters
int32_t *result Test result (1 : PASS)

Return Values

NONE N/A

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 30 of 106
Jun.30.2023

 r_cpu_diag_0.asm File

Syntax

void R_CPU_Diag0(const uint32_t forceFail, int32_t *result)

Description
1 Addition instructions test

Execute each instruction of ADCS (register), ADDS (register), SADD16, SADD8, UADD16, UADD8, SHADD16,
SHADD8 and check the match with the expected value of local signatur and global signature.

2 Subtraction instructions test

Execute each instruction of SBCS (register), SUBS (immediate), RSBS (immediate), SSUB16, SSUB8, USUB16,
USUB8, SHSUB16, SHSUB8 and check the match with the expected value of local signatur and global signature.

3.Multiplication instructions test

Execute each instruction of MULS, SMULL, SMULWB, SMMULR, SMULTB, UMULL and check the match
with the expected value of local signatur and global signature.

4 Division instructions test

Execute each instruction of SDIV, UDIV and check the match with the expected value of local signatur and global
signature.

5 Addition and subtraction for stack pointer test

Execute each instruction of SUB (SP minus immediate), ADD (SP plus immediate), SUB.W (SP minus immediate),
ADD.W (SP plus immediate) and check the match with the expected value of local signatur and global signature.

If it matches the expected value, set PASS (0x0001) to "resultTemp", and if it does not match the expected value, set
FAIL (0x0000) to "resultTemp".

Input Parameters

const uint32_t
forceFail

Forced FAIL Option
When set to 0, the function fails forcibly.

0 : Enabled
Others : Disabled

int32_t *result Pointer to store Test result

Output Parameters
int32_t *result Test result (0 : FAIL / 1 : PASS)

Return Values

NONE N/A

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 31 of 106
Jun.30.2023

 r_cpu_diag_1.asm File

Syntax

void R_CPU_Diag1(const uint32_t forceFail, int32_t *result)

Description
1 Sign extension

Execute each instruction of SXTAB T1, SXTAB16 T1, SXTAH T1, SXTB T1, SXTB16 T1, SXTH T1 and check
the match with the expected value of local signatur and global signature.

2 Zero extension

Execute each instruction of UXTAB T1, UXTAB16 T1, UXTAH T1, UXTB T1, UXTB16 T1, UXTH T1 and
check the match with the expected value of local signatur and global signature.

If it matches the expected value, set PASS (0x0001) to "resultTemp", and if it does not match the expected value, set
FAIL (0x0000) to "resultTemp".

Input Parameters

const uint32_t
forceFail

Forced FAIL Option
When set to 0, the function fails forcibly.

0 : Enabled
Others : Disabled

int32_t *result Pointer to store Test result
Output Parameters
int32_t *result Test result (0 : FAIL / 1 : PASS)
Return Values
NONE N/A

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 32 of 106
Jun.30.2023

 r_cpu_diag_2.asm File

Syntax

void R_CPU_Diag2(const uint32_t forceFail, int32_t *result)

Description
1 Branch

Execute each instruction of ADR T1, ADR T3, BEQ T1, B T2, BL T1, BLX T1, BX T1, CBZ T1, IT EQ T1, TBB
T1, TBH T1 and check the match with the expected value of local signatur and global signature.

2 Logical test

Execute each instruction of TEQ T1, TST T1 and check the match with the expected value of local signatur and
global signature.

3 Logical operation

Execute each instruction of ANDS T1, ORRS T1, ORNS T1, EORS T1, MVNS T1 and check the match with the
expected value of local signatur and global signature.

4 Comparison

Execute each instruction of CMN T1, CMP T1 and check the match with the expected value of local signatur and
global signature.

If it matches the expected value, set PASS (0x0001) to "resultTemp", and if it does not match the expected value, set
FAIL (0x0000) to "resultTemp".

Input Parameters

const uint32_t
forceFail

Forced FAIL Option
When set to 0, the function fails forcibly.
0 : Enabled
Others : Disabled

int32_t *result Pointer to store Test result

Output Parameters

int32_t *result Test result (0 : FAIL / 1 : PASS)

Return Values

NONE N/A

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 33 of 106
Jun.30.2023

 r_cpu_diag_3.asm File

Syntax

void R_CPU_Diag3(const uint32_t forceFail, int32_t *result)

Description
1 Bit manipulation

Execute each instruction of ASR (immediate) T3, ASRS (register) T1, BFC T1, BFI T1, BICS (register) T1, LSL
(immediate) T3, LSLS (register) T1, LSR (immediate) T3, LSRS (register) T1, ROR (immediate) T3, RORS
(register) T1, RRX T3, RRXS T3, CLZ T1, RBIT T1,SBFX T1, UBFX T1 and check the match with the expected
value of local signatur and global signature.

2 Data manipulation

Execute each instruction of REV T1, REV16 T1, REVSH T1, SEL T1, PKHBT T1 and check the match with the
expected value of local signatur and global signature.

3 Data transfer

Execute each instruction of MOVS (immediate) T1, MOVT T1, MRS T1, MSR (register) T1 and check the match
with the expected value of local signatur and global signature.

If it matches the expected value, set PASS (0x0001) to "resultTemp", and if it does not match the expected value, set
FAIL (0x0000) to "resultTemp".

Input Parameters

const uint32_t
forceFail

Forced FAIL Option
When set to 0, the function fails forcibly.
0 : Enabled
Others : Disabled

int32_t *result Pointer to store Test result

Output Parameters

int32_t *result Test result (0 : FAIL / 1 : PASS)

Return Values

NONE N/A

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 34 of 106
Jun.30.2023

 r_cpu_diag_4_1.asm File

Syntax

void R_CPU_Diag4_1(const uint32_t forceFail, int32_t *result)

Description
1 LDR and STR

Execute each instruction of
LDR (immediate) T2, STR (immediate) T2 ,
LDR (immediate) T3, STR (immediate) T3 ,
LDR (immediate) T4, STR (immediate) T4, (post-indexed) ,
LDR (immediate) T4, STR (immediate) T4, (negative immediate) ,
LDR (immediate) T4, STR (immediate) T4, (pre-indexed) ,
LDR (register) T2, STR (register) T2
and check the match with the expected value of local signatur and global signature.

2 LDRH and STRH
Execute each instruction of
LDRH (immediate) T1, STRH (immediate) T1 ,
LDRSH (register) T1, STRH (register) T1 ,
LDRSH (immediate) T1, STRH (immediate) T2 ,
LDRSH (immediate) T2, STRH (immediate) T3, (post-indexed) ,
LDRSH (immediate) T2, STRH (immediate) T3, (negative immediate) ,
LDRSH (immediate) T2, STRH (immediate) T3, (pre-indexed) ,
LDRSH (register) T2, STRH (register) T2
and check the match with the expected value of local signatur and global signature.

3 LDRB and STRB

Execute each instruction of
LDRSB (register) T1, STRB (register) T1 ,
LDRB (immediate) T1, STRB (immediate) T1
and check the match with the expected value of local signatur and global signature.

If it matches the expected value, set PASS (0x0001) to "resultTemp", and if it does not match the expected value, set
FAIL (0x0000) to "resultTemp".

Input Parameters

const uint32_t
forceFail

Forced FAIL Option
When set to 0, the function fails forcibly.
0 : Enabled
Others : Disabled

int32_t *result Pointer to store Test result
Output Parameters

int32_t *result Test result (0 : FAIL / 1 : PASS)
Return Values

NONE N/A

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 35 of 106
Jun.30.2023

 r_cpu_diag_4_2.asm File

Syntax

void R_CPU_Diag4_2(const uint32_t forceFail, int32_t *result)

Description
4 LDRD and STRD

Execute each instruction of
LDRD (immediate) T1, STRD (immediate) T1, (post-indexed) ,
LDRD (immediate) T1, STRD (immediate) T1, (immediate) ,
LDRD (immediate) T1, STRD (immediate) T1, (pre-indexed)
and check the match with the expected value of local signatur and global signature.

5 LDM and STM
Execute each instruction of
LDM and STM ,
LDM T3, STMDB T2 ,
LDM T2, STM T2 ,
LDMDB T1, STM T2
and check the match with the expected value of local signatur and global signature.

6 LDA and STL
Execute each instruction of
LDA T1, STL T1 ,
LDAH T1, STLH T1 ,
LDAB T1, STLB T1
and check the match with the expected value of local signatur and global signature.

7 LDRH / LDRSB (literal)
Execute each instruction of
LDRH (literal) T1 ,
LDRSB (literal) T1
and check the match with the expected value of local signatur and global signature.

If it matches the expected value, set PASS (0x0001) to "resultTemp", and if it does not match the expected value, set
FAIL (0x0000) to "resultTemp".

Input Parameters

const uint32_t
forceFail

Forced FAIL Option
When set to 0, the function fails forcibly.
0 : Enabled
Others : Disabled

int32_t *result Pointer to store Test result

Output Parameters
int32_t *result Test result (0 : FAIL / 1 : PASS)

Return Values
NONE N/A

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 36 of 106
Jun.30.2023

 r_cpu_diag_5.asm File

Syntax

void R_CPU_Diag5(const uint32_t forceFail, int32_t *result)

Description
1 LDAEX and STLEX

Execute each instruction of
LDAEX T1, STLEX T1 ,
LDAEXH T1, STLEXH T1 ,
LDAEXB T1, STLEXB T1
and check the match with the expected value of local signatur and global signature.

2 LDREX and STREX
Execute each instruction of
LDREX T1, STREX T1 ,
LDREXH T1, STREXH T1 ,
LDREXB T1, STREXB T1
and check the match with the expected value of local signatur and global signature.

3 LDRT and STRT
Execute each instruction of
LDRT T1, STRT T1 ,
LDRHT T1, STRHT T1 ,
LDRSHT T1, STRHT T1 ,
LDRBT T1, STRBT T1 ,
LDRSBT T1, STRBT T1
and check the match with the expected value of local signatur and global signature.

If it matches the expected value, set PASS (0x0001) to "resultTemp", and if it does not match the expected value, set
FAIL (0x0000) to "resultTemp".

Input Parameters

const uint32_t
forceFail

Forced FAIL Option
When set to 0, the function fails forcibly.
0 : Enabled
Others : Disabled

int32_t *result Pointer to store Test result

Output Parameters
int32_t *result Test result (0 : FAIL / 1 : PASS)

Return Values
NONE N/A

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 37 of 106
Jun.30.2023

 r_cpu_diag_6.asm File

Syntax

void R_CPU_Diag6(const uint32_t forceFail, int32_t *result)

Description
1 PUSH and POP

After executing the PUSH instruction using R4, R5, R6, R7, R8, R9, execute the POP instruction and check the
match with the expected value in each register of R4 and R7, R5 and R8, and R6 and R9.

2 Other (miscelaneous) operations

Execute each instruction of CLREX T1 and check the match with the expected value of local signatur and global
signature.

If it matches the expected value, set PASS (0x0001) to "resultTemp", and if it does not match the expected value, set
FAIL (0x0000) to "resultTemp".

Input Parameters

const uint32_t
forceFail

Forced FAIL Option
When set to 0, the function fails forcibly.
0 : Enabled
Others : Disabled

int32_t *result Pointer to store Test result

Output Parameters
int32_t *result Test result (0 : FAIL / 1 : PASS)

Return Values
NONE N/A

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 38 of 106
Jun.30.2023

r_cpu_diag_7_1.asm File

Syntax

void R_CPU_Diag7_1(const uint32_t forceFail, int32_t *result)

Description
1 Detecting “0” fixed fault for status and control registers
After writing "1" to the corresponding bit of the APSR register using R4 and R5, execute reading and check the
match between each register of R4 and R5 and the expected value. (Confirm that it is not fixed to "0")

2 Detecting “1” fixed fault for status and control registers
After writing "0" to the corresponding bit of the APSR register using R4 and R5, execute reading and confirm the
match between each resist of R4 and R5 and the expected value. (Confirm that "1" is not fixed)

3 Detecting “0” fixed fault for general purpose registers
After writing ALL "1" to R0 to R12 and LR (R14), execute reading and check that the registers of R0 to R12 and LR
(R14) match the expected value. (Confirm that it is not fixed to "0")

4 Detecting “1” fixed fault for general purpose registers
After writing ALL "0" to R0 to R12 and LR (R14), execute reading and check that the registers of R0 to R12 and LR
(R14) match the expected value. (Confirm that "1" is not fixed)

If it matches the expected value, set PASS (0x0001) to "resultTemp", and if it does not match the expected value, set
FAIL (0x0000) to "resultTemp".

Input Parameters

const uint32_t
forceFail

Forced FAIL Option
When set to 0, the function fails forcibly.
0 : Enabled
Others : Disabled

int32_t *result Pointer to store Test result

Output Parameters
int32_t *result Test result (0 : FAIL / 1 : PASS)

Return Values
NONE N/A

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 39 of 106
Jun.30.2023

r_cpu_diag_7_2.asm File

Syntax

void R_CPU_Diag7_2(const uint32_t forceFail, int32_t *result)

Description

5 Detecting coupling fault for general purpose registers between any two bits
Perform the following tests for the R0-R12 and R14 registers.
－Nearest neighbor coupling(Test pattern : 0x55555555)
－Next nearest neighbor coupling(Test pattern : 0x33333333)
－4-fold neighbor coupling(Test pattern : 0x0f0f0f0f)
－8-fold neighbor coupling(Test pattern : 0x00ff00ff)
－16-fold neighbor coupling(Test pattern : 0x0000ffff)

The procedure is as follows
1.Set each of the above test patterns to R0, write to R1, and check if it matches R0.
2. If they match, change the register written in 1 above in the order of R2 to R14 and perform.
3. Set each of the above test patterns to R14, write to R0, and confirm that it matches R0.
4. If they match, perform the following test pattern.
5. When all is completed, move to the following test.

6 Detecting coupling fault for general purpose registers between any two registers
－Detecting R7, R8, R9, R10, R11, R12, LR(R14) coupling fault (Using A's pattern)
－Detecting R0, R1, R2, R3, R4, R5, R6 coupling fault (Using B's pattern)

The procedure is as follows.

1.Set test patterns for R0 to R6, write R0 to R7, R1 to R8, ..., R6 to R14,
and confirm the each values of R0 and R7, R1 and R8, ..., R6 and R14 is matched.

