RENESAS

RAA241200 Data sheet

Single Cell Li-ion Battery Management IC

CHAPTER 1. INTRODUCTION

1.1 Features

- Fully integrated battery management solution with battery capacity measurement and programmable protection capability.
- Supports Single Cell Li-ion or Li-Polymer battery cell.
- Integrated with Renesas Ultra Low Power RL78 CPU core for multi-function process.

Memory

Code flash memory: 64 KB

Data flash memory (up to 100,000 erase/write cycles): 4 KB SRAM: 4 KB

Clock generator

High speed on-chip oscillator: up to 8 MHz Low speed on-chip oscillator: 15 kHz AFE speed on-chip oscillator: 2.097 MHz AFE low speed on-chip oscillator: 131.072 kHz

General Purpose I/O Ports

Total: 7 pins CMOS input/output: 3, CMOS input: 1 N-ch open-drain Input/output [6V tolerance]: 3

Serial interface

I²C: 1 channel UART: 1 channel Simplified I²C: 1 channel

■ Timer

16-bit timer: 4 channels, 12-bit interval timer: 1 channel Real time clock: 1 channel, Watchdog timer: 1 channel AFE Timer: 2 channels

- AFE Timer A: setting range: 125 ms to 64 s
- AFE Timer B: setting range: 61 us to 2 s

Embedded A/D converter

- AFE 18-bit resolution sigma-delta A/D converter
- Automatic measurement mode

- Battery cell voltage, Internal voltage and temperature (AN port voltage) detection function without controlling from F/W.

1.2 Applications

• Smartphone and other single battery applications

1.3 Description

RAA241200 is a Renesas battery fuel gauge and management device to accomplish various battery protection and management functions. This device incorporates advanced battery management features such as primary and secondary protection, voltage and current measurement, current integration, and host communication interface. Through user programmable control firmware and configuration data stored in the onboard MCU's embedded flash memory, the embedded analog and digital hardware circuits offer optimum battery management operations including high accuracy remaining capacity estimation and battery safety.

- Current integration circuit
 18-bit resolution sigma-delta A/D converter
- Impedance measurement circuit Simultaneous measurement of battery voltage and current
- Overcurrent detection / wake up current detection circuit
 Discharge short-circuit current detection
 Charge overcurrent detection
 Discharge overcurrent detection
 Charge wakeup current detection
 Discharge wakeup current detection
- Cell voltage detection circuit
 Overvoltage detection
 Undervoltage detection
- Charge and Discharge MOSFET control Supports Low side N-h MOSFET control
- Charger connect detection circuit Designated charger detection pin when Charge FET is off.
- Ultra low power consumption
 Shutdown mode current: 0.1 uA (TYP.)
 Sleep mode 1 current: 10 uA (TYP.) (Protection enable)
 Normal mode current: 2 mA (TYP.) (Protection and Gauging enable, MCU always on)
 Average current under typical operating conditions: 80 uA (TYP.) (Protection and Gauging enable)
- Voltage and temperature condition
 Power supply voltage: VDD = 2.0 to 5.5 V
 Operating ambient temperature T_A = -40 to +85 °C
- Package Information
 16 pin WLBGA
 ([Body] 1.871 mm x 2.478 mm (TYP.) , 0.5 mm pitch)

CHAPTER 2. OUTLINE

2.1 Outline of Functions

			(1/2		
Item		Description			
Code Flash memory		64 KB			
Data Flash memory		4 KB			
RAM		4 KB			
Address s	size	1 MB			
Main High speed on-chip system Oscillator clock(fiH) clock		LS (low-speed main) mode: 1 to 8 MHz			
Low spee	d on-chip oscillator clock	15 kHz (TYP.)			
General p	ourpose register	8 bits × 32 registers (8 bits × 8 registers × 4 banks)			
Minimum	instruction execution time	0.125 us (Internal high speed oscillation clock: fi = 8 MHz)			
Instruction set		 Data transmission (8/16 bits) Addition and subtraction/logical operations (8/16 bits) Multiplication (8 × 8 bits, 16 × 16 bits), Division (16 ÷ 16 bits, 32 ÷ 32 bits) Multiplication and Accumulation (16 bits × 16 bits + 32 bits) Rotate, barrel shift, bit manipulation (set, reset, test, Boolean operation) etc. 			
I/O Port	CMOS I/O	3 (P00/INTP10, P01/P02/INTP9, P40/TOOL0)			
	CMOS input	1 (P137/INTP2)			
	N-ch open-drain I/O (6V tolerance)	3 (P60/SCL/INTP0, P61/SDA/INTP1, P62/INTP7)			
Timer	16-bit timer	4 channels (TAU: 4 channels)			
	Watchdog timer	1 channel			
	Real time clock	1 channel			
	12-bit interval timer	1 channel			
Serial	UART	1 channel			
interface	Simplified I ² C	1 channel			
	I ² C	1 channel			
Vector	Internal	32			
interrupt source	External	6			
Reset		Internal reset by watchdog timer Internal reset by illegal instruction execution ^{Note} internal reset by RAM parity error internal reset by illegal moment access			
Power-on-reset circuit		Power-on-reset: 1.51 ± 0.04 V Power-down-reset: 1.50 ± 0.04 V			
Voltage detector		2.04 V to 4.06 V (10 stages)			
On-chip d	lebug function	Support	Support		
On-onlp debug function		- septon			

Note The illegal instruction execution is generated when instruction code FFH is executed. Reset by the illegal instruction execution is not issued by emulation with the in-circuit emulator or on-chip debug emulator.