2. Set test patterns for R7 to R14, write R8 to R0, R9 to R1, ..., R7 to R6,
and confirm the each values of R8 and R0, R9 and R1, ..., R7 and R6 is matched.

3. Complete the test.
*Note that R13 (SP) is excluded from this test.

If it matches the expected value, set PASS (0x0001) to "resultTemp", and if it does not match the expected value, set
FAIL (0x0000) to "resultTemp".

Input Parameters

const uint32_t
forceFail

Forced FAIL Option
When set to 0, the function fails forcibly.
0 : Enabled
Others : Disabled

int32_t *result Pointer to store Test result

Output Parameters
int32_t *result Test result (0 : FAIL / 1 : PASS)

Return Values
NONE N/A

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 40 of 106
Jun.30.2023

r_cpu_diag_7_3.asm File

Syntax

void R_CPU_Diag7_3(const uint32_t forceFail, int32_t *result)

Description
7 Detecting "0" fixed fault for MSP(R13)
After writing "0xfffffffc" to the SP (R13) register using R5, execute reading and confirm that R5 and SP (R13) match
the expected value. (Confirm that not fixed to "0")

8 Detecting "1" fixed fault for MSP(R13)
After writing "0x00000000" to the SP (R13) register using R5, execute reading and confirm that R5 and SP (R13)
match the expected value. (Confirm that not fixed to "1")

9 Detecting coupling fault for MSP(R13) between any two bits
Perform the following tests for R13(SP)
－Nearest neighbor coupling(Test pattern : 0x55555554)
－Next nearest neighbor coupling(Test pattern : 0x33333330)
－4-fold neighbor coupling(Test pattern : 0x0f0f0f0c)
－8-fold neighbor coupling(Test pattern : 0x00ff00fc)
－16-fold neighbor coupling(Test pattern : 0x0000fffc)

The procedure is as follows.

1. Set each of the above test patterns to R5, write to R13 (SP), and confirm that it matches R5.
2. If they match, carry out the next test pattern.
3. When all is completed, move to the following test

10 Detecting coupling fault between MSP(R13) to other general purpose registers

－Detecting SP, R2 coupling fault
－Detecting SP, R3 coupling fault

The procedure is as follows.

1. Set test patterns for R6 and R7, write R6 to SP (R13) and R7 to R2, and check that the values of R6 and SP
(R13) and R7 and R2 match.
2. Set test patterns for R6 and R7, write R7 to SP (R13) and R6 to R3, and check that the values of R7 and SP
(R13) and R6 and R3 match.
3. Finish the test.

Bit0 and 1 of R13 (SP) are fixed to "0".
If it matches the expected value, set PASS (0x0001) to "resultTemp", and if it does not match the expected value, set
FAIL (0x0000) to "resultTemp".

Input Parameters

const uint32_t
forceFail

Forced FAIL Option
When set to 0, the function fails forcibly.
0 : Enabled
Others : Disabled

int32_t *result Pointer to store Test result

Output Parameters
int32_t *result Test result (0 : FAIL / 1 : PASS)

Return Values
NONE N/A

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 41 of 106
Jun.30.2023

r_cpu_diag_8.asm File

Syntax

void R_CPU_Diag8(const uint32_t forceFail, int32_t *result)

Description
1 Multiply accumulate (MAC)

Execute each instruction of
MLA T1, SMLAL T1, SMLALBB T1, SMLALD T1, UMAAL T1, UMLAL T1, SMMLA T1, SMLADX T1,
SMLATT T1, SMLAWB T1
and check the match with the expected value of local signatur and global signature.

2 Multiply subtract (MSB)
Execute each instruction of
MLS T1, SMLSLD T1, SMMLSR T1, SMLSD T1
and check the match with the expected value of local signatur and global signature.

If it matches the expected value, set PASS (0x0001) to "resultTemp", and if it does not match the expected value, set
FAIL (0x0000) to "resultTemp".

Input Parameters

const uint32_t
forceFail

Forced FAIL Option
When set to 0, the function fails forcibly.
0 : Enabled
Others : Disabled

int32_t *result Pointer to store Test result

Output Parameters
int32_t *result Test result (0 : FAIL / 1 : PASS)

Return Values
NONE N/A

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 42 of 106
Jun.30.2023

r_cpu_diag_9.asm File

Syntax

void R_CPU_Diag9(const uint32_t forceFail, int32_t *result)

Description

1 Addition and subtraction
Execute each instruction of
SASX T1, SSAX T1, UASX T1, USAX T1
and check the match with the expected value of local signatur and global signature.

2 Addition and halving
Execute each instruction of
UHADD16 T1, UHADD8 T1
and check the match with the expected value of local signatur and global signature.

3 Subtraction and halving
Execute each instruction of
UHSUB16 T1, UHSUB8 T1
and check the match with the expected value of local signatur and global signature.

4 Addition, subtraction and halving
Execute each instruction of
SHASX T1, SHSAX T1, UHASX T1, UHSAX T1
and check the match with the expected value of local signatur and global signature.

5 Dual multiplication
Execute each instruction of
SMUAD T1, SMUSDX T1
and check the match with the expected value of local signatur and global signature.

6 Absolute difference
Execute each instruction of
USAD8 T1, USADA8 T1
and check the match with the expected value of local signatur and global signature.

If it matches the expected value, set PASS (0x0001) to "resultTemp", and if it does not match the expected value, set
FAIL (0x0000) to "resultTemp".

Input Parameters

const uint32_t
forceFail

Forced FAIL Option
When set to 0, the function fails forcibly.
0 : Enabled
Others : Disabled

int32_t *result Pointer to store Test result

Output Parameters
int32_t *result Test result (0 : FAIL / 1 : PASS)

Return Values
NONE N/A

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 43 of 106
Jun.30.2023

r_cpu_diag_10.asm File

Syntax

void R_CPU_Diag10(const uint32_t forceFail, int32_t *result)

Description

1 Saturating
Execute each instruction of
SSAT T1, SSAT16 T1, USAT T1, USAT16 T1
and check the match with the expected value of local signatur and global signature.

2 Saturate addition
Execute each instruction of
QADD T1, QADD16 T1, QADD8 T1, UQADD16 T1, UQADD8 T1, QDADD T1
and check the match with the expected value of local signatur and global signature.

3 Saturate subtraction
Execute each instruction of
QSUB T1, QSUB16 T1, QSUB8 T1, QDSUB T1, UQSUB16 T1, UQSUB8 T1
and check the match with the expected value of local signatur and global signature.

4 Saturate addition and subtraction
Execute each instruction of
QASX T1, QSAX T1, UQASX T1, UQSAX T1
and check the match with the expected value of local signatur and global signature.

If it matches the expected value, set PASS (0x0001) to "resultTemp", and if it does not match the expected value, set
FAIL (0x0000) to "resultTemp".

Input Parameters

const uint32_t
forceFail

Forced FAIL Option
When set to 0, the function fails forcibly.
0 : Enabled
Others : Disabled

int32_t *result Pointer to store Test result

Output Parameters
int32_t *result Test result (0 : FAIL / 1 : PASS)

Return Values
NONE N/A

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 44 of 106
Jun.30.2023

r_cpu_diag_11.asm File

Syntax

void R_CPU_Diag11(const uint32_t forceFail, int32_t *result)

Description
1 Four basic arithmetic instructions test

Execute each instruction of
VADD T2, VSUB T2, VMUL T2, VNMUL T2, VDIV T1
and check the match with the expected value of local signatur and global signature.

2 Absolute, compare, negative, minimum and maximum instructions test
Execute each instruction of
VABS T2, VCMP T1, VCMPE T1, VNEG T2, VMAXNM T2, VMINNM T2
and check the match with the expected value of local signatur and global signature.

3 Conditional select instructions test
Execute each instruction of
3-1 VSELGE T1, VSELGT T1, VSELEQ T1, VSELVS T1
and check the match with the expected value of local signatur and global signature.

If it matches the expected value, set PASS (0x0001) to "resultTemp", and if it does not match the expected value, set
FAIL (0x0000) to "resultTemp".

Input Parameters

const uint32_t
forceFail

Forced FAIL Option
When set to 0, the function fails forcibly.
0 : Enabled
Others : Disabled

int32_t *result Pointer to store Test result

Output Parameters
int32_t *result Test result (0 : FAIL / 1 : PASS)

Return Values
NONE N/A

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 45 of 106
Jun.30.2023

r_cpu_diag_12.asm File

Syntax

void R_CPU_Diag12(const uint32_t forceFail, int32_t *result)

Description
1 Multiply accumulate (MAC)

Execute each instruction of
VMLA T2, VNMLA T1, VFMA T2, VFNMA T1
and check the match with the expected value of local signatur and global signature.

2 Multiply subtract (MSB)
Execute each instruction of
VMLS T2, VNMLS T1, VFMS T2, VFNMS T1
and check the match with the expected value of local signatur and global signature.

3 Square root
Execute each instruction of
VSQRT (minus) T1, VSQRT (zero) T1, VSQRT (plus) T1
and check the match with the expected value of local signatur and global signature.

If it matches the expected value, set PASS (0x0001) to "resultTemp", and if it does not match the expected value, set
FAIL (0x0000) to "resultTemp".

Input Parameters

const uint32_t
forceFail

Forced FAIL Option
When set to 0, the function fails forcibly.
0 : Enabled
Others : Disabled

int32_t *result Pointer to store Test result

Output Parameters
int32_t *result Test result (0 : FAIL / 1 : PASS)

Return Values
0NONE N/A

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 46 of 106
Jun.30.2023

r_cpu_diag_13.asm File

Syntax

void R_CPU_Diag13(const uint32_t forceFail, int32_t *result)

Description
1 Floating-point rounding

Execute each instruction of
VRINTA T1, VRINTM T1, VRINTN T1, VRINTP T1, VRINTR (RN mode) T1, VRINTR (RP mode) T1
VRINTR (RM mode) T1, VRINTR (RZ mode) T1, VRINTX T1, VRINTZ T1
and check the match with the expected value of local signatur and global signature.

2 Floating-point conversion

Execute each instruction of
VCVT (between float and fix) F32 to S32, T1 <fbits = 31>,
VCVT (between float and fix) F32 to U32, T1<fbits = 16>,
VCVT (between float and fix) S32 to F32, T1<fbits = 24>,
VCVT (between float and fix) U32 to F32, T1<fbits = 8>,
VCVT (float to int) F32 to S32, T1,
VCVT (float to int) F32 to U32, T1,
VCVT (int to float), T1,
VCVTA T1, VCVTM T1, VCVTN T1, VCVTP T1, VCVTP T1
and check the match with the expected value of local signatur and global signature.

If it matches the expected value, set PASS (0x0001) to "resultTemp", and if it does not match the expected value, set
FAIL (0x0000) to "resultTemp".

Input Parameters

const uint32_t
forceFail

Forced FAIL Option
When set to 0, the function fails forcibly.
0 : Enabled
Others : Disabled

int32_t *result Pointer to store Test result

Output Parameters
int32_t *result Test result (0 : FAIL / 1 : PASS)

Return Values
NONE N/A

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 47 of 106
Jun.30.2023

r_cpu_diag_14_1.asm File

Syntax

void R_CPU_Diag14_1(const uint32_t forceFail, int32_t *result)

Description
1 VPOP T2 and VPUSH T2
Perform the following tests.
 －Verify VPOP after VPUSH using single register
 The procedure is as follows.

1. Set the value in the R4 and R5 registers and write the data to the S1 and S0 registers.
2. Save the S1 register to the stack with the VPUSH instruction.
3. Use the VPOP instruction to return from the stack to the S0 register.
4. Check the match between the expected value of the S0 and S1 registers via R5 and R4.

 －Verify VPOP after VPUSH using multiple registers
 The procedure is as follows.

1. Set data from S4 to S7 and from S0 to S4
2. Save the S4 to S7 registers to the stack with the VPUSH instruction.
3. Use the VPOP instruction to return from the stack to the S0 to S4 registers.
4. Confirm the match with the expected value in each register of S0 and S4, S1 and S5, S2 and S6, S3 and S7 via

R4-R7.

2 VLDR/VLDM T2 and VSTR/VSTM T2
Perform the following tests.
 －Verify VLDR after VSTR using single register
 The procedure is as follows.

1. Write data to S1 and S0 registers
2. Store the S1 register on the stack with the VSTR instruction.
3. Load from stack to S0 register with VLDR instruction
4. Check the match with the expected value of the S0 and S1 registers via R4 and R5.

 －Verify VLDM after VSTM using multiple registers
 The procedure is as follows.

1. Set data in S4 to S7 and S0 to S4
2. Store the S4 to S7 registers on the stack with the VSTM instruction.
3. Load from the stack to the S0 to S4 registers with the VLDR instruction.
4. Confirm the match with the expected value in each register of S0 and S4, S1 and S5, S2 and S6, S3 and S7

via R4-R7.

If it matches the expected value, set PASS (0x0001) to "resultTemp", and if it does not match the expected value, set
FAIL (0x0000) to "resultTemp".

Input Parameters

const uint32_t
forceFail

Forced FAIL Option
When set to 0, the function fails forcibly.
0 : Enabled
Others : Disabled

int32_t *result Pointer to store Test result

Output Parameters

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 48 of 106
Jun.30.2023

int32_t *result Test result (0 : FAIL / 1 : PASS)

Return Values
NONE N/A

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 49 of 106
Jun.30.2023

r_cpu_diag_14_2.asm File

Syntax

void R_CPU_Diag14_2(const uint32_t forceFail, int32_t *result)

Description
3.VMOV
Perform the following tests.

 －VMOV (general-purpose register to single-precision register)

The procedure is as follows.
1. Set data for S0 and R4 respectively
2. perform “VMOV S0, R4”
3. Check the match with the expected value in each register of S0 and R4 via R5.

 －VMOV (single-precision register to general-purpose register)

The procedure is as follows.

1. Set data in S0 (= R5) and R4 respectively
2. perform “VMOV R4, S0”
3. Check the match with the expected value in each register of S0 and R4 via R5.

 －VMOV (two general-purpose register to two single-precision register)

The procedure is as follows.

1. Set data for S0, S1, R5, R4 respectively
2. perform “VMOV S0, S1, R4, R5”
3. Confirm the match with the expected value in each register of S0 and R4 and S1 and R5 via R6.