		2/2)
Item	Description	
Sigma-delta A/D converter	18-bit resolution (sigma-delta method)	
	Battery Cell voltage	
	• Thermistor sensor port with on-chip pull-up 10 k Ω resistor: 1 channel	
	 On-chip simple temperature sensor (temperature range: -40 to 85 °C) 	
	 Internal reference and supply voltage 	
Battery cell voltage and temperature (AN	Battery Cell voltage detection	
port voltage) detection circuit	Over voltage (Overcharge voltage)	
	Under voltage (Overdischarge voltage)	
	Temperature (AN port voltage) detection	
	Charge/Discharge Over temperature	
	Charge/Discharge Under temperature	
Current integration circuit	1 channel:18-bit resolution	
Current integration circuit for impedance measurement	1 channel:15-bit resolution	
Overcurrent detection circuit and wakeup	Discharge short-circuit current detection	
current detection circuit	Discharge overcurrent detection	
	Charge overcurrent detection,	
	Wakeup current detection (discharge and charge)	
Overcurrent detection circuit and wakeup	Battery Cell voltage detection	
current detection circuit	Overvoltage detection	
	Undervoltage detection	
Simple temperature sensor	1 channel	
Charge/Discharge FET control circuit	Low Side N-ch MOSFET driver for charge control (C-FET)	
	Low Side N-ch MOSFET driver for discharge control (D-FET)	
Charger connect detection circuit	Charger connect detection	
AFE On-chip oscillator	2.097 MHz (TYP.)	
AFE low speed On-chip oscillator	131.072 kHz (TYP.)	
AFE Timer	2 channels	
	AFE Timer A (setting range: 125 ms to 64 s)	
	AFE Timer B (setting range: 61 us to 2 s)	
Power supply voltage	VDD = 2.0 to 5.5 V	
Operation ambient temperature	-40 to 85 °C	
Package	16 pin plastic WLBGA([Size] 1.871 mm x 2.478 mm (TYP.), 0.5 mm pitch)	

2.2 Pin Configuration

Bottom view

Top view

2.3 Block Diagram

Caution This example of a peripheral circuit does not guarantee the operation of this device. Evaluate the operation adequately with actual applications, and then determine the circuits and constants.

 $\label{eq:Remark} \begin{tabular}{ll} \begin{tabular}{ll} Remark \\ \begin{tabular}{ll} It is recommended to connect to VCHG pin to P- terminal via a 200 Ω resistor. \end{tabular}$

CHAPTER 3. PIN FUNCTIONS

3.1 Pin Identification

No.	Name	Туре	Description
A-1	P00/INTP10/SCL00	DIO	Port0 / External Interrupt Input / Simplified I ² C Bus clock I/O
A-3	P01/P02/INTP9/TXD0/ RXD0/SDA00	DIO	Port0 / External Interrupt Input / Serial data of UART I/O / Simplified I 2 C Bus data I/O
A-5	ISENS1	AIN	Current sense input for FET side
A-7	ISENS0	AIN	Current sense input for cell minus side
B-2	CFOUT	DOUT	CFET gate voltage output
B-4	VCHG	Р	CFET source voltage(P-) input
B-6	AN0	AIN	Thermistor reference voltage output
B-8	VBAT	AIN	Battery voltage input
C-1	P61/SDA/INTP1	DIO	Port6 / I ² C Bus data I/O / External Interrupt Input
C-3	P62/INTP7	DIO	Port6 / External Interrupt Input / Interrupt output (N-ch open-drain)
C-5	P40/TOOL0	DIO	Port4 / Data I/O for flash memory programmer/debugger.
C-7	VSS	Р	Ground
D-2	P60/SCL/INTP0	DIO	Port6 / I ² C Bus clock I/O / External Interrupt Input
D-4	DFOUT	DOUT	DFET gate voltage output
D-6	P137/INTP2	DIN	Port13 / External Interrupt Input
D-8	VDD	Р	Power supply input

- P: power DIO: digital I/O DIN: digital inp
- DIN: digital input DOUT: digital output
- AIN: analog input

3.2 Pin Functions

3.2.1 Pin type and alternate functions

Function name	Pin Type	I/O	After Reset Release	Alternate Function	Function
P00	7-1-7	I/O	Input port	INTP10/SCL00	Port 0.
P01/P02	7-1-7-1	I/O	On-chip-pull-up on	INTP9/TXD0/RXD0/SDA00	3-bit I/O port. Input/output can be specified in 1-bit unit.
P40	7-1-3	I/O	Input port On-chip-pull-up on	TOOL0	Port 4. 1-bit I/O port. Input/output can be specified in 1-bit unit. Use of an on-chip pull-up resistor can be specified by a software setting at input port.
P60	12-1-2	I/O	Input port	INTP0/SCL	Port 6.
P61	12-1-2		On-chip-pull-up on INTP1/SDA	INTP1/SDA	3-bit I/O port.
P62	12-1-2			INTP7	Input/output can be specified in 1-bit unit. Output of P60 to P62 can be set to N-ch open- drain output (6.0 V tolerance).
P137	2-1-2	Input	Input port	INTP2	Port 13. 1-bit input-only port.

3.2.2 External Pin Functions

Category	Pin name	I/O	Function
Power supply	VDD	_	Power supply input Apply power supply voltage to VDD pin from a charger or battery.
	VSS	-	Ground input Connect the negative input terminal of lithium-ion battery
	VCHG	-	Ground input for CFOUT Connect the negative input terminal of battery pack
TOOL0	TOOL0 Note	Input	Data I/O for flash memory programmer/debugger. Connect to the VDD via an external $1 \mbox{k} \Omega$ pull-up resistor in the on-chip debug mode
I ² C-BUS interface	SCL	I/O	Serial clock I/O pin of serial interface IICA0
(IICA0)	SDA	I/O	Serial data I/O pin of serial interface IICA0
I ² C-BUS interface	SCL00	I/O	Serial clock I/O pin of serial interface IIC00 (Simplified I ² C)
(IIC00)	SDA00	I/O	Serial data I/O pin of serial interface IIC00 (Simplified I ² C)
Serial interface	TXD0	Output	Serial data output of UART0
(UART0)	RXD0	Input	Serial data input of UART0
A/D converter	AN0	Input	A/D converter analog input
Current integration circuit and overcurrent detection circuit	ISENS0, ISENS1	Input	Analog input for current integration circuit and over current detection circuit
External interrupt input	INTP0	Input	Interrupt request input pin
	INTP1		
	INTP2		
	INTP7		
	INTP9		
	INTP10		
Battery voltage detection circuit	VBAT	Input	The positive input terminal of lithium-ion battery
MOSFET control	CFOUT	Output	Control signal for low side charge N-ch MOSFET
	DFOUT	Output	Control signal for low side discharge N-ch MOSFET

Note After reset release, the connection between P40/TOOL0 and P01/P02 pin and the operating mode are as follows.

P40/TOOL0 P01/P02		Operation Mode		
VDD	- Normal operation mode			
Vee	VDD	Flash memory programming mode		
v 55	VSS	SMBus Boot programming mode		

3.3 Unused Pins Connection

Table 3-2 Unused Pins connection

Pin Name	Recommended Connection of Unused Pins
P00-P02	Input: Independently connect to VDD via a resistor, or leave open.
	Output: Leave open.
P40/TOOL0	Input: Independently connect to VDD via a resistor, or leave open.
	Output: Leave open.
P60-P62	Input: Leave open.
	Output: Leave open.
P137	Input: Independently connect to VDD or VSS via a resistor.
AN0	Leave open.
DFOUT	Leave open.
CFOUT	Leave open.
VBAT	Connect to VDD via a resistor.
ISENS1, ISENS0	Connect to VSS.

3.4 Pin Block Diagram

Figure 3-1 Pin Block Diagram of Pin type 2-1-2

Remark Refer to 3.2.1 Pin type and alternate functions.

Figure 3-2 Pin Block Diagram of Pin type 7-1-3

Remark Refer to 3.2.1 Pin type and alternate functions.

Figure 3-3 Pin Block Diagram of Pin type 7-1-7

Figure 3-4 Pin Block Diagram of Pin type 7-1-7-1

Figure 3-6 Pin Block Diagram of VBAT Pin

Figure 3-7 Pin Block Diagram of AN0 Pin

Figure 3-8 Pin Block Diagram of ISENS0 and ISENS1 Pin

CHAPTER 4. ANALOG FRONT END FUNCTIONS

4.1 Overview

Table 4-1 shows the AFE function.

Table 4-1	AFE	functions

Item	Description
Sigma-delta A/D converter	18-bit resolution (sigma-delta method)
	Battery Cell voltage
	 Thermistor sensor port with on-chip pull-up 10kΩ resistor: 1 channel
	On-chip simple temperature sensor (temperature range: -40 to 85 °C)
	Internal reference and supply voltage
Battery cell voltage and temperature (AN port	Battery Cell voltage detection
voltage) detection circuit	Over voltage (Overcharge voltage)
	Under voltage (Overdischarge voltage)
	Temperature (AN port voltage) detection
	Charge/Discharge Over temperature
	Charge/Discharge Under temperature
Current integration circuit	1 channel:18-bit resolution
Current integration circuit for impedance	1 channel:15-bit resolution
measurement	
Overcurrent detection circuit and wakeup current	Discharge short-circuit current detection
detection circuit	Discharge overcurrent detection
	Charge overcurrent detection
	Wakeup current detection (discharge and charge)
Overvoltage/Undervoltage detection circuit	Battery Cell voltage detection
	Overvoltage detection
	Undervoltage detection
Simple temperature sensor	1 channel
Charge/Discharge MOSFET control circuit	Low Side N-ch MOSFET driver for charge control (C-FET)
	Low Side N-ch MOSFET driver for discharge control (D-FET)
Charger connect detection circuit	Charger connect detection
AFE On-chip oscillator	2.097 MHz (TYP.)
AFE Low speed on-chip oscillator	131.072 kHz (TYP.)
AFE Timer	2 channels
	AFE Timer A (setting range: 125 ms to 64 s)
	AFE Timer B (setting range: 61 us to 2 s)

4.2 AFE Operation Mode

Figure 4-1 shows AFE state transition diagram and overview of each mode is described in 4.2.1 to 4.2.6.

4.2.1 Power ON (MCU reset release)

AFE normal mode transition starts when MCU reset is released.

4.2.2 Normal Operation Mode

Normal Operation Mode represents the fully operational mode. ADC measurement can be performed in this mode. Both AFE low-speed on-chip oscillator and AFE on-chip oscillator operate. The AFE on-chip oscillator is selected as the AFE main clock. This is the highest current consumption mode of AFE.

4.2.3 Low Power Operation Mode 1

In **Low Power Operation Mode 1**, power consumption is reduced by stopping AFE on-chip oscillator. In this mode, the AFE low-speed on-chip oscillator is selected as the AFE main clock.

4.2.4 Low Power Operation Mode 2

In **Low Power Operation Mode 2**, power consumption is reduced by stopping AFE on-chip oscillator and AFE low-speed on-chip oscillator. In this mode, the MCU low-speed on-chip oscillator is selected as the AFE main clock. In this mode, circuit other than the Discharge short-circuit current detection, the discharge overcurrent detection, charge wakeup current detection and undervoltage detection are prohibited.

4.2.5 Power down Mode

In this mode, all AFE circuits except charger connect detection circuits are under shutdown. AFE registers except trimming registers are initialized. MCU is working and its interrupt is operable.

4.2.6 Shutdown Mode

The lowest power mode that this device supports. All MCU and AFE circuits except charger connect detection circuits are under shutdown condition in this mode.

4.2.7 Operating Blocks of AFE

Table 4-2 shows list of blocks that can be operated in each mode.