 －VMOV (two single-precision register to two general-purpose register)

The procedure is as follows.

1. Set data in S0 (= R6) and S1 (= R7) respectively
2. perform “VMOV R4, R5, S0, S1”
3. Confirm the match with the expected value in each register of S0 and R4, S1 and R5 via R6, R7.

 －VMOV (an immediate constant into the destination floating-point register)

The procedure is as follows.

1. Set data in S0 (= R6) and R4 respectively
* R4 is set to the floating point format of # 9(expected value in below step "2.")

2. perform "VMOV.F32 S0, # 9"
3. Check the match with the expected value in each register of S0 and R4 via R5.

 －VMOV (a single-precision register to another single-precision register)

The procedure is as follows.

1. Set data in S0 (= R6) and S1 (= R4) respectively
2. perform "VMOV.F32 S0, S1"
3. Confirm the match with the expected value in each register of S0 and S1 via R5 and R4.

4 VMRS
Perform the following tests.

 －VMRS (FPSCR to general-purpose register with {FPSCR N, Z, C, V} = {1, 1, 1, 1})
The procedure is as follows.

1. Set the data to R4 and R5 (= FPSCR) respectively (setting value that {FPSCR N, Z, C, V} = {1, 1, 1, 1})
2. Execute "VMRS R4, FPSCR"
3. Confirm the match with the expected value in each register of R5 and FPSCR via R4 and R5.

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 50 of 106
Jun.30.2023

 －VMRS (FPSCR to general-purpose register with {FPSCR N, Z, C, V} = {0, 0, 0, 0})
The procedure is as follows.

1. Set data in R4 and R5 (= FPSCR) respectively
 (Setting value that {FPSCR N, Z, C, V} = {0, 0, 0, 0})
2. Execute "VMRS R4, FPSCR"
3. Confirm the match with the expected value in each register of R5 and FPSCR via R4 and R5.

 －VMRS (FPSCR to APSR with {FPSCR N, Z, C, V} = {1, 1, 1, 1})

The procedure is as follows.

1. Set data in R4 (= APSR) and R5 (= FPSCR) respectively
 (Setting value that {FPSCR N, Z, C, V} = {1, 1, 1, 1})
2. Execute "VMRS APSR_nzcv, FPSCR"
3. Confirm the match with the expected value in each register of APSR and FPSCR via R4 and R5.
* Check the values of the N, Z, C, and V flags of APSR and FPSCR to match.

 －VMRS (FPSCR to APSR with {FPSCR N, Z, C, V} = {0, 0, 0, 0})

The procedure is as follows.

1. Set data in R4 (= APSR) and R5 (= FPSCR) respectively
 (Setting value that {FPSCR N, Z, C, V} = {0, 0, 0, 0})
2. Execute "VMRS APSR_nzcv, FPSCR"
3. Confirm the match with the expected value in each register of APSR and FPSCR via R4 and R5.
* Check the values of the N, Z, C, and V flags of APSR and FPSCR to match.

5 VMSR
Perform the following tests.

 －VMSR (general-purpose register to FPSCR with {APSR N, Z, C, V} = {1, 1, 1, 1})

The procedure is as follows.

1. Set data in R5 (= FPSCR) and R4 respectively
 (Setting value that {FPSCR N, Z, C, V} = {1, 1, 1, 1})
2. Execute "VMSR FPSCR, R4"
3. Confirm that R5 and R4 match via R5 and R4
* Check the values of the N, Z, C, and V flags of FPSCR to match

 －VMSR (general-purpose register to FPSCR with {FPSCR N, Z, C, V} = {0, 0, 0, 0})

The procedure is as follows.

1. Set data in R5 (= FPSCR) and R4 respectively
 (Setting value that {FPSCR N, Z, C, V} = {0, 0, 0, 0})
2. Execute "VMSR FPSCR, R4"
3. Confirm that R5 and R4 match via R5 and R4
* Check the values of the N, Z, C, and V flags of FPSCR to match

If it matches the expected value, set PASS (0x0001) to "resultTemp", and if it does not match the expected value, set
FAIL (0x0000) to "resultTemp".

Input Parameters

const uint32_t
forceFail

Forced FAIL Option
When set to 0, the function fails forcibly.
0 : Enabled

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 51 of 106
Jun.30.2023

Others : Disabled
int32_t *result Pointer to store Test result

Output Parameters
int32_t *result Test result (0 : FAIL / 1 : PASS)

Return Values
NONE N/A

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 52 of 106
Jun.30.2023

■ r_cpu_diag_15_1.asm File

Syntax

void R_CPU_Diag15_1(const uint32_t forceFail, int32_t *result)

Description
1. Detecting “0” fixed fault for FPU status and control registers

After writing "1"(=0xf7c0009f) to the corresponding bit of the FPSCR registerusing R7 and R8 and read it, and
check the match with the expected value. (Confirm not fixed to "0")

2 Detecting “1” fixed fault for FPU status and control registers
After writing "0" to the corresponding bit of the FPSCR register using R7 and R8 (0x00000000) and read it, and

check the match with the expected value. (Confirm not fixed to "1")

3 Detecting “0” fixed fault for single-precision registers

After writing "0xffffffff" to each register of the single precision register (S0-S31) using R7 and R8, and read it, and
check the match with the expected value. (Confirm not fixed to "0")

4. Detecting “1” fixed fault for single-precision registers
After writing "0x00000000" for each register to the single precision register (S0-S31) using R7 and R8, read it and
check the match with the expected value. (Confirm that it is not fixed to "0")

If it matches the expected value, set PASS (0x0001) to "resultTemp", and if it does not match the expected value, set
FAIL (0x0000) to "resultTemp".

Input Parameters

const uint32_t
forceFail

Forced FAIL Option
When set to 0, the function fails forcibly.
0 : Enabled
Others : Disabled

int32_t *result Pointer to store Test result

Output Parameters
int32_t *result Test result (0 : FAIL / 1 : PASS)

Return Values
NONE N/A

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 53 of 106
Jun.30.2023

■ r_cpu_diag_15_2.asm File

Syntax

void R_CPU_Diag15_2(const uint32_t forceFail, int32_t *result)

Description
5 Detecting coupling fault for single-precision registers between any two bits
Perform the following tests.

 －Nearest neighbor coupling(Test pattern : 0x55555555)
 －Next nearest neighbor coupling(Test pattern : 0x33333333)

The procedure is as follows.

1. Set each of the above test patterns on R7
2. Write a test pattern to each register of the single precision register (S0-S31) by use R7 and R8 toand then read

it.
3. Check the match between each register of R7 and R8 and the expected value.

If it matches the expected value, set PASS (0x0001) to "resultTemp", and if it does not match the expected value, set
FAIL (0x0000) to "resultTemp".

Input Parameters

const uint32_t
forceFail

Forced FAIL Option
When set to 0, the function fails forcibly.
0 : Enabled
Others : Disabled

int32_t *result Pointer to store Test result

Output Parameters
int32_t *result Test result (0 : FAIL / 1 : PASS)

Return Values
NONE N/A

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 54 of 106
Jun.30.2023

■ r_cpu_diag_15_3.asm File

Syntax

void R_CPU_Diag15_3(const uint32_t forceFail, int32_t *result)

Description
5 Detecting coupling fault for single-precision registers between any two bits
Perform the following tests.

 －4-fold neighbor coupling(Test pattern : 0x0f0f0f0f)
 －8-fold neighbor coupling(Test pattern : 0x00ff00ff)

The procedure is as follows.

1. Set each of the above test patterns on R7

2. Write a test pattern to each register of the single precision register (S0-S31) by use R7 and R8 and then read it.

3. Check the match between each register of R7 and R8 and the expected value.

If it matches the expected value, set PASS (0x0001) to "resultTemp", and if it does not match the expected value, set
FAIL (0x0000) to "resultTemp".

Input Parameters

const uint32_t
forceFail

Forced FAIL Option
When set to 0, the function fails forcibly.
0 : Enabled
Others : Disabled

int32_t *result Pointer to store Test result

Output Parameters
int32_t *result Test result (0 : FAIL / 1 : PASS)

Return Values
NONE N/A

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 55 of 106
Jun.30.2023

■ r_cpu_diag_15_4.asm File

Syntax

void R_CPU_Diag15_4(const uint32_t forceFail, int32_t *result)

Description
5 Detecting coupling fault for single-precision registers between any two bits
Perform the following test.

 －16-fold neighbor coupling(Test pattern : 0x0000ffff)

The procedure is as following.

1. Set each of the above test patterns on R7

2. Write a test pattern to each register of the single precision register (S0-S31) by use R7 and R8 and then read it.

3. Check the match between each register of R7 and R8 and the expected value.

If it matches the expected value, set PASS (0x0001) to "resultTemp", and if it does not match the expected value, set
FAIL (0x0000) to "resultTemp".

Input Parameters

const uint32_t
forceFail

Forced FAIL Option
When set to 0, the function fails forcibly.
0 : Enabled
Others : Disabled

int32_t *result Pointer to store Test result

Output Parameters
int32_t *result Test result (0 : FAIL / 1 : PASS)

Return Values
NONE N/A

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 56 of 106
Jun.30.2023

■ r_cpu_diag_15_5.asm File

Syntax

void R_CPU_Diag15_5(const uint32_t forceFail, int32_t *result)

Description
6. Detecting coupling fault for single-precision registers between any two registers
Perform the following test.

 －Detecting S16, S17, S18, S19, S20, S21, S22, S23 coupling fault (Using A's pattern)
[A’s pattern]

R4 = 0x55555555
R5 = 0xAAAAAAAA
R6 = 0x00000000
R7 = 0xFFFFFFFF
R8 = 0x33333333
R9 = 0xCCCCCCCC
R10 = 0x5555AAAA
R11 = 0xAAAA5555

The procedure is as following.

1. Set test patterns from R4 to R11, transfer R4 to S0, R5 to S1, ..., R11 to S7.

2. Transfer S0 to S16, S1 to S17, ..., S7 to S23

3. Read S16 to S23 via R12 and confirm that the transfer sources R4 to R11 match the expected value.

 －Detecting S24, S25, S26, S27, S28, S29, S30, S31 coupling fault(Using B's pattern)

[B’s pattern]

R4 = 0xFFFF0000
R5 = 0x0000FFFF
R6 = 0x3333CCCC
R7 = 0xCCCC3333
R8 = 0xFFAA5533
R9 = 0x3355AAFF
R10 = 0xFEDCBA98
R11 = 0x76543210

The procedure is as following.

1. Set test patterns from R4 to R11, transfer R4 to S9, R5 to S10, ..., R11 to S8.

2. Transfer S9 to S24, S10 to S25, ..., S8 to S31

3. Read S24 to S31 via R12 and confirm that the transfer sources R4 to R11 match the expected value.

If it matches the expected value, set PASS (0x0001) to "resultTemp", and if it does not match the expected value, set
FAIL (0x0000) to "resultTemp".

Input Parameters

const uint32_t
forceFail

Forced FAIL Option
When set to 0, the function fails forcibly.
0 : Enabled
Others : Disabled

int32_t *result Pointer to store Test result

Output Parameters

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 57 of 106
Jun.30.2023

int32_t *result Test result (0 : FAIL / 1 : PASS)

Return Values
NONE N/A

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 58 of 106
Jun.30.2023

■ r_cpu_diag_15_6.asm File

Syntax

void R_CPU_Diag15_6(const uint32_t forceFail, int32_t *result)

Description
6. Detecting coupling fault for single-precision registers between any two registers
Perform the following test.
 －Detecting S0, S1, S2, S3, S4, S5, S6, S7 coupling fault (Using C's pattern)

[C’s pattern]

R4 = 0x44444444
R5 = 0x99999999
R6 = 0x00000000
R7 = 0xFFFFFFFF
R8 = 0x22222222
R9 = 0xBBBBBBBB
R10 = 0x4444BBBB
R11 = 0xBBBB4444

 The procedure is as following.

1. Set test patterns from R4 to R11, transfer R4 to S18, ..., R9 to S23, R10 to S16., R11 to S17

2. Transfer S8 to S0, …, S23 to S5, S16 to S6, S17to S7

3. Read S0 to S7 via R12 and confirm that the transfer sources(R4 to R11) match the expected value.

 －Detecting S8, S9, S10, S11, S12, S13, S14, S15 coupling fault(Using D's pattern)

[D’s pattern]

R4 = 0xEEEE1111
R5 = 0x1111EEEE
R6 = 0x2222DDDD
R7 = 0xDDDD2222
R8 = 0xEEBB6622
R9 = 0x2266BBEE
R10 = 0xBA98FEDC
R11 = 0x32107654

 The procedure is as following.

1. Set test patterns from R4 to R11, transfer R4 to S27, ..., R8 to S31, R9 to S24, R10 to S25, R11 to S26

2. Transfer S27 to S8, ..., S31 to S12, S24 to S13, S25 to S14, S26 to S15

3. Read S8 to S15 via R12 and confirm that the transfer source (R4 to R11) matches the expected value.

If it matches the expected value, set PASS (0x0001) to "resultTemp", and if it does not match the expected value, set
FAIL (0x0000) to "resultTemp".