Block	Normal Operation Mode	Low Power Operation Mode 1	Low Power Operation Mode 2	Power down Mode	Shutdown Mode
Sigma delta A/D Converter	Available	Unavailable	Unavailable	Unavailable	Unavailable
Current integration circuit	Available	Available	Unavailable	Unavailable	Unavailable
Overcurrent detection circuit Wakeup current detection circuit	Available	Available	Available Note 1	Unavailable	Unavailable
Overvoltage / Undervoltage detection circuit	Available	Available	Available ^{Note 2}	Unavailable	Unavailable
AFE Timer	Available	Available	Available	Unavailable	Unavailable
Charger Detection	Available	Available	Available	Available	Available

Table 4-2 Operating Blocks of AFE

 Note 1.
 In Low Power Operation Mode 2, only Discharge short-circuit current detection circuit, Discharge overcurrent detection circuit, and Charge wakeup current detection circuit are available.

Note 2. In Low Power Operation Mode 2, only Undervoltage detection circuit is available.

4.3 AFE Clock Generator

The AFE clock generator generates the clock to be supplied to the AFE internal circuit.

The following three kinds of clock generators are selectable.

4.3.1 AFE On-chip Oscillator (AOCO)

This circuit oscillates a clock of $f_{IAH} = 2.097$ MHz (TYP.).

AFE on-chip oscillator can be controlled to enable or disable by register when it is not in use.

4.3.2 AFE Low-speed On-chip Oscillator (ALOCO)

This circuit oscillates a clock of $f_{IAL} = 131.072$ kHz (TYP.).

The AFE low-speed on-chip oscillator is turned on when using AFE.

4.3.3 MCU Low-speed On-chip Oscillator (LOCO)

This circuit oscillates a clock of $f_{IL} = 15$ kHz (TYP.).

RAA241200

4.4 Charge/Discharge MOSFET Control Circuit

Charge/Discharge MOSFET control circuit can drive the external charge N-ch MOSFET (charge FET) and discharge N-ch MOSFET (discharge FET). And, MOSFET status can be monitored.

4.5 Sigma-delta A/D Converter

The A/D converter comprises an 18-bit sigma-delta A/D converter.

The analog signal output by the multiplexer circuit of AFE can be selected as input channels.

Items	Performance
A/D Conversion method	Sigma-delta A/D Conversion method
Analog input voltage range	-0.1 V to 5.1 V
Operating clock	faad : 1.049 MHz
Resolution	18 bits max
Conversion accuracy	Integral non-linearity error: ±27 LSB
Multiplexer input channel	Refer to Table 4-4 Selection of A/D converter input channel.
A/D conversion start condition	Software trigger or Hardware trigger
Conversion rate per item	256 AD cycles : 0.25 ms mode
	512 AD cycles : 0.5 ms mode
	1024 AD cycles : 1 ms mode
	2048 AD cycles : 2 ms mode
	4096 AD cycles : 4 ms mode
	8192 AD cycles : 8 ms mode
	16384 AD cycles : 16 ms mode
	32768 AD cycles : 32 ms mode
	65536 AD cycles : 64 ms mode

Table 4-3 A/D converter performance

Table 4-4 Selection of A/D converter input channel

	Item	Input to ADC (+side)	Input to ADC (-side)
1	Offset Voltage	VSS pin	VSS pin
2	Battery Cell Voltage	VBAT pin	VSS pin
3	AN0 pin	AN0 pin	VSS pin
4	Internal Power supply for AN0 pin's pull-up	VREGpull	VSS pin
5	Internal Simple temperature sensor	Simple temperature sensor	VSS pin
6	Reference voltage for CC	VREF_CC	VSS pin
7	Reference voltage for AD	VREF_AD	VSS pin
8	MCU internal reference voltage	MCUREF	VSS pin
9	Internal Power supply for AD/CC	VREG_ADCC	VSS pin
10	VCHG	VCHG pin	VSS pin

Figure 4-2 Block diagram of A/D converter

4.6 Current Integration Circuit

This circuit can measure current value through current sensing resistor by digital conversion of voltage potential difference between both pin ends of current sensing resistor connected to ISENS1 pin and ISENS0 pin. Analog signals are input from ISENS1 pin and ISENS0 pin.

ltem	Performance
Conversion method	Sigma-delta A/D Conversion method
Analog input voltage range	-0.05 V to 0.05 V
Operating clock	facc : 131.072 kHz, 32.768 kHz, 8.192 kHz ^{Note}
Resolution	18 bits
Conversion accuracy	Integral non-linearity error: ±0.02 %FSR
Analog input pin	Potential difference between ISENS1 pin and ISENS0 pin
Conversion time per cycle	250 ms (32,768 (f _{ACC} =131.072 kHz) cycle)
	1000 ms (32,768 (f _{ACC=} 32.768 kHz) cycle)
	4000 ms (32,768 (f _{ACC=} 8.192 kHz) cycle)

Table 4-5 Current integration circuit performance

Note It varies by conversion time setting.

Figure 4-3 Current integration circuit block diagram

RAA241200

4.7 Current Integration Circuit for Impedance Measurement

This circuit can measure current value through current sensing resistor by digital conversion of voltage potential difference between both pin ends of current sensing resistor connected to ISENS1 pin and ISENS0 pin being synchronized with A/D conversion. Impedance value can be measured from the voltage value and current value to be synchronized with A/D conversion.

Analog signals are input from ISENS1 pin and ISENS0 pin.

Item	Perfor	mance
Conversion method	Sigma-delta A/D Conversion method	
Analog input voltage range	-0.05 V to 0.05 V	
Operating clock	f _{lack} : 131.072 kHz, 32.768 kHz	
Resolution	First order filter	Second order filter
	Conversion time 64 ms: 13 bits	Conversion time 64 ms: 15 bits
	Conversion time 32 ms: 12 bits	Conversion time 32 ms: 15 bits
	Conversion time 16 ms: 11 bits	Conversion time 16 ms: 15 bits
	Conversion time 8 ms: 10 bits	Conversion time 8 ms: 15 bits
	Conversion time 4 ms: 9 bits	Conversion time 4 ms: 15 bits
	Conversion time 2 ms: 8 bits	Conversion time 2 ms: 15 bits
	Conversion time 1 ms: 7 bits	Conversion time 1 ms: 14 bits
	Conversion time 0.5 ms: 6 bits	Conversion time 0.5 ms: 12 bits
	Conversion time 0.25 ms: 5 bits	Conversion time 0.25 ms: 8 bits
Analog input pin	Potential difference between ISENS1 pin	and ISENS0 pin
Conversion time per cycle	0.25 ms, 0.5 ms, 1 ms, 2 ms, 4 ms, 8 ms	, 16 ms, 32 ms, 64 ms

Table 4-6 Current integration circuit for impedance measurement performance

Figure 4-4 Current integration circuit for impedance measurement block diagram

4.8 Overcurrent Detection and Wakeup Current Detection Circuit

The overcurrent detection circuit detects overcurrent such as short-circuit current that flows through the detection resistor connected between pins ISENS1 and ISENS0, and turns off the battery pack charge/discharge control MOSFET to stop charging/discharging. The overcurrent detection circuit incorporates discharge short-circuit current circuit, discharge short-circuit current circuit, discharge overcurrent circuit, and charge overcurrent circuit, for which detection voltage and detection time can be set independently.

In addition, the overcurrent detection circuit also incorporates a wakeup current detection circuit to generate an interrupt in power down mode where the current integration circuit is disabled when a battery is charging or discharging.

item		Contents
Analog input pin	ISENS1, VSS (Discharge short circuit)	
	ISENS1, ISENS0 (Other than above)	
Operating clock	Discharge short-circuit current detection	facd : 32.768 kHz
		fı∟ : 15 kHz
	Discharge overcurrent detection	facd : 32.768 kHz
		fı∟ : 15 kHz
	Charge overcurrent detection	facd : 32.768 kHz
	Discharge wakeup current detection	facd : 32.768 kHz
	Charge wakeup current detection	facd : 32.768 kHz
		fı∟ : 15 kHz
Detection voltage Setting	Discharge short-circuit current detection	24 mV to 216 mV (12 mV)
range (setting interval)	Discharge overcurrent detection	3 mV to 31.2 mV (0.3 mV)
	Charge overcurrent detection	-25.2 mV to -3 mV (0.3 mV)
	Discharge wakeup current detection	3 mV to 31.2 mV (0.3 mV)
	Charge wakeup current detection	-31.2 mV to -3 mV (0.3 mV)
Detection time Setting	Discharge short-circuit current detection	f _{ACD} : 0 us to 916 us (61 us)
range (setting interval)		f _{IL} : 0 us to 1005 us (67 us)
	Discharge overcurrent detection	f _{ACD} : 0.122 ms to 31.25 ms (0.122 ms)
		f _{IL} : 0.133 ms to 34.1 ms (0.133 ms)
	Charge overcurrent detection	0.122 ms to 31.25 ms (0.122 ms)
	Discharge wakeup current detection	3.91 ms to 62.56 ms (3.91 ms)
	Charge wakeup current detection	3.91 ms to 62.56 ms (3.91 ms)

Table 4-7 Overcurrent detection and wakeup current detection circuit benormance	Table 4-7 Overcurrent detection	and Wakeup	current detection	circuit performance
---	---------------------------------	------------	-------------------	---------------------

RAA241200

4.9 Overvoltage / Undervoltage Detection Circuit

Overvoltage detection circuit can detect voltage potential difference between VDD pin and VSS pin and control charge MOSFET. And undervoltage detection circuit can detect voltage potential difference between VDD pin and VSS pin and control discharge MOSFET.

item	Contents		
Analog input pin	VDD, VSS		
Operating clock	Overvoltage detection	fiah, fial	
	Undervoltage detection	fiah, fial, fil	
Detection voltage Setting	Overvoltage detection	4300 mV to 4800 mV (5 mV)	
range (setting interval)	Undervoltage detection	2200 mV to 3000 mV (50 mV)	
Detection delay time	Overvoltage detection	400 ms to 1000 ms (200 ms)	
Setting range (setting interval)	Undervoltage detection	20 ms, 96 ms, 128 ms, 144 ms	
Release hysteresis	Overvoltage detection	100 mV to 400 mV (100 mV)	
voltage Setting range (Setting interval)	Undervoltage detection	100 mV to 500 mV (100 mV)	

Table 4-8 Overvoltage / Undervoltage detection circuit performance

Figure 4-6 Overvoltage / Undervoltage detection circuit block diagram

4.10 AFE Timer

AFE Timer is a timer for time measurement with on-chip two channel timers (AFE Timer A and AFE Timer B).

These are composed of re-load register and down counter, and arranged at the same AFE address.

Table 4-9 AFE Timer performance

Item	Contents
Operation	Count a count source
Count source	fatm : 32.768 kHz or fatm/2
Interrupt	when counter underflows
Setting	AFE Timer A: 125 ms to 64 s
	AFE Timer B: 61 us to 2 s

Figure 4-7 AFE Timer block diagram

RAA241200

4.11 Battery cell voltage and Temperature (AN port Voltage and Simple Temperature Sensor) Detection Circuit

Battery cell voltage and temperature (AN port voltage) detection circuit detects following factors individually.

- Over/Under voltage of battery cell (Cell voltage).
- Charge/Discharge over temperature (AN port voltage and Simple temperature sensor).
- Charge/Discharge under temperature (AN port voltage and Simple temperature sensor).

Battery cell voltage, AN port voltage and Simple temperature sensor are measured by A/D converter. Then, the measurement result is compared with setting value of each register by digital comparator. When over/under voltage and over/under temperature are detected by digital comparator, interrupt signal is generated and appropriate charge/discharge MOSFET is shut off.