Input Parameters

const uint32_t
forceFail

Forced FAIL Option
When set to 0, the function fails forcibly.
0 : Enabled
Others : Disabled

int32_t *result Pointer to store Test result

Output Parameters

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 59 of 106
Jun.30.2023

int32_t *result Test result (0 : FAIL / 1 : PASS)

Return Values
NONE N/A

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 60 of 106
Jun.30.2023

■ r_cpu_diag_16.asm ファイル

Syntax

void R_CPU_Diag16(const uint32_t forceFail, int32_t *result)

Description

CPU register test process with the WALKPAT algorithm to the General-Purpose Registers (R0-12, R14).
(see 1.3.3(2)WALKPAT about the WALKPAT algorithm)

the test result is saved in "resultTemp" (0 : FAIL / 1 : PASS)

The test patterns used are the following (See “r_ramdiag_config.inc”):
◆Test patterns
pattern0 : 00000000000000000000000000000000 (0x00000000)
pattern0n : 11111111111111111111111111111111 (0xFFFFFFFF)
pattern1 : 00000000000000001111111111111111 (0x0000FFFF)
pattern1n : 11111111111111110000000000000000 (0xFFFF0000)
pattern2 : 00000000111111110000000011111111 (0x00FF00FF)
pattern2n : 11111111000000001111111100000000 (0xFF00FF00)
pattern3 : 00001111000011110000111100001111 (0x0F0F0F0F)
pattern3n : 11110000111100001111000011110000 (0xF0F0F0F0)
pattern4 : 00110011001100110011001100110011 (0x33333333)
pattern4n : 11001100110011001100110011001100 (0xCCCCCCCC)
pattern5 : 01010101010101010101010101010101 (0x55555555)
pattern5n : 10101010101010101010101010101010 (0xAAAAAAAA)

Input Parameters

const uint32_t
forceFail

Forced FAIL Option
When set to 0, the function fails forcibly.
0 : Enabled
Others : Disabled

int32_t *result Pointer to store Test result

Output Parameters
int32_t *result Test result (0 : FAIL / 1 : PASS)

Return Values
NONE N/A

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 61 of 106
Jun.30.2023

1.2 ROM
This section describes the ROM/Flash memory test using CRC calculator.. (Reference: IEC 60730-1:2013 + A1：
2015+A2:2020 Annex H – H2.19.4.2 CRC – Double Word)

CRC is a fault/error control technique which generates a single word or checksum to represent the contents of memory.
A CRC checksum is the remainder of a binary division with no bit carry (XOR used instead of subtraction) of the
message bit stream, by a predefined (short) bit stream of length n + 1. which represents the coefficients of a polynomial
with degree n. Before the division, n zeros are appended to the message stream. CRCs are often used because they are
simple to implement in binary hardware and are easy to analyze mathematically.

The ROM test can be achieved by generating a CRC value for the contents of the ROM and saving it.

During the memory self-test, the same CRC algorithm is used to generate another CRC value, which is compared with
the saved CRC value. The technique recognizes all one-bit errors and a high percentage of multi-bit errors.

The complicated part of using CRCs is if you need to generate a CRC value that will then be compared with other CRC
values produced by other CRC generators. This proves difficult because there are a number of factors that can change
the resulting CRC value even if the basic CRC algorithm is the same. This includes the combination of the order that
the data is supplied to the algorithm, the assumed bit order in any look-up table used and the required order of the bits
of the actual CRC value. This complication has arisen because big- and little-endian systems were developed to work
together that employed serial data transfers where bit order became important. Also, some debuggers implement a
software break on ROM, in which case the contents of ROM may be rewritten during debugging.

The method of calculating the reference CRC value depends on the toolchain used. For the detailed procedure, refer to
Section 2.2 ROM in 2.Example Usage

1.2.1 CRC32 Algorithm
The RA MCU includes a CRC module that includes support for the CRC32. This software set the CRC module to
produce a 32-bit CRC32.

• Polynomial = 0x04C11DB7 (x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1)
• Width = 32 bits
• Initial value = 0xFFFFFFFF
• XOR with h’FFFFFFFF is performed on the output CRC

1.2.2 Multi Checksum
In the ROM test, the ROM area to be tested is divided into 64K bytes as shown in Figure 1.1, and the CRC is calculated
and stored in a specific area.

Because of this sample software is a product with a code flash memory of 1MB, it is stored at addresses 0xFFFC0 to
0xFFFFF when building.

In addition, the self-test library divides the process into 64 Kbytes each, and after performing the CRC calculation
process, it checks for a match with the CRC value stored in the above specified area to determine the ROM test result.

By editing "RA_SelfTests.c" in the sample project, you can change the enable setting for split processing.

(For details, refer to "2.2.2 Setting for the support Multi-checksum".)

The sample project targets the code FLASH area, excluding the checksum storage area.

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 62 of 106
Jun.30.2023

Figure 1.1 Code FLASH block diagram on ROM test

1.2.3 CRC Software API
The functions in the reminder of this section are used to calculate a CRC value and verify its correctness against a value
stored in ROM.

All software is written in ANSI C. The renesas.h header file includes definition of RA MCU registers.

Table 1.17 CRC Software API Source Files

File Name
crc.h Defining ROM test API functions
crc_verify.h Defining ROM test API functions
crc.c Implementation part of ROM test
CRC_Verify.c Implementation part of ROM test

・

・

・

64K bytes

64K bytes

64K bytes

64K bytes

64K bytes

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 63 of 106
Jun.30.2023

 CRC_Verify.c File

Syntax

bool_t CRC_Verify(const uint32_t ui32_NewCRCValue, const uint32_t ui32_AddrRefCRC)

Description
This function compares a new CRC value with a reference CRC by supplying address where reference CRC is
stored.

Input Parameters
const uint32_t
ui32_NewCRCValue

Value of calculated new CRC value.

const uint32_t
ui32_AddrRefCRC

Address where 32 bit reference CRC value is stored.

Output Parameters
NONE N/A
Return Values
bool_t 1 : True = Passed, 0 : False = Failed

 crc.c File

Syntax

void CRC_Init(void)

Description
Initializes the CRC module. This function must be called before any of the other CRC functions can be.

Input Parameters
NONE N/A
Output Parameters
NONE N/A
Return Values
NONE N/A

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 64 of 106
Jun.30.2023

Syntax

uint32_t CRC_Calculate(const uint32_t* pui32_Data, uint32_t ui32_Length)

Description
This function calculates the CRC of a single specified memory area.

Input Parameters
const uint32_t*
pui32_Data

Pointer to start of memory to be tested.

uint32_t ui32_Length Length of the data in long words.
Output Parameters
NONE N/A
Return Values
Uint32_t The 32-bit calculated CRC32 value.

The following functions are used when the memory area cannot simply be specified by a start address and length. They
provide a way of adding memory areas in ranges/sections. This can also be used if function CRC_Calculate takes too
long in a single function call.

 crc.c File

Syntax

void CRC_Start(void)

Description
Prepare the module is for starting to receive data. Call this once prior to using function CRC_AddRange.

Input Parameters
NONE N/A
Output Parameters
NONE N/A
Return Values
NONE N/A

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 65 of 106
Jun.30.2023

Syntax

void CRC_AddRange(const uint32_t* pui32_Data, uint32_t ui32_Length)

Description
Use this function rather than CRC_Calculate to calculate the CRC on data made up of more than one address
range. Call CRC_Start first then CRC_AddRange for each address range required and then call CRC_Result to get
the CRC value.

Input Parameters
const uint32_t*
pui32_Data

Pointer to start of memory range to be tested.

uint32_t ui32_Length Length of the data in long words.
Output Parameters
NONE N/A
Return Values
NONE N/A

Syntax

uint32_t CRC_Result(void)

Description
Calculates the CRC value for all the memory ranges added using function CRC_AddRange since CRC_Start was
called.

Input Parameters
NONE N/A
Output Parameters
NONE N/A
Return Values
uint32_t The calculated CRC32 value.

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 66 of 106
Jun.30.2023

1.3 RAM
This section describes the RAM test and the two test algorithms used.

The objective of the RAM test is to detect random permanent faults from MCU built-in SRAM.

Key features of the RAM Test are as follows,

 Whole memory check including stack(s).

 Block-wise implementation of the test

 Supports two test algorithms (Extended March C-, WALKPAT)

 Supports two test types (Destructive / Non-destructive testing)

1.3.1 RAM Block Configuration
Target of the RAM Test is RAM block in the RAM area.

RAM area and RAM block under test are configured by directives described in Table 1.20.

Figure 1.2 RAM Block Configuration (example)

shows how the RAM area 0 is divided by n block. Directives are indicated by italics.

Figure 1.2 RAM Block Configuration (example)

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 67 of 106
Jun.30.2023

1.3.2 Reserved Area
For the RAM test, the user must allocate the following reserved areas to RAM blocks in the Secure area.

1.Buffer (RramBuffer)

In non-destructive test, data value in the RAM block under test is temporarilly saved to this buffer. The user
shall reserve a specific RAM block for this buffer.

2.Test result variable (RramResult1)

3.Test result variable (RramResult2)

The test result variable is allocated to two different RAM blocks within the Secure area.

By storing copies of test results in two different blocks, a fault can be detected even if one of the variables cannot be
stored in the faulting block.

Reserved areas are pre-defined in this software.

Specifically, the files "fsp.ld", "RA_SelfTests.c", and "r_ram_diag_config.h" define the items related to the reserved
area (data save buffer, result variables).

The parts of each definition in this sample software is described below.

◆Definition parts in the "fsp.ld" file.(blue text)

__tz_RAM_S = ORIGIN(RAM);

 .ram_test_buffers :

 {

 . = ORIGIN(RAM);

 . = ALIGN(4);

 __RramBuffer_start = .;

 KEEP(*(RAM_TEST_BUFFER*))

 __RramBuffer_stop = .;

 } > RAM

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 68 of 106
Jun.30.2023

◆Definition parts in the " RA_Self Tests.c " file.(blue text)

◆Definition parts in the " r_ram_diag_config.h " file.(blue text)

It is possible to check the location of the "reserved area" with the MAP file generated after build.

◆Applicapable parts for the generated MAP file of secure project("RA6M4_sec.map")

(Note) The address to be placed depends on the definition contents of the ld file to be used.

//--> For RAM test of Class-C

/*Number of bytes to test each time the RAM periodic test is run.*//*NOTE: The periodic RAM test requires a safe buffer of the same size as
the test size.*/

#define RAM_TEST_BUFFER_SIZE RAM_BUFFER_SIZE

/*The periodic RAM (including Stack) tests requires a buffer. Locate it in its own section after(higher address than) the stacks.*/

//-->chg : Moved RramBuffer[], RramResult1, RramResult2 to Secure erea.

volatile uint32_t RramBuffer[RAM_TEST_BUFFER_SIZE] __attribute__((section("RAM_TEST_BUFFER")));

volatile uint32_t RAM_Test_dummy1[RAM_TEST_BUFFER_SIZE-1] __attribute__((section("RAM_TEST_BUFFER")));

volatile uint32_t RramResult1 __attribute__((section("RAM_TEST_BUFFER")));

volatile uint32_t RAM_Test_dummy2[RAM_TEST_BUFFER_SIZE-1] __attribute__((section("RAM_TEST_BUFFER")));

volatile uint32_t RramResult2 __attribute__((section("RAM_TEST_BUFFER")));

//<--chg : Moved RramBuffer[], RramResult1, RramResult2 to Secure erea.

//<-- For RAM test of Class-C

/* RAM test buffer size (Expressed in double words) */

/* Note: Set the maximum RAM block size of all RAM areas */

#define RAM_BUFFER_SIZE (BUTSize0)

.ram_test_buffers

 0x20000000 0x300

 0x20000000 . = ORIGIN (RAM)

 0x20000000 . = ALIGN (0x4)

 0x20000000 __RramBuffer_start = .

 (RAM_TEST_BUFFER)

 RAM_TEST_BUFFER

 0x20000000 0x300 ./SelfTestLib/src/RA_SelfTests.o

 0x20000000 RramBuffer

 0x20000100 RAM_Test_dummy1

 0x200001fc RramResult1

 0x20000200 RAM_Test_dummy2

 0x200002fc RramResult2

 0x20000300 __RramBuffer_stop = .

RAM Buffer for temporarilly saved data : RamBuffer[]

result variables : RramResult1

result variables : RramResult2

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 69 of 106
Jun.30.2023

1.3.3 RAM Test Algorithm
(1) Extended March C-
Extended March C- is one of the March test algorithms used for RAM testing.
The algorithm is represented in Figure 1.3.

{⇕(w0);⇑(r0,w1,r1);⇑(r1,w0);⇓(r0,w1);⇓(r1,w0);⇕(r0)}

Notatio {}: Seaquence ⇑ : increasing addressing

 () : March element ⇓ : decreasing addressing

 wx : write x ⇕ : either ⇑ or ⇓

 rx : read x

Figure 1.3 Extended March C- Algorithm

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 70 of 106
Jun.30.2023

(2) WALKPAT
WALKPAT (stands for Walking Pattern) is one of the test algorithms used for RAM testing.
The algorithm is represented in Figure 1.4.

Write 0 in all cells;
For i=0 to n-1
{
complement cell[i];
 For j=0 to n-1, j != i

{
 read cell[j];
}
read cell[i];
complement cell[i];

}
Write 1 in all cells;
For i=0 to n-1
{
 complement cell[i];
 For j=0 to n-1, j != i
 {
 read cell[j];
 }
 read cell[i];
 complement cell[i];
}

Figure 1.4 WALKPAT Algorithm

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 71 of 106
Jun.30.2023

(3) Algorithm Characteristics
Table 1.7 shows characteristics of two test algorithms available for the RAM Test.

Table 1.18 RAM Test Algorithm の特性 (RAM Test Algorithm Characteristics)
Fault models and complexity Extended March C- WALKPAT

Address Faults (AF) ✓ ✓

Stuck At faults (SAF) ✓ ✓

Transactional Faults (TF) ✓ ✓

Coupling Faults (CF) ✓ ✓

Stuck-Open Faults (SOF) ✓ N/A

Data Retention Faults (DRF) ✓ N/A

Sense Amplifier Recovery Faults (SARF) N/A ✓

Complexity 11n ✓2n2

n = the number of addressing cells of the memory

The following algorithm descriptions are related to 1-bit word memory, but they can be applied to m-bit memories.
m-bit memories can be dealt with by repeating each algorithm for a number of times determined by:

⌈log2 𝑚𝑚⌉ + 1

Since m=32bit for this software, the algorithm will be repeated 6 times and the following 6 different patterns are
applied.

#1: 00000000000000000000000000000000

#2: 00000000000000001111111111111111

#3: 00000000111111110000000011111111

#4: 00001111000011110000111100001111

#5: 00110011001100110011001100110011

#6: 01010101010101010101010101010101

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 72 of 106
Jun.30.2023

1.3.4 RAM Software API
The software API source files related to RAM testing are shown in Table 1.8.

When RAM Test API is executed, specified one RAM block of RAM area is tested. A RAM fault can be detected by
checking the execution result output to the argument.

Before compiling the code, it is necessary to change the RAM block under test and reservation area (see 1.3.2).

Table 1.20 shows directive for configuration. The directive can be found in the r_ram_diag_config.h.