Items	Performance
Voltage detection method	Sigma-delta A/D conversion and digital comparator method
Monitor items	Battery cell voltage input VBAT pin to VSS pin
	Thermistor sensor pin with on-chip pull-up 10 $k\Omega$ resistor: AN0 pin
Voltage detection items	Over voltage of battery cell voltage
	Under voltage of battery cell voltage
	Charge/discharge over temperature
	(Monitoring AN0 voltage and Simple temperature sensor)
	Charge/discharge under temperature
	(Monitoring AN0 voltage and Simple temperature sensor)
A/D conversion start condition	Hardware trigger
Voltage detection start condition	Hardware trigger
Voltage detection threshold range	0000H to FFFFH
Voltage detection delay time	1 to 15 time (1 time step)

Table 4-10 Battery cell voltage and temperature (AN port voltage) detection circuit performance

Figure 4-8 Battery cell voltage and temperature (AN port voltage) detection circuit block diagram

4.12 Charger Connect Detection Circuit

The VCHG pin detects the falling edge of the node voltage and assert the charger detection interrupt.

Figure 4-9 Charger Connect detection circuit block diagram

CHAPTER 5. ELECTRICAL SPECIFICATIONS

Caution This product has an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.

5.1 Absolute Maximum Ratings

Absolute Maximum Ratings

Parameter	Symbols		Conditions	Ratings	Unit
Supply voltage	VDD	VDD		-0.5 to +6.5	V
	GND	VSS		-0.5 to 0.3	V
Input voltage	VI1	P00, P01/F	P02, P40 /TOOL0, P137	-0.3 to (VDD+0.3) Note 1	V
	VI2 Note2	P60/SCL		-0.3 to +6.5	V
		P61/SDA			
		P62			
	Vıз	VCHG		VDD-6.5 to VDD+0.3	V
	VIN-L	AN0, ISENS0, ISENS1		-0.3 to +2.0	V
	V _{IN-H}	VBAT		VDD-0.3 to VDD+0.3	V
Output voltage	Vo1	P00, P01/F	P02, P40/TOOL0, DFOUT	-0.3 to (VDD +0.3) Note 1	V
	Vo2 Note2	P60/SCL, P61/SDA, P62		-0.3 to 6.5	V
	Vo3 Note2	CFOUT		-0.3 to (VDD +0.3) Note 1	V
High-level output current	Іон	Per pin	P00, P01/P02, P40/TOOL0, CFOUT Note2, DFOUT	-40	mA
		Total of all pins	P00, P01/P02, P40/TOOL0 CFOUT Note2, DFOUT	-70	mA
Low-level output current	lol	Per pin	P00, P01/P02, P40/TOOL0, CFOUT ^{Note2} , DFOUT, P60/SCL ^{Note2} , P61/SDA ^{Note2} , P62 ^{Note2}	+40	mA
		Total of all pins	P00, P01/P02, P40/TOOL0, CFOUT Note2, DFOUT, P60/SCL Note2, P61/SDA Note2, P62 Note2	+70	mA
Operating ambient Temperature	Та			-40 to +85	°C
Storage temperature	Tstg			-65 to +150	°C

Note 1. Must be 6.5 V or lower.

Note 2. GND level is VCHG pin voltage.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark 1. Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins. **Remark 2.** VSS: Reference voltage.

5.2 Power supply voltage condition

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply	VDD		2.0	-	5.5	V
	GND	VSS	-	0.0	-	V

5.3 Supply current characteristics

$(1 \land = 40 \ (0 \ 100 \ 0, 2.0 \ 0 = 100 \ = 0.0 \ 0, 100 \ = 0.0 \ 0, 0.0 \ 0, 0.0 \ = 0.0 \ 0, 0.0 \ $
--

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
	Shutdown mode current	ISDL	VDD ≤ 2.0 V	-	0.1	1.0	uA
			VCHG = VDD				
	Sleep mode current 1	ISLP1	MCU operation mode: STOP mode	-	10.0	15.0	uA
			AFE operation mode: Low Power Operation				
			Mode 2 (AOCO, ALOCO = OFF)				
			CD (SCD, DOCP) = ON				
			CD (COCP, CWU, DWU) = OFF				
			CC = OFF				
			AD = OFF				
			UVP = ON				
			OVP = OFF				
			CFET = ON, DFET = ON				
	Sleep mode current 2	ISLP2	MCU operation mode: STOP mode	-	320	-	uA
<r></r>			AFE operation mode: Normal Operation Mode				
			(AOCO, ALOCO = ON)				
			CD = ALL ON				
			CC = ON				
			AD = ON				
			UVP = ON				
			OVP = ON				
			CFET = ON, DFET = ON				
	Normal mode current	Ілом	MCU operation mode: LS (Low-Speed main)	-	2.0	3.0	mA
<r></r>			mode, fHOCO = 8 MHz				
			AFE operation mode: Normal Operation Mode				
			(AOCO, ALOCO = ON)				
			CD = ALL ON				
			AD = ON				
			CC = ON				
			UVP = ON				
			OVP = ON				
			CFET = ON, DFET = ON				

Caution After trimming.

5.4 Oscillator Characteristics

5.4.1 On-chip oscillator characteristics

 $(T_A = -40 \text{ to } +85 \text{ °C}, 2.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{VSS} = \text{VCHG} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency Note 1, 2	fін		1	-	8	MHz
High-speed on-chip oscillator clock frequency accuracy			-1.5	-	+1.5	%
Low-speed on-chip oscillator clock frequency	fı∟		-	15	-	kHz
Low-speed on-chip oscillator clock frequency accuracy			-15	-	+15	%
AFE on-chip oscillator clock frequency	fiaн		-	2.097	-	MHz
AFE on-chip oscillator clock frequency accuracy			-2	-	2	%
AFE on-chip oscillator clock frequency			-	-	(50)	us
stabilization wait time						
AFE Low-speed on-chip oscillator clock frequency	fial		-	131.072	-	kHz
AFE Low-speed on-chip oscillator clock frequency accuracy			-5	-	+5	%
AFE Low-speed on-chip oscillator clock frequency stabilization wait time			-	-	(50)	us

Note 1. High-speed on-chip oscillator frequency is selected with bits 0 to 2 of the HOCODIV register.

Note 2. This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.

Caution After trimming.

Remark Values in parentheses are design value.

5.5 Pin characteristics

(T_A = -40 to +85 °C, 2.0 V ≤ VDD ≤ 5.5 V, VSS = VCHG = 0 V) Conditions MIN. TYP. MAX. Unit Parameter Symbol P00, P01/P02, P40/TOOL0, $2.0 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$ Output current, high Note 1 IOH1 -10.0 _ mΑ _ CFOUT Note4, DFOUT Note 2 Total of P00, P01/P02, $4.0~\text{V} \leq \text{VDD} \leq 5.5~\text{V}$ -55.0 mΑ P40/TOOL0, 2.7 V ≤ VDD < 4.0 V -10.0 mΑ --CFOUT Note4, DFOUT 2.0 V ≤ VDD < 2.7 V --5 mΑ (When duty \leq 70 % ^{Note 3})

Note 1. Value of current at which the device operation is guaranteed even if the current flows from the VDD pins to an output pin.

Note 2. Do not exceed the total current value.

Note 3. Specification under conditions where the duty factor \leq 70 %.

The output current value that has changed to the duty factor > 70 % the duty ratio can be calculated with the following expression (when changing the duty factor from 70 % to n %).

• Total output current of pins = $(IOH \times 0.7)/(n \times 0.01)$

<Example> Where n = 80 % and IOH = -10.0 mA

Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \approx -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor.

A current higher than the absolute maximum rating must not flow into one pin.

Note 4. GND level is VCHG.

(TA = -40 to +85 °C, 2.0 V \leq VDD \leq 5.5 V, VSS = VCHG = 0 V)

Parameter	Symbol	Condition	s	MIN.	TYP.	MAX.	Unit
Output current, low Note 1	IOL1	Per pin for P00, P01/P02, P40 CFOUT Note ⁴ , DFOUT		-	-	20.0 Note 2	mA
		Per pin for P60-P62		-	-	15.0 Note 2	mA
		Total of P00, P01/P02, P40	4.0 V ≤ VDD ≤ 5.5 V	-	-	70.0	mA
		P60/SCL Note 4	2.7 V ≤ VDD < 4.0 V	-	-	15.0	mA
		P61/SDA Note 4 P62 Note 4 CFOUT Note 4 DFOUT (When duty \leq 70 % Note 3)	2.0 V ≤ VDD < 2.7 V	-	-	9.0	mA
		Total of all pins (When duty \leq 70 % ^{Note 3})		-	-	150.0	mA

Note 1. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the VSS pins.

Note 2. Do not exceed the total current value.

Note 3. Specification under conditions where the duty factor \leq 70 %.

The output current value that has changed to the duty factor > 70 % the duty ratio can be calculated with the following expression (when changing the duty factor from 70 % to n %).

- Total output current of pins = $(IOL \times 0.7) / (n \times 0.01)$
- <Example> Where n = 80 % and IOL = 10.0 mA

Total output current of pins = $(10.0 \times 0.7) / (80 \times 0.01) \approx 8.7 \text{ mA}$

However, the current that is allowed to flow into one pin does not vary depending on the duty factor.

A current higher than the absolute maximum rating must not flow into one pin.

Note 4. GND level is VCHG.

Parameter	Symbol	Conditio	MIN.	TYP.	MAX.	Unit	
Input voltage, high	VIH1	P00, P01/P02, P40/TOOL0 Normal input buffer P60 to P62 (TTL input buffer)		0.8 VDD	-	VDD	V
	VIH2			1.26 Note	-	VDD	V
	Viнз	P137	P137		-	VDD	V
Input voltage, low	VIL1	P00, P01/P02, P40/TOOL0	Normal input buffer	-		0.2 VDD	V
	VIL2	P60 to P62 (TTL input buffer)		0	-	0.54 Note	V
	VIL3	P137		0	-	0.2 VDD	V

 $(T_A = -40 \text{ to } +85 \text{ °C}, 2.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{VSS} = \text{VCHG} = 0 \text{ V})$

Note GND level is VCHG.

Remark 1. Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Remark 2. Values in parentheses are design value.

(4/5)

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Output voltage, high	Voh1	P00, P01/P02, P40	4.0 V ≤ VDD ≤ 5.5 V,	VDD - 1.5	-	-	V
		CFOUT Note	IOH1 = -10.0 mA				
		DFOUT	4.0 V ≤ VDD ≤ 5.5 V,	VDD - 0.7	-	-	V
			IOH1 = -3.0 mA				
			2.0 V ≤ VDD ≤ 5.5 V,	VDD - 0.5	-	-	V
			IOH1 = -1.5 mA				
Output voltage, low	VOL1	P00, P01/P02, P40	4.0 V ≤ VDD ≤ 5.5 V,	-	-	1.3	V
		CFOUT Note	IOL1 = 20.0 mA				
		DFOUT	$4.0 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V},$	-	-	0.7	V
			IOL1 = 8.5 mA				
			$2.7 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V},$	-	-	0.6	V
			IOL1 = 3.0 mA				
			2.7 V ≤ VDD ≤ 5.5 V,	-	-	0.4	V
			IOL1 = 1.5 mA				
			$2.0 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V},$	-	-	0.4	V
			IOL1 = 0.6 mA				
	Vol2	P60 to P62	4.0 V ≤ VDD ≤ 5.5 V,	-	-	2.0	V
			IOL2 = 15.0 mA				
			$4.0 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V},$	-	-	0.4	V
			IOL2 = 5.0 mA				
			2.7 V ≤ VDD ≤ 5.5 V,	-	-	0.4	V
			IOL2 = 3.0 mA				
			2.0 V ≤ VDD ≤ 5.5 V,	-	-	0.2	V
			IOL2 = 2.0 mA				

Note GND level is VCHG and VCHG external resistor is 0 Ω .