Table 1.19 RAM ソフトウェア API ソースファイル

File Name
r_ram_diag_config.h Definition of RAM Test Directive.

r_ram_diag_config.inc Definition of RAM Test execution pattern.

r_ram_diag.c Definition of RAM Test API function.

r_ram_diag.h Declaration of RAM Test API function.

r_ram_marchc.asm Definition of Extended March C- algorithm function.

r_ram_marchc.h Declaration of Extended March C- algorithm function.

r_ram_walpat.asm Definition of WALKPAT algorithm function.

r_ram_walpat.h Declaration of WALKPAT algorithm function.

Table 1.20 Directives for Software Configuration for RAM Test

ディレクティブ名
NUMBER_OF_AREA Number of RAM area under test (1-8).

Shall be set to 1 except for the following case.

- multiple RAM areas under test are sporadically allocated

- there are multiple RAM blocks under test and each block size is not the same

startAddressN *1 Start address to the RAM area under test

MUTSizeN *1 Size of RAM area under test (N) in double word.

numberOfBUTN *1 Number of RAM blocks under test.

BUTSizeN *1 Size of RAM block under test (N) in double word.

Calculted by BUTSizeN = MUTSizeN / numberOfBUTN

RAM_BUFFER_SIZE Size of buffer (RramBuffer) under test in double word.

*1 : N = 0 ～ (NUMBER_OF_AREA – 1)

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 73 of 106
Jun.30.2023

■ r_ram_diag.cファイル

Syntax

void R_RAM_Diag(uint32_t area, uint32_t index, uint32_t algorithm, uint32_t
destructive)

Description

This function verifies RAM.
Test result can be checked by the return value in result variable.

If Test result is PASS :
RramResult1 = 1 and RramResult2 = 1

If Test result is FAIL :
Other than above

Perform the RAM tests in the following order :
1. It check if the RAM block is a valid area by the arguments "area" and "index".
2. Use the macro functions (R_RAM_BLK_SADR, R_RAM_BLK_EADR) to calculate the start and end

addresses of the RAM block under test. (The calculated start address and end address are saved in sAdr and
eAdr.)

3. The function of the corresponding algorithm is called by the argument "algorithm".
For Extended March C- (algorithm = RAM_ALG_MARCHC): R_RAM_Diag_MarchC () function
For WALKPAT(algorithm = RAM_ALG_WALPAT) : R_RAM_Diag_Walpat () function

Note:
The argument "destructive" selects whether the data is destructive or non-destructive.
(In the case of the destruction test, the RAM block is cleared to "0" after the test.)

4. Return to the called function.

Input Parameters
uint32_t area Number of RAM area

Shall be smaller than the directive NUMBER_OF_AREA.
Returns 0 (FAIL) when the value is invalid.

uint32_t index RAM block index of RAM area set in "area"
RAM block index starts with 0.
Shall be smaller than the directive numberOfBUTN. (See Table.1.9)
Returns 0 (FAIL) when the value is invalid.

uint32_t algorithm Specify the algorithm.
0(RAM_ALG_MARCHC): Extended March C-
1(RAM_ALG_WALPAT): WALKPAT

*WALKPAT when the value is other than 0. ”

uint32_t destructive Specify type of the Memory test

0: Non-destructive test
1: Destructive test

Non-destructive test when invalid value is set.
RAM block is cleared to 0 after destructive test.
Notice:

RAM block is always cleared to 0 when the block with buffer, regardless of
test type.

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 74 of 106
Jun.30.2023

Output Parameters
NONE N/A

Return Values
NONE N/A

Syntax

uint32_t R_RAM_Diag_GetVersion(void)

Description

This function returns version information of RAM Test software
Version is defined in the "r_cpu_diag.h" file.

Input Parameters
NONE N/A

Output Parameters

uint32_t version
CPU Test Software version
(0xXXXXYYYY XXXX : Major, YYYY: Minor)

Return Values
uint32_t 0xXXXXYYYY XXXX : Major, YYYY: Minor

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 75 of 106
Jun.30.2023

■ r_ram_marchc.asmファイル

Syntax

void R_RAM_Diag_MarchC(uint32_t start, uint32_t end, uint32_t destructive)

Description

Performs RAM test processing by the "Extended March C-"algorithm for the RAM block specified by the arguments
start and end. (See 1.3.3(1))
In the case of non-destructive test, the current data of the test area is saved in the specified RamBuffer area.

The test results are stored below.

- RramResult1 (0 : FAIL / 1 : PASS)

- RramResult2 (0 : FAIL / 1 : PASS)

The test patterns used are the following (See “r_ramdiag_config.inc”):
◆Test patterns
pattern0 : 00000000000000000000000000000000 (0x00000000)
pattern0n : 11111111111111111111111111111111 (0xFFFFFFFF)
pattern1 : 00000000000000001111111111111111 (0x0000FFFF)
pattern1n : 11111111111111110000000000000000 (0xFFFF0000)
pattern2 : 00000000111111110000000011111111 (0x00FF00FF)
pattern2n : 11111111000000001111111100000000 (0xFF00FF00)
pattern3 : 00001111000011110000111100001111 (0x0F0F0F0F)
pattern3n : 11110000111100001111000011110000 (0xF0F0F0F0)
pattern4 : 00110011001100110011001100110011 (0x33333333)
pattern4n : 11001100110011001100110011001100 (0xCCCCCCCC)
pattern5 : 01010101010101010101010101010101 (0x55555555)
pattern5n : 10101010101010101010101010101010 (0xAAAAAAAA)

Input Parameters
uint32_t start Start address of the block under test

uint32_t end End address of the block under test

uint32_t
destructive

Specify type of the Memory test
0: Non-destructive test
1: Destructive test

Output Parameters
RramResult1 0 : FAIL / 1 : PASS

RramResult2 0 : FAIL / 1 : PASS

Return Values
NONE N/A

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 76 of 106
Jun.30.2023

■ r_ram_walpat.asmファイル

Syntax

void R_RAM_Diag_walpat(uint32_t start, uint32_t end, uint32_t destructive)

Description

Performs RAM test processing by the "Extended March C-"algorithm for the RAM block specified by the arguments
start and end. (See 1.3.3(2))
In the case of non-destructive test, the current data of the test area is saved in the specified RamBuffer area.

The test results are stored below.

- RramResult1 (0 : FAIL / 1 : PASS)

- RramResult2 (0 : FAIL / 1 : PASS)

The test patterns used are the following (See “r_ramdiag_config.inc”):
◆Test patterns
pattern0 : 00000000000000000000000000000000 (0x00000000)
pattern0n : 11111111111111111111111111111111 (0xFFFFFFFF)
pattern1 : 00000000000000001111111111111111 (0x0000FFFF)
pattern1n : 11111111111111110000000000000000 (0xFFFF0000)
pattern2 : 00000000111111110000000011111111 (0x00FF00FF)
pattern2n : 11111111000000001111111100000000 (0xFF00FF00)
pattern3 : 00001111000011110000111100001111 (0x0F0F0F0F)
pattern3n : 11110000111100001111000011110000 (0xF0F0F0F0)
pattern4 : 00110011001100110011001100110011 (0x33333333)
pattern4n : 11001100110011001100110011001100 (0xCCCCCCCC)
pattern5 : 01010101010101010101010101010101 (0x55555555)
pattern5n : 10101010101010101010101010101010 (0xAAAAAAAA)

Input Parameters
uint32_t start Start address of the block under test

uint32_t end End address of the block under test

uint32_t
destructive

Specify type of the Memory test
0: Non-destructive test
1: Destructive test

Output Parameters
RramResult1 0 : FAIL / 1 : PASS

RramResult2 0 : FAIL / 1 : PASS

Return Values
NONE N/A

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 77 of 106
Jun.30.2023

1.4 Clock
The RA MCU has a Clock Frequency Accuracy Measurement Circuit (CAC). The CAC counts the pulses of the target
clock within the time generated by the reference clock and generates an interrupt request if the number of pulses is
outside the acceptable range.

The main clock oscillator also has an oscillation stop detection circuit.

1.4.1 Main Clock Frequency Monitoring by CAC
Either one of Main, SUB_CLOCK, HOCO, MOCO, LOCO, IWDTCLK, and PCLKB or an External clock on the
CACREF pin can be used as a reference clock source.

(a) When using an external reference clock:
• #define CLOCK_MONITOR_USE_EXTERNAL_REFERENCE_CLOCK in clock_monitor.h file.
• Be sure to provide target and reference clocks frequency in Hz.

(b) When using one of the internal clock source:
• Ensure CLOCK_MONITOR_USE_EXTERNAL_REFERENCE_CLOCK is not defined.
• Be sure to select the reference clock (through ref_clock input parameter).
• Be sure to provide target and reference clocks frequency in Hz.

If the frequency of the main clock deviates during runtime from a configured range, two types of interrupt can be
generated: frequency error interrupt or an overflow interrupt. The user of this module must enable these two kinds of
interrupt and handle them. See Section 2.4 for an example of interrupt activation. The allowable frequency range can be
adjusted using.

/* Percentage tolerance of main clock allowed before an error is reported.*/
#define CLOCK_TOLERANCE_PERCENT 10

When using the internal clock as the reference clock, the reference clock division ratio in the CAC circuit (RCDS [1: 0]
in the CACR2 register) is fixed at 1/128 in the test function.

The division ratio of the target clock (TCSS [1: 0] in the CACR1 register) is selected from 1/1, 1/4, 1/8, 1/32 by
calculation in the test function based on the input parameters. However, no matter which division ratio is applied, an
error occurs if the calculation result is not within the range that can be set in the 16-bit wide "CAC Upper-Limit and
Lower-Limit Value Setting Register".

1.4.2 Oscillation Stop Detection of Main Clock
The main clock oscillator of the RA MCU has an oscillation stop detection circuit. If the main clock stops, the Middle-
Speed On-Chip oscillator (MOCO) will automatically be used instead and an NMI interrupt will be generated.

In the ClockMonitor_Init function, when the main clock oscillator stop bit (MOSTP) in the main clock oscillator
control register (MOSCCR) is 0 (main clock oscillator operation), oscillation stop detection and NMI is enabled as
follows.

• Oscillation stop detection control register (OSTDCR)
- Oscillation stop detection function enable bit (OSTDE): Enable
- Oscillation stop detection interrupt enable bit (OSTDIE): Enable

• ICU non-maskable interrupt enable register (NMIER)
- Oscillation stop detection interrupt enable bit (OSTEN): Enable

The user of this module must handle the NMI interrupt and check the NMISR.OSTST (Oscillation Stop Detection
Interrupt Status Flag) bit.

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 78 of 106
Jun.30.2023

1.4.3 CLock Software API
The software API source files related to Clock testing are shown in Table 1.10.

Table 1.21 Clock Source Files

File Name
clock_monitor.h Declaration of Clock Test API function.
clock_monitor.c Clock test implementation part

The test module relies on the renesas.h header file to access to peripheral registers.

 clock_monitor.c File
There are two versions of the ClockMonitor_Init function.

(a) ClockMonitor_Init Function When Using an External Reference Clock.
(If CLOCK_MONITOR_USE_EXTERNAL_REFERENCE_CLOCK Is Defined.)

Syntax

void ClockMonitor_Init(clock_source_t target_clock,
 uint32_t MainClockFrequency,
 uint32_t ExternalRefClockFrequency,
 CLOCK_MONITOR_CACREF_PIN ePin,
 CLOCK_MONITOR_ERROR_CALL_BACK CallBack)

Description
1. Start monitoring the target clock selected through target_clock input parameter using the CAC module and

the CACREF pin as a reference clock.
2. The CACREF pin can be selected by SW (for details, refer to Section 2.4 Clock in Chapter 2 Example Usage).

It is the user's responsibility to select the terminals based on the system configuration.
3. Enables Oscillation Stop Detection and configures an NMI to be generated if detected.

Input Parameters
clock_source_t target_clock Target clock monitored by CAC.

The clock shall be one among Main clock, Sub clock, HOCO clock,
MOCO clock, LOCO clock, IWDTCLK clock and PCLKB clock.

uint32_t MainClockFrequency Target clock expected frequency in Hz.
(The parameter name is MainClockFrequency, but it is the frequency of
the target clock specified by target_clock.)

uint32_t
ExternalRefClockFrequency

External reference clock frequency in Hz.

CLOCK_MONITOR_CACREF_PIN ePin The pin to use for CACREF.

CLOCK_MONITOR_ERROR_CALL_BACK
CallBack

A function that is called when the target clock is out of tolerance or
when this function fails to properly configure the CAC circuit from the
input parameters.

Output Parameters
NONE N/A
Return Values
NONE N/A

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 79 of 106
Jun.30.2023

(b) ClockMonitor_Init Function When Using One of the Internal Clock Source for Reference Clock.
(If CLOCK_MONITOR_USE_EXTERNAL_REFERENCE_CLOCK Is Not Defined.)

Syntax

void ClockMonitor_Init(clock_source_t target_clock,
 clock_source_t ref_clock,
 uint32_t target_clock_frequency,
 uint32_t ref_clock_frequency,
 CLOCK_MONITOR_ERROR_CALL_BACK CallBack)

Description
1. Start monitoring the target clock selected through target_clock input parameter using the CAC module and

the reference clock selected through ref_clock input parameter.
2. Enables Oscillation Stop Detection and configures an NMI to be generated if detected.

Input Parameters
clock_source_t target_clock Target clock monitored by CAC.

The clock shall be one of Main clock, Sub clock, HOCO clock, MOCO
clock, LOCO clock, IWDTCLK clock, and PCLKB clock.

clock_source_t ref_clock The reference clock to be used by CAC to monitor the target clock.
The clock shall be one of Main clock, Sub clock, HOCO clock, MOCO
clock, LOCO clock, IWDTCLK clock, and PCLKB clock.

uint32_t target_clock_frequency The target clock frequency in Hz

uint32_t ref_clock_frequency The reference clock frequency in Hz.

CLOCK_MONITOR_ERROR_CALL_BACK
CallBack

A function that is called when the target clock is out of tolerance or
when this function fails to properly configure the CAC circuit from the
input parameters.

Output Parameters
NONE N/A
Return Values
NONE N/A

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 80 of 106
Jun.30.2023

Syntax

extern void cac_ferrf_isr(void)

Description
CAC frequency error interrupt handler.
This function calls the callback function registered by the ClockMonitor_Init function.

Input Parameters
NONE N/A
Output Parameters
NONE N/A
Return Values
NONE N/A

Syntax

extern void cac_ovff_isr(void)

Description
CAC overflow error interrupt handler.
This function calls the callback function registered by the ClockMonitor_Init function.

Input Parameters
NONE N/A
Output Parameters
NONE N/A
Return Values
NONE N/A

Syntax

bool_t CAC_Err_Detect_Test(void)

Description

When the power is turned on, it check that the frequency error detection by the CAC function and the interrupt by the
overflow error detection are operating normally.
Returns “TRUE” if each interrupt occurrence can be confirmed within a certain period of time (counted by software
loop).

Input Parameters
NONE N/A
Output Parameters
NONE N/A
Return Values
bool_t 1 : True = Passed(Each interrupt occurrences was occurred)

0 : False = Failed(Could not be confirmed both interrupt occurrences)

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 81 of 106
Jun.30.2023

1.5 Independent Watchdog Timer (IWDT)
A watchdog timer is used to detect abnormal program execution. If a program is not running as expected, the watchdog
timer will not be refreshed by software as required and will therefore detect an error.

The Independent Watchdog Timer (IWDT) module of the RA MCU is used for this. It includes a windowing feature so
that the refresh must happen within a specified ‘window’ rather than just before a specified time. It can be configured to
generate an internal reset or a NMI interrupt if an error is detected.

All the configurations for IWDT can be done through the Option Function Select Register 0 (OFS0) in Option-Setting
Memory whose settings are controlled by the user (see Section 2.5 for an example of configuration). The option setting
memory is a series of registers that can be used to select the state of the microcontroller after reset and is located in the
code flash area.

A function is provided to be used after a reset to decide if the IWDT has caused the reset.

The test module relies on the renesas.h header file to access to peripheral registers.

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 82 of 106
Jun.30.2023

1.5.1 IWDT Software API
The software API source files related to IWDT testing are shown in Table 1.22.

Table 1.22 Independent Watchdog Timer Source Files

File Name
iwdt.h Declaration of IWDT Test API function.

iwdt.c IWDT test implementation part

Syntax

void IWDT_Init (void)

Description
Initialize the independent watchdog timer. After calling this, the IWDT_Kick function must then be called at the
correct time to prevent a watchdog timer error.
Note: If configured to produce an interrupt then this will be the Non Maskable Interrupt (NMI). This must be handled
by user code which must check the NMISR.IWDTST flag.

Input Parameters
NONE N/A
Output Parameters
NONE N/A
Return Values
NONE N/A

Syntax

void IWDT_Kick(void)

Description
Refresh the watchdog timer count.

Input Parameters
NONE N/A
Output Parameters
NONE N/A
Return Values
NONE N/A

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 83 of 106
Jun.30.2023

Syntax

bool_t IWDT_DidReset(void)

Description
Returns true if the IWDT has timed out or not been refreshed correctly. This can be called after a reset to decide if
the watchdog timer caused the reset.

Input Parameters
NONE N/A
Output Parameters
NONE N/A
Return Values
bool_t True(1) if watchdog timer has timed out, otherwise false(0).

Syntax

bool_t IWDT_Err_Detect_Test(void)

Description

When the power is turned on, it check that the interrupt by the detection of counter underflow for IWDT function is
operating normally.
Returns “TRUE” if NMI interrupt occurrence by detecting IWDT counter underflow can be confirmed within a
certain period of time (counted by software loop).
Set f_IWDT_ERROR_TEST to "1" and determine if f_IWDT_ERROR_TEST becomes "0" within a certain period
of time.
Note that the user must create a process to set f_IWDT_ERROR_TEST to "0" when the IWDT underflow/refresh
error interrupt status flag is "1" in NMI_Handler_callback().
For details, refer to 2.5 Independent Watchdog Timer (IWDT).

Input Parameters
NONE N/A
Output Parameters
NONE N/A
Return Values
bool_t 1 : True = Passed(NMI interrupt occurrences was occurred)

0 : False = Failed(Could not be confirmed NMI interrupt occurrences)

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 84 of 106
Jun.30.2023

2. Example Usage
This section gives to the user some useful suggestions about how to apply the released software.

Self testing can be divided into two patterns:

(a) Power-On Test
These are tests run once following a reset. They should be run as soon as possible but especially if start-up time is
important it may be permissible to run some initialization code before running all the tests so that for example a
faster main clock can be selected.

(b) Periodic Test
These are tests that are run regularly throughout normal program operation. This document does not provide a
judgment of how often a particular test should be ran. How the scheduling of the periodic tests is performed is up
to the user depending upon how their application is structured.

The following sections provide an example of how each test type should be used.

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 85 of 106
Jun.30.2023

2.1 CPU
If a fault is detected by any of the CPU tests then a user supplied function called CPU_Test_ErrorHandler will be
called. As any error in the CPU is very serious the aim of this function should be to get to a safe state, where software
execution is not relied upon, as soon as possible.

2.1.1 Power-On
The the CPU tests should be run as soon as possible following a reset.

The function CPU_Test_ClassC can be used to automatically run all the CPU tests.

2.1.2 Periodic
To test the CPU periodically, the function CPU_Test_ClassC can be used, as it is for the power-on tests, to
automatically run CPU tests.

Alternatively, to reduce the amount of testing done in a single function call, the user can select by
"r_cpu_diag_config.h".

2.1.3 Preparation for CPU testing
The following describes the preparation for CPU testing.
It configures the CPU test via directive settings before compiling your code.
See Table 1.15 for the relationship between directives and each CPU test.
Directives are used to define what tests will be included in or excluded from the compilation.
The directive can be found in the r_cpu_diag_config.h file.

The sample software is set to build all CPU tests.
If it set the directives to "0"(an excluded from test), the empty function called norm_null() is executed.

For example, when your CPU core is CM33 and no FPU is used, you can exclude FPU-related test from CPU Test
compilation.
 (Set "0" to the directives from “BUILD_R_CPU_DIAG_11” to “BUILD_R_CPU_DIAG_15_6” in Table 1.15)

The next page shows where to set the directives that make up the CPU test.

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 86 of 106
Jun.30.2023

◆Definition parts in the "r_cpu_diag_config.h" file.(blue text)

If "1" is set in the following settings, it will be subject to test execution, and if "0" is set, it will not be subject to test
execution.

/***

* Macro definitions

***/

/* ==== Define build options ==== */

#define BUILD_R_CPU_DIAG_0 (1)

#define BUILD_R_CPU_DIAG_1 (1)

#define BUILD_R_CPU_DIAG_2 (1)

#define BUILD_R_CPU_DIAG_3 (1)

#define BUILD_R_CPU_DIAG_4_1 (1)

#define BUILD_R_CPU_DIAG_4_2 (1)

#define BUILD_R_CPU_DIAG_5 (1)

#define BUILD_R_CPU_DIAG_6 (1)

#define BUILD_R_CPU_DIAG_7_1 (1)

#define BUILD_R_CPU_DIAG_7_2 (1)

#define BUILD_R_CPU_DIAG_7_3 (1)

#define BUILD_R_CPU_DIAG_8 (1)

#define BUILD_R_CPU_DIAG_9 (1)

#define BUILD_R_CPU_DIAG_10 (1)

#define BUILD_R_CPU_DIAG_11 (1)

#define BUILD_R_CPU_DIAG_12 (1)

#define BUILD_R_CPU_DIAG_13 (1)

#define BUILD_R_CPU_DIAG_14_1 (1)

#define BUILD_R_CPU_DIAG_14_2 (1)

#define BUILD_R_CPU_DIAG_15_1 (1)

#define BUILD_R_CPU_DIAG_15_2 (1)

#define BUILD_R_CPU_DIAG_15_3 (1)

#define BUILD_R_CPU_DIAG_15_4 (1)

#define BUILD_R_CPU_DIAG_15_5 (1)

#define BUILD_R_CPU_DIAG_15_6 (1)

#define BUILD_R_CPU_DIAG_16 (1)

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 87 of 106
Jun.30.2023

2.2 ROM
In ROM test, it compare the calculated CRC value of the range under test with a pre-stored reference CRC value.(used
the 32-bit CRC32 Polynomial is "CRC-32")

A reference CRC value must be stored to a ROM area that is not included in the CRC calculation. The way of the
reference CRC value is calculated depends on your development environment.

In addition, this sample software performs divided processing to reduce the processing load of the ROM test, and
supports Multi Checksum.The CRC module incorporated into the RA MCU must be initialized before use by calling the
CRC_Init function. When dividing and processing, please initialize only the first time of divided processing.

2.2.1 Reference CRC Value Calculation in Advance

Since the GNU tool does not have a CRC calculation function, use the SRecord tool (*1) introduced below to calculate
the reference CRC value. The user uses this tool to write the CRC value for reference in ROM in advance, and
compares it with this value in the self-test.

*1: SRecord is an open source project on SourceForge. See below for details.
• SRecord Web Site (SRecord v1.64)

http://srecord.sourceforge.net/

• CRC Checksum Generation with “SRecord” Tools for GNU and Eclips
https://gcc-
renesas.com/wiki/index.php?title=CRC_Checksum_Generation_with_%E2%80%98SRecord%E2%8
0%99_Tools_for_GNU_and_Eclipse

After unzipping the downloaded ZIP file, the following folders will be expanded.

Figure 2.1 SRecord Tool Contents

CRC calculation tool

http://srecord.sourceforge.net/
https://gcc-renesas.com/wiki/index.php?title=CRC_Checksum_Generation_with_%E2%80%98SRecord%E2%80%99_Tools_for_GNU_and_Eclipse
https://gcc-renesas.com/wiki/index.php?title=CRC_Checksum_Generation_with_%E2%80%98SRecord%E2%80%99_Tools_for_GNU_and_Eclipse
https://gcc-renesas.com/wiki/index.php?title=CRC_Checksum_Generation_with_%E2%80%98SRecord%E2%80%99_Tools_for_GNU_and_Eclipse

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 88 of 106
Jun.30.2023

An example of the folder structure of the project and SRecord tool is shown below.

Figure 2.2 Folder Configuration Example

SRecordTool execute file

Command file for SRecord tool
(If debug is enable)

Command file for SRecord tool
(By ROM capacity)

Source File of Self Test

Project folder
The location indicated by the build
variable ${ProjDirPath}

Non-Safety parts

Safety parts

Command file for SRecord tool
(for multi checksum support when ROM=1MB)

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 89 of 106
Jun.30.2023

When using Safety part and Non-Safty parts of TrustZone, it is necessary to set in the property of each project.

◆”Settings in the project for "Safety part"

↓

Figure 2.3 Output SRecord File and Start SRecord Tool(setting in Safety Parts project)

In the "Post-build steps" of the "Build Steps" tab in the above figure, write as follows.

 Example of Command(s): entry (write on one line without line breaks)

arm-none-eabi-objcopy -O srec "${ProjName}.elf" "Original_sec.srec"

In above, it descript that generate the S record file "Original_sec.srec" from * .elf generated by Safety part.

Write in the “Command(s)” field

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 90 of 106
Jun.30.2023

◆"Settings in the project for "Non-Safety part"

Open "Project" ⇒ "Properties" of e2 studio, and Copy "Original_sec.srec" that was created in Safety part to the
correspond folder in the project on the Non-Safety side with the copy command on "Pre-build steps"

Next, in the "Post-build step", use the objcopy command to generate the S-record file "Original_non_sec.srec" from the
* .elf file generated at Non-Safety part.

Furthermore, it is converted into one S record file from "Original_non_sec.srec" and "Original_sec.srec".

The converted file name is "Original.srec".

This file will be the input for the SRecord tool.

↓

Figure 2.4 Output S-Record file and start SRecord tool (setting in Non-Safety part project)

Write in the “Command(s)” field

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 91 of 106
Jun.30.2023

In the "Pre-build steps" and "Post-build steps" of the "Build Steps" tab in the above figure, describe as follows.

 Example of entry in the Command (s) column of "Pre-build steps" (write on one line without line breaks)

copy ..\..\RA6M4_sec\SoftwareDebug\Original_sec.srec

Use the copy command to copy the "Original_sec.srec" created in Safety part to the corresponding folder on the Non-
Safety side.

Next, in the "Post-build steps" of the "Build Steps" tab in the above figure, write as follows.

 Example of entry in the Command (s) column of "Post-build steps" (write on one line without line breaks)

[when divided processing is enabled (DIV_AREA=1)]

arm-none-eabi-objcopy -O srec "${ProjName}.elf" "Original_non_sec.srec" &
${ProjDirPath}/../../srec/srec_cat Original_non_sec.srec Original_sec.srec -o
Original.srec & ${ProjDirPath}/../../srec/srec_cat
@${ProjDirPath}/../../srec/CRCcalcCmd1MB_64KB_div.txt

[when divided processing is disabled (DIV_AREA=0)]

arm-none-eabi-objcopy -O srec "${ProjName}.elf" "Original_non_sec.srec" &
${ProjDirPath}/../../srec/srec_cat Original_non_sec.srec Original_sec.srec -o
Original.srec & ${ProjDirPath}/../../srec/srec_cat
@${ProjDirPath}/../../srec/CRCcalcCmd1MB.txt

Untill before the "&" in the third line above mean that the S-record file is generated.
The format "srec_cat @ command file" on the third line is the launch of the srec_cat tool.

The description example is shown about the following Command files :

・"CRCcalcCmd1MB_64KB_div.txt"(when divided processing is enabled)

・"CRCcalcCmd1MB.txt" (when divided processing is disabled)

Also, please refer to ”2.2.2 Setting for the support Multi-checksum” for setting of split processing.

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 92 of 106
Jun.30.2023

■ CRCcalcCmd1MB_64KB_div.txt ファイルの内容（例）

CRC calculate
Original.srec # Read srec file
-fill 0xFF 0x00000 0x100000 # 1MB ROM fill by 0xFF

-crop 0xF0000 0xFFFC0 # CRC calculate area (Test area 0xF0000 - 0xFFFC0 : 64KB-4) for debug
-STM32-le 0x0FFFFC # The algorithm used by the STM32 hardware unit is just a CRC32, and store CRC Value at 0xFFFFC.
-crop 0xFFFFC 0x100000 # Keep CRC area(0xFFFFC - 0xFFFFF)
Original.srec # Read srec file

-fill 0xFF 0x00000 0xF0000 # 0-0xF0000 ROM fill by 0xFF
-crop 0xE0000 0xF0000 # CRC calculate area (Test area 0xE0000 - 0xEFFFF : 64KB) for debug
-STM32-le 0x0FFFF8 # The algorithm used by the STM32 hardware unit is just a CRC32, and store CRC Value at 0xFFFF8.
-crop 0xFFFF8 0x100000 # Keep CRC area(0xFFFF8 - 0xFFFFF)
Original.srec # Read srec file

-fill 0xFF 0x00000 0xF0000 # 0-0xF0000 ROM fill by 0xFF
-crop 0xD0000 0xE0000 # CRC calculate area (Test area 0xD0000 - 0xDFFFF : 64KB) for debug
-STM32-le 0x0FFFF4 # The algorithm used by the STM32 hardware unit is just a CRC32, and store CRC Value at 0xFFFF4.
-crop 0xFFFF4 0x100000 # Keep CRC area(0xFFFF4 - 0xFFFFF)
Original.srec # Read srec file

-fill 0xFF 0x00000 0xF0000 # 0-0xF0000 ROM fill by 0xFF
-crop 0xC0000 0xD0000 # CRC calculate area (Test area 0xC0000 - 0xCFFFF : 64KB) for debug
-STM32-le 0x0FFFF0 # The algorithm used by the STM32 hardware unit is just a CRC32, and store CRC Value at 0xFFFF0.
-crop 0xFFFF0 0x100000 # Keep CRC area(0xFFFF0 - 0xFFFFF)
Original.srec # Read srec file

-fill 0xFF 0x00000 0xF0000 # 0-0xF0000 ROM fill by 0xFF
-crop 0xB0000 0xC0000 # CRC calculate area (Test area 0xB0000 - 0xBFFFF : 64KB) for debug
-STM32-le 0x0FFFEC # The algorithm used by the STM32 hardware unit is just a CRC32, and store CRC Value at 0xFFFEC.
-crop 0xFFFEC 0x100000 # Keep CRC area(0xFFFEC - 0xFFFFF)
Original.srec # Read srec file

-fill 0xFF 0x00000 0xF0000 # 0-0xF0000 ROM fill by 0xFF
-crop 0xA0000 0xB0000 # CRC calculate area (Test area 0xA0000 - 0xAFFFF : 64KB) for debug
-STM32-le 0x0FFFE8 # The algorithm used by the STM32 hardware unit is just a CRC32, and store CRC Value at 0xFFFE8.
-crop 0xFFFE8 0x100000 # Keep CRC area(0xFFFE8 - 0xFFFFF)
Original.srec # Read srec file

-fill 0xFF 0x00000 0xF0000 # 0-0xF0000 ROM fill by 0xFF
-crop 0x90000 0xA0000 # CRC calculate area (Test area 0x90000 - 0x9FFFF : 64KB) for debug
-STM32-le 0x0FFFE4 # The algorithm used by the STM32 hardware unit is just a CRC32, and store CRC Value at 0xFFFE4.
-crop 0xFFFE4 0x100000 # Keep CRC area(0xFFFE4 - 0xFFFFF)
Original.srec # Read srec file

-fill 0xFF 0x00000 0xF0000 # 0-0xF0000 ROM fill by 0xFF
-crop 0x80000 0x90000 # CRC calculate area (Test area 0x80000 - 0x8FFFF : 64KB) for debug
-STM32-le 0x0FFFE0 # The algorithm used by the STM32 hardware unit is just a CRC32, and store CRC Value at 0xFFFE0.
-crop 0xFFFE0 0x100000 # Keep CRC area(0xFFFE0 - 0xFFFFF)
Original.srec # Read srec file

-fill 0xFF 0x00000 0xF0000 # 0-0xF0000 ROM fill by 0xFF
-crop 0x70000 0x80000 # CRC calculate area (Test area 0x70000 - 0x7FFFF : 64KB) for debug
-STM32-le 0x0FFFDC # The algorithm used by the STM32 hardware unit is just a CRC32, and store CRC Value at 0xFFFDC.
-crop 0xFFFDC 0x100000 # Keep CRC area(0xFFFDC - 0xFFFFF)
Original.srec # Read srec file

-fill 0xFF 0x00000 0xF0000 # 0-0xF0000 ROM fill by 0xFF
-crop 0x60000 0x70000 # CRC calculate area (Test area 0x60000 - 0x6FFFF : 64KB) for debug
-STM32-le 0x0FFFD8 # The algorithm used by the STM32 hardware unit is just a CRC32, and store CRC Value at 0xFFFD8.
-crop 0xFFFD8 0x100000 # Keep CRC area(0xFFFD8 - 0xFFFFF)
Original.srec # Read srec file

-fill 0xFF 0x00000 0xF0000 # 0-0xF0000 ROM fill by 0xFF
-crop 0x50000 0x60000 # CRC calculate area (Test area 0x50000 - 0x5FFFF : 64KB) for debug
-STM32-le 0x0FFFD4 # The algorithm used by the STM32 hardware unit is just a CRC32, and store CRC Value at 0xFFFD4.
-crop 0xFFFD4 0x100000 # Keep CRC area(0xFFFD4 - 0xFFFFF)
Original.srec # Read srec file

-fill 0xFF 0x00000 0xF0000 # 0-0xF0000 ROM fill by 0xFF
-crop 0x40000 0x50000 # CRC calculate area (Test area 0x40000 - 0x4FFFF : 64KB) for debug
-STM32-le 0x0FFFD0 # The algorithm used by the STM32 hardware unit is just a CRC32, and store CRC Value at 0xFFFD0.
-crop 0xFFFD0 0x100000 # Keep CRC area(0xFFFD0 - 0xFFFFF)
Original.srec # Read srec file

-fill 0xFF 0x00000 0xF0000 # 0-0xF0000 ROM fill by 0xFF
-crop 0x30000 0x40000 # CRC calculate area (Test area 0x30000 - 0x3FFFF : 64KB) for debug
-STM32-le 0x0FFFCC # The algorithm used by the STM32 hardware unit is just a CRC32, and store CRC Value at 0xFFFCC.
-crop 0xFFFCC 0x100000 # Keep CRC area(0xFFFCC - 0xFFFFF)
Original.srec # Read srec file

-fill 0xFF 0x00000 0xF0000 # 0-0xF0000 ROM fill by 0xFF
-crop 0x20000 0x30000 # CRC calculate area (Test area 0x20000 - 0x2FFFF : 64KB) for debug
-STM32-le 0x0FFFC8 # The algorithm used by the STM32 hardware unit is just a CRC32, and store CRC Value at 0xFFFC8.
-crop 0xFFFC8 0x100000 # Keep CRC area(0xFFFC8 - 0xFFFFF)

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 93 of 106
Jun.30.2023

Original.srec # Read srec file

-fill 0xFF 0x00000 0xF0000 # 0-0xF0000 ROM fill by 0xFF
-crop 0x10000 0x20000 # CRC calculate area (Test area 0x10000 - 0x1FFFF : 64KB) for debug
-STM32-le 0x0FFFC4 # The algorithm used by the STM32 hardware unit is just a CRC32, and store CRC Value at 0xFFFC4.
-crop 0xFFFC4 0x100000 # Keep CRC area(0xFFFC8 - 0xFFFFF)
Original.srec # Read srec file

-fill 0xFF 0x00000 0xF0000 # 0-0xF0000 ROM fill by 0xFF
-crop 0x00000 0x10000 # CRC calculate area (Test area 0x0 - 0xFFFF : 64KB) for debug
-STM32-le 0x0FFFC0 # The algorithm used by the STM32 hardware unit is just a CRC32, and store CRC Value at 0xFFFC0.
-crop 0xFFFC0 0x100000 # Keep CRC area(0xFFFC0 - 0xFFFFF)
Original.srec # Read srec file

-fill 0xFF 0x000000 0x0FFFC0 # -fill 0xFF from 0x0 to 0xFFFC0
-Output addcrc.srec # Output of S-record file including CRC value

 Contents of CRCcalcCmd1MB.txt file (example)

Original.srec # Read srec file
-fill 0xFF 0x00000 0x100000 # 1MB ROM fill by 0xFF
-crop 0x00000 0x0FFFFC # CRC calculate area
-STM32-le 0x0FFFFC # Calculate and output CRC value
-crop 0xFFFFC 0x100000 # Keep CRC area
Original.srec # Read srec file again
-fill 0xFF 0x000000 0x0FFFFC # -fill 0xFF from 0x0 to 0xFFFFC
-Output addcrc.srec # Output of S-record file including CRC value

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 94 of 106
Jun.30.2023

If the ROM capacity varies depending on the device, change the address setting according to the device.

Also, when debugging, some ROMs rewrite the contents of ROM due to a software break. In that case, it is
necessary to set the operation target area to something other than the debug area.

With the above operation, addcrc.srec (S record file with CRC calculation result added to the end of
program code) can be created in the build configuration folder under the project folder, so download it to the
target board.

Right-click on the top of the project tree and select "Debug as" → "Debug Configuration".

Figure 2.5 Select Debug Configuration of the Project

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 95 of 106
Jun.30.2023

When the debug configuration dialog is displayed, select the "Startup" tab and select the build configuration to use.
Only the symbol information is read from the ELF file, and the program image including the CRC calculation value is
set to be read from addcrc.srec.

Click the "Debug" button to download the CRC calculation value to the target.

Figure 2.6 Load Image and Symbol Setting Example

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 96 of 106
Jun.30.2023

2.2.2 Setting for the support Multi-checksum
It have mach time to test all areas in one ROM test. As measure, it is possible to divide the processing with the
following settings.

Edit and set "RA_Self Tests.c" including this sample software. Divided processing is enabled by default.

The setting part in the "RA_SelfTests.c" file of the sample software is explained below.

◆Setting part in the "RA_SelfTests.c" file of the sample software (blue text)

Set whether to enable or disable split processing below.

The reference addresses for pre-computed CRC values are defined below.

It store the precomputed checksum with the above settings.

When divied processing is enabled. (DIV_AREA=1) : Store in the area of addrres 0xFFFC0 to 0xFFFFF.

When divied processing is disabled. (DIV_AREA=0) : Store in the area of addrres 0xFFFFC to 0xFFFFF.

For the stored method, refer to”2.2.1 Reference CRC Value Calculation in Advance”

#define DIV_AREA 1 // 0:Not divide 1:Do divide

/* The address where the 32bit reference CRC value will be stored.

The linker must be configured to generate a CRC value and store it at this location. */

#define DIV_AREA 1 // 0:Not divide 1:Do divide

#if(DIV_AREA==1)

#define CRC_ADDRESS 0x000FFFC0 // Flash ROM 1MB *The area from 0xFFFC0 to 0xFFFFF is stored Calurated CRC Value.

//#define CRC_ADDRESS 0x000BFFC0 // Flash ROM 768KB

//#define CRC_ADDRESS 0x0007FFC0 // Flash ROM 512KB

#else

#define CRC_ADDRESS 0x000FFFFC // Flash ROM 1MB

//#define CRC_ADDRESS 0x000BFFFC // Flash ROM 768KB

//#define CRC_ADDRESS 0x0007FFFC // Flash ROM 512KB

#endif

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 97 of 106
Jun.30.2023

2.2.3 Power-On
All the ROM memory used must be tested at power-on.

If this area is one contiguous block then function CRC_Calculate can be used to calculate and return a calculated
CRC value.

If the ROM used is not in one contiguous block then the following procedure must be used.

1. Call CRC_Start.
2. Call CRC_AddRange for each area of memory to be included in the CRC calculation.
3. Call CRC_Result to get the calculated CRC value.

The calculated CRC value can then be compared with the reference CRC value stored in the ROM using function
CRC_Verify.

It is a user’s responsibility to ensure that all ROM areas used by their project are included in the CRC calculations.

2.2.4 Periodic
It is suggested that the periodic testing of ROM is done using the CRC_AddRange method, even if the ROM is
contiguous. This allows the CRC value to be calculated in sections so that no single function call takes too long. Follow
the procedure as specified for the power-on tests and ensure that each address range is small enough that a call to
CRC_AddRange does not take too long.

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 98 of 106
Jun.30.2023

2.3 RAM
It is very important to realize that the area of RAM that needs to be tested may change dramatically depending upon
your project’s memory map.

When testing RAM, keep the following points in mind:

1. Include r_ram_diag.h.

2. Modify the directives in r_ram_diag_config.h as needed (see Table 1.9).

3. Disable ECC and S cache and run the test.

4. Define the required parameters for R_RAM_Diag (see 1.3.4), pass the parameters and call the function
R_RAM_Diag.

5. For non-destructive tests, allocate a buffer (RramBuffer) and set the protected data to be stored in other blocks

2.3.1 Power-On
At power on, a RAM test is performed.

First performing the RAM test with the Extended March C-algorithm, then perform the RAM test with the WALKPAT
algorithm.

It is possible to choose a destructive test.

If startup time is very important, make fine adjustments such as limiting the area to be tested and the test algorithm to be
used.

2.3.2 Periodic
All periodic tests must be non-destructive.

In the periodic RAM test, select "Extended March C-" or "WALKPAT" as the algorithm to be used. (* Select
"WALKPAT" in the sample project)

Also, if the test target area is wide, the processing time will be long, so it will be necessary to divide the RAM blocks
according to the system.

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 99 of 106
Jun.30.2023

2.4 Clock
The monitoring of the main clock is set up with a single function call to ClockMonitor_Init. There are two versions
of this file depending on the choice between using an external or internal reference clock as decided by the following
#define:

#define CLOCK_MONITOR_USE_EXTERNAL_REFERENCE_CLOCK

For example:

#ifdef CLOCK_MONITOR_USE_EXTERNAL_REFERENCE_CLOCK
#define MAIN_CLOCK_FREQUENCY_HZ (12000000) // 12 MHz
#define EXTERNAL_REF_CLOCK_FREQUENCY_HZ (15000) // 15kHz

ClockMonitor_Init(MAIN, MAIN_CLOCK_FREQUENCY_HZ, EXTERNAL_REF_CLOCK_FREQUENCY_HZ,
eCLOCK_MONITOR_CACREF_A, CAC_Error_Detected_Loop);

#else

#define TARGET_CLOCK_FREQUENCY_HZ (12000000) // 12 MHz
#define REFERENCE_CLOCK_FREQUENCY_HZ (15000) // 15kHz

ClockMonitor_Init(MAIN, IWDTCLK, TARGET_CLOCK_FREQUENCY_HZ,
REFERENCE_CLOCK_FREQUENCY_HZ, CAC_Error_Detected_Loop);
/*NOTE: The IWDTCLK clock must be enabled before starting the clock monitoring.*/

#endif

When using an external reference clock as the reference clock, the user can specify the CACREF pin to use with the
input parameter of the ClockMonitor_Init function (in the above example, eCLOCK_MONITOR_CACREF_A is
specified).

The relationship between the terminals and input parameters of each device of the RA MCU is shown below. The user
decides which terminal to use according to the system configuration.

Table 2.1 CACREF Pin and Input Parameter (CLOCK_MONITOR_CACREF_PIN ePin)

MCU Terminal (Port Number) That
Can Be Specified for CACREF

Symbol of Input Parameter "ePin"

RA6M4 P204 eCLOCK_MONITOR_CACREF_A

P402 (Note) eCLOCK_MONITOR_CACREF_B

P500 eCLOCK_MONITOR_CACREF_C

P600 eCLOCK_MONITOR_CACREF_D

P611 eCLOCK_MONITOR_CACREF_E

P708 eCLOCK_MONITOR_CACREF_F

Note: The P402 is affected by the VBTICTLR (VBATT input control register) setting. For details, refer to the
"I / O Ports" and "Battery Backup Function" chapters in the hardware user's manual for each RA MCU.

The ClockMonitor_Init function can be called as soon as the main clock has been configured and the IWDT has
been enabled. See Section 2.5 for enabling the IWDT.

The clock monitoring is then performed by hardware and so there is nothing that needs to be done by software during
the periodic tests.

In order to enable interrupt generation by the CAC, both Interrupt Controller Unit (ICU) and Nested Vectored Interrupt
Controller (NVIC) should be configured in order to handle it.

In the interrupt controller unit (ICU), set the event signal number corresponding to CAC frequency error interrupt and
CAC overflow in the ICU event link setting register (IELSRn).

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 100 of 106
Jun.30.2023

When using FSP (Flexible Software Package) with e2 studio, the ICU configuration can be set in the "Interrupts" tab of
the RA Configuration Editor.

Table 2.2 Setting of IELSRn Register Related to CAC

MCU Event Name IELSRn.IELS
RA6M4, RA4M3 CAC_FERRI 0x09E

CAC_OVFI 0x0A0

The nested vector interrupt controller (NVIC) is set by the test_main function in the RA_SelfTests.c file. Where
NVIC_SetPriority and NVIC_EnableIRQ are CMSIS functions provided by FSP, and
CAC_FREQUENCY_ERROR_IRQn and CAC_OVERFLOW_IRQn are IRQ numbers generated by the FSP.

// NVIC settings related to CAC

/* CAC frequency error ISR priority */
NVIC_SetPriority(CAC_FREQUENCY_ERROR_IRQn,0);
/* CAC frequency error ISR enable */
NVIC_EnableIRQ(CAC_FREQUENCY_ERROR_IRQn);

/* CAC overflow ISR priority */
NVIC_SetPriority(CAC_OVERFLOW_IRQn,0);
/* CAC overflow ISR enable */
NVIC_EnableIRQ(CAC_OVERFLOW_IRQn);

If oscillation stop is detected, an NMI interrupt occure. In this sample software, as shown in the following, the prepared
in advance error handling function ("Clock_Stop_Detection()") is executed in the NMI interrupt callback function
(NMI_Handler_callback).

static void NMI_Handler_callback(bsp_grp_irq_t irq)
{
 switch(irq){
 case BSP_GRP_IRQ_IWDT_ERROR :
 ・・・
 break;
 case BSP_GRP_IRQ_LVD1 :
 case BSP_GRP_IRQ_LVD2 :
 break;
 case BSP_GRP_IRQ_OSC_STOP_DETECT :
 Clock_Stop_Detection();
 break;
 case BSP_GRP_IRQ_TRUSTZONE :
 ・・・
 break;
 default:
 break;

 }
}

NVIC settings related to Frequency
error interrupt

NVIC settings related to Overflow
error interrupt

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 101 of 106
Jun.30.2023

2.5 Independent Watchdog Timer (IWDT)
2.5.1 OFS0 Register Setting Example (IWDT Related)
In order to configure the Independent Watchdog Timer, it is necessary to set the OFS0 register in Option-Setting
Memory. For example, suppose the Option-Setting Memory is set as follows.

Table 2.3 OFS0 Register Setting Example (IWDT Related)

Item OFS0 Register Setting (For Example)

IWDT Start Mode Select (IWDTSTRT) 1: Disable IWDT after a reset

IWDT Timeout Period Select (IWDTTOPS[1:0]) 10b： 512 cycles

IWDT-Dedicated Clock Frequency Division Ratio Select
(IWDTCKS[3:0])

0010b： 1/16

IWDT Window End Position Select (IWDTRPES[1:0]) 00b： 75%

IWDT Window Start Position Select (IWDTRPSS[1:0]) 11b： 100%

IWDT Reset Interrupt Request Select (IWDTRSTIRQS) 0: Enable non-maskable interrupt request or interrupt
request

IWDT Stop Control (IWDTSTPCTL) 1: Stop counting when in Sleep, Snooze, or Software
Standby mode.

When using FSP (Flexible Software Package) with e2 studio, the "Option-Setting Memory" settings can be done in the
property of the "BSP" tab of the configuration.

Figure 2.7 Example of OFS0 Register Setting by Using FSP with e2 studio

Double click
to open

Open the BSP properties with
Window ⇒ Show View command

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 102 of 106
Jun.30.2023

When the "Generate Project Content" button is clicked, the contents set in the property will be reflected in the
definition of the corresponding symbol in the following file . (For details, refer to "Renesas Flexible Software Package
(FSP) User's Manual".)

• Applicable file
 ..\project-name\ra_cfg\fsp_cfg\bsp\bsp_mcu_family_cfg.h

• Applicable symbol (Excerpt)

#define OFS_SEQ1 0xA001A001 | (0 << 1) | (1 << 2)
#define OFS_SEQ2 (2 << 4) | (0 << 8) | (3 << 10)
#define OFS_SEQ3 (0 << 12) | (1 << 14) | (1 << 17)

 : :

Figure 2.8 Option Function Select Register 0 (OFS0)

The Independent Watchdog Timer should be initialized as soon as possible following a reset with a call to IWDT_Init:

/*Setup the Independent WDT.*/
IWDT_Init();

After this, the watchdog timer must be refreshed regularly enough to prevent the watchdog timer timing out and
performing a reset. Note, if using windowing the refresh must not just be regular enough but also timed to match the
specified window. A watchdog timer refresh is called by calling this:

/*Regularly kick the watchdog to prevent it performing a reset. */
IWDT_Kick();

If the watchdog timer has been configured to generate an NMI on error detection then the user must handle the resulting
interrupt.

If the watchdog timer has been configured to perform a reset on error detection then following a reset the code should
check if the IWDT caused the reset by calling IWDT_DidReset:

if(TRUE == IWDT_DidReset())
{
 /*todo: Handle a watchdog reset.*/
 while(1){
 /*DO NOTHING*/
 }
}

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 103 of 106
Jun.30.2023

2.5.2 Example of registering and writing an NMI interrupt callback function
It check whether the IWDT operates normally at Power ON startup on API function "IWDT_Err_Detect_Test()".

For that, user necessary to prepare the processing that set f_IWDT_ERROR_TEST to "0" if the cause of the interrupt is
an IWDT underflow in the NMI interrupt callback function (NMI_Handler_callback).

Users can register callbacks using the BSP API function “R_BSP_GroupIrqWrite()” provided by FSP (Flexible
Software Package).

By doing this, you can enable notification of one or more group interrupts.
When an NMI interrupt occurs, the NMI handler checks to see if there is a callback registered for the interrupt source,
and if so, calls the registered callback function.

For more information, refer to the RA FSP (Flexible Software Package) documentation below.

Renesas Flexible Software Package (FSP) v3.5.0 User’s Manual
Refer to ” 4.1.2 MCU Board Support Package(BSP)” – “◆ R_BSP_GroupIrqWrite()”.

https://www.renesas.com/jp/ja/document/mas/renesas-flexible-software-package-fsp-v350-users-manual?r=658306

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 104 of 106
Jun.30.2023

The following describes the registration and description example of the NMI interrupt callback function
(NMI_Handler_callback).

◎Register NMI interrupt callback function

This is a description example when registering a callback function of the sample software "RA_SelfTest.c". Please
register according to the user's system.

for (bsp_grp_irq_t irq = BSP_GRP_IRQ_IWDT_ERROR; irq <= BSP_GRP_IRQ_CACHE_PARITY; irq++){

 R_BSP_GroupIrqWrite(irq , NMI_Handler_callback);
 }

◎Description example of generating an IWDT interrupt factor in the NMI interrupt callback function
(NMI_Handler_callback) (blue text)

static void NMI_Handler_callback(bsp_grp_irq_t irq)
{
 /*Read NMISR register to discover NMI cause.*/
 switch(irq){
 case BSP_GRP_IRQ_IWDT_ERROR :
 if(IWDTSR_reg->IWDTSR_b.REFEF == 1)
 {
 Watchdog_Test_Failure();
 }
 else if(f_IWDT_ERROR_TEST == 0)
 {
 Watchdog_Test_Failure();
 }
 break;
 case BSP_GRP_IRQ_OSC_STOP_DETECT :
 Clock_Stop_Detection();
 break;
 ・
 ・
 ・
 default:
 break;
 }

 if(irq == BSP_GRP_IRQ_IWDT_ERROR)
 {
 f_IWDT_ERROR_TEST = 0;

 /*Clear flag*/
 IWDTSR_reg->IWDTSR_b.UNDFF = 0;

 __NOP(); __NOP(); __NOP(); __NOP(); __NOP(); __NOP();
 }
 else
 {
 // Error_Detected_Loop(ERROR_NMI_OTHER);
 Error_Detected_Loop(ERROR_NMI_OTHER);

 /*Should not return from an NMI*/
 while(1){;}
 }

}

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 105 of 106
Jun.30.2023

Website and Support
Visit the following URLs to learn about the key elements of the RA MCU, download tools, components, and related
documentation, and get support.

• RA Product Information: www.renesas.com/ra
• RA (Flexible Software Package): www.renesas.com/FSP
• RA Support Forum: www.renesas.com/ra/forum
• Renesas Support: www.renesas.com/support

Reference Documents
[1] Arm® Cortex®-M33 Devices Generic User Guide Revision: r1p0

- 2.1.3 Core registers
- Chapter 3:The Cortex®-M33 Instruction Set

[2] Arm®v8-M Architecture Reference Manual

- D1.1 Register index
- C2.4 Alphabetical list of instructions

All trademarks and registered trademarks are the property of their respective owners.

https://www.renesas.com/ra
https://www.renesas.com/FSP
https://www.renesas.com/ra/forum
https://www.renesas.com/support

RA Family IEC 60730/60335 Self Test Library for RA MCU (CM33 Class-C)

R01AN6974EJ0100 Rev.1.00 Page 106 of 106
Jun.30.2023

Revision History

Rev. Date
Description

Page Summary
1.00 Jun 30, 2023 – First edition

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2020 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	Introduction
	Table of Contents
	1. Tests
	1.1 CPU
	1.1.1 CPU instruction test and CPU register test
	1.1.2 Test Error
	1.1.3 CPU Software API
	1 Addition instructions test
	1 Sign extension
	1 Branch
	1 Bit manipulation
	1 LDR and STR
	4 LDRD and STRD
	1 LDAEX and STLEX
	1 PUSH and POP
	1 Detecting “0” fixed fault for status and control registers
	2 Detecting “1” fixed fault for status and control registers
	3 Detecting “0” fixed fault for general purpose registers
	4 Detecting “1” fixed fault for general purpose registers
	5 Detecting coupling fault for general purpose registers between any two bits
	7 Detecting "0" fixed fault for MSP(R13)
	8 Detecting "1" fixed fault for MSP(R13)
	9 Detecting coupling fault for MSP(R13) between any two bits
	1 Multiply accumulate (MAC)
	1 Four basic arithmetic instructions test
	1 Multiply accumulate (MAC)
	1 Floating-point rounding
	1 VPOP T2 and VPUSH T2
	3.VMOV
	1. Detecting “0” fixed fault for FPU status and control registers
	5 Detecting coupling fault for single-precision registers between any two bits
	5 Detecting coupling fault for single-precision registers between any two bits
	5 Detecting coupling fault for single-precision registers between any two bits
	6. Detecting coupling fault for single-precision registers between any two registers
	6. Detecting coupling fault for single-precision registers between any two registers

	1.2 ROM
	1.2.1 CRC32 Algorithm
	1.2.2 Multi Checksum
	1.2.3 CRC Software API

	1.3 RAM
	1.3.1 RAM Block Configuration
	1.3.2 Reserved Area
	1.3.3 RAM Test Algorithm
	(1) Extended March C-
	(2) WALKPAT
	(3) Algorithm Characteristics

	1.3.4 RAM Software API

	1.4 Clock
	1.4.1 Main Clock Frequency Monitoring by CAC
	1.4.2 Oscillation Stop Detection of Main Clock
	1.4.3 CLock Software API

	1.5 Independent Watchdog Timer (IWDT)
	1.5.1 IWDT Software API

	2. Example Usage
	2.1 CPU
	2.1.1 Power-On
	2.1.2 Periodic
	2.1.3 Preparation for CPU testing

	2.2 ROM
	2.2.1 Reference CRC Value Calculation in Advance
	2.2.2 Setting for the support Multi-checksum
	2.2.3 Power-On
	2.2.4 Periodic

	2.3 RAM
	2.3.1 Power-On
	2.3.2 Periodic

	2.4 Clock
	2.5 Independent Watchdog Timer (IWDT)
	2.5.1 OFS0 Register Setting Example (IWDT Related)
	2.5.2 Example of registering and writing an NMI interrupt callback function

	Website and Support
	Reference Documents
	Revision History