(5/5)

$(T_A = -40 \text{ to } +85 \text{ °C}, 2.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{VSS} = \text{VCHG} = 0 \text{ V})$

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Input leakage	Іцн1	P00, P01/P02, P40	VI = VDD	-	-	1	uA
current, high	ILIH2	P137	VI = VDD	-	-	1	uA
	Ілнз	P60 to P62	VI = VDD	-	-	8	uA
Input leakage current, low	ILIL1	P00, P40	VI = VSS	-	-	-1	uA
	ILIL2	P137	VI = VSS	-	-	-1	uA
	ILIL3	P60 to P62	VI = VSS = VCHG	-	-	-1	uA
	ILIL4	P01/P02	VI = VSS	-	-	-7	uA
On-chip pull-up	Ru1	P40		10	20	100	kΩ
resistance	RUA	ANO		7.5	10	12.5	kΩ
	Ru2	P01/P02		0.8	1	1.2	MΩ

5.6 AC Characteristics

Parameter	Symbol	C	MIN.	TYP.	MAX.	Unit	
nstruction cycle Tcy minimum instruction		Main system clock (fmain) operation	LS (low-speed main) mode	0.125	-	1	us
execution time)		In the self-programming mode	LS (low-speed main) mode	0.125	-	1	us
Interrupt input high- level width, low-level width	tinth, tintl	INTP0 to INTP2 INTP7, INTP9, INTP10	2.0 V ≤ VDD ≤ 5.5 V	1	-	-	us

 $(T_A = -40 \text{ to } +85 \text{ °C}, 2.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{VSS} = \text{VCHG} = 0 \text{ V})$

AC Timing Test Points

Interrupt Request Input Timing

5.7 Peripheral circuit characteristics

AC Timing Test Points

5.7.1 Serial array unit

(1) During communication at same potential (UART mode)

 $(T_A = -40 \text{ to } +85 \text{ °C}, 2.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{VSS} = \text{VCHG} = 0 \text{ V})$

Parameter	Symbol	Conditions	LS (low-speed	l main) mode	Unit
			MIN.	MAX.	
Transfer rate Note			-	fмск/6	bps
		Theoretical value of	-	1.3	Mbps
		the maximum transfer			
		rate $f_{MCK} = f_{CLK}$			

Note Transfer rate in the SNOOZE mode is only 4800 bps.

Caution Select the normal input buffer for the RXDq pin and normal output mode for the TXDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remark 1. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 5, 14)

Remark 2. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00 to 03, 10 to 13))

(2)	During	communication a	at same	potential	(simplified	I ² C mode)
-----	--------	-----------------	---------	-----------	-------------	------------------------

(T _A = -40 to +85 °C, 2.0 V	≤ VDD ≤ 5.5 \	/, VSS = VCHG = 0 V)			
Parameter	Symbol	Conditions	LS (low-spee	d main) mode	Unit
			MIN.	MAX.	
SCLr clock frequency	fscL	2.0 V ≤ VDD ≤ 5.5 V, Cb = 50 pF, Rb = 2.7 kΩ	-	400 ^{Note 1}	kHz
Hold time when SCLr = "L"	t∟ow	2.0 V ≤ VDD ≤ 5.5 V, Cb = 50 pF, Rb = 2.7 kΩ	1150	-	ns
Hold time when SCLr = "H"	thigh	2.0 V ≤ VDD ≤ 5.5 V, Cb = 50 pF, Rb = 2.7 kΩ	1150	-	ns
Data setup time (reception)	tsu: dat	2.0 V ≤ VDD ≤ 5.5 V, Cb = 50 pF, Rb = 2.7 kΩ	1/fMCK + 145 Note 2	-	ns
Data hold time (transmission)	thd: dat	2.0 V ≤ VDD ≤ 5.5 V, Cb = 50 pF, Rb = 2.7 kΩ	0	305	ns

Note 1. The value must also be equal to or less than fmck/4.

Note 2. Set the fmck value not to over the hold time of SCLr = "L" and SCLr = "H".

Select the normal input buffer and the N-ch open-drain output (VDD tolerance) mode for the SDAr pin and the normal output Caution mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).

Simplified I²C mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

Remark 1. Rb[Ω]: Communication line (SDAr) pull-up resistance, Cb[F]: Communication line (SDAr, SCLr) load capacitance Remark 2. r: IIC number (r = 00, 10), g: PIM number (g = 10, 13), h: POM number (h = 11, 14)

Remark 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), mn = 00 to 03, 10 to 13)

5.7.2 Serial interface IICA

(1) I²C standard mode

(T_A = -40 to +85 °C, 2.0 V ≤ VDD ≤ 5.5 V, VSS = VCHG = 0 V)

Parameter	Symbol	Conditions	LS (low-speed	LS (low-speed main) mode	
			MIN.	MAX.	
SCL clock frequency	fsc∟	Standard mode:	0	100	kHz
		$f_{CLK} \geq 1 \ MHz$			
Setup time of restart condition	tsu: sta		4.7	-	us
Hold time Note 1	thd: STA		4.0	-	us
Hold time when SCL = "L"	tLOW		4.7	-	us
Hold time when SCL = "H"	tнigн		4.0	-	us
Data setup time (reception)	tsu: dat		250	-	ns
Data hold time (transmission) Note 2	thd: dat		0	3.45	us
Setup time of stop condition	tsu: sto		4.0	-	us
Bus-free time	t BUF		4.7	-	us

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.

Note 2. The maximum value (MAX.) of tHD: DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

RAA241200

(2) I²C fast mode

$(T_A = -40 \text{ to } +85 \text{ °C}, 2.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{VSS} = \text{VCHG} = 0 \text{ V})$

Parameter	Symbol	Conditions	LS (low-spee	d main) mode	Unit
			MIN.	MAX.	
SCL clock frequency	fsc∟	Fast mode:	0	400	kHz
		$f_{CLK} \geq 3.5 \; MHz$			
Setup time of restart condition	tsu: STA		0.6	-	us
Hold time ^{Note1}	thd: STA		0.6	-	us
Hold time when SCL = "L"	tLOW		1.3	-	us
Hold time when SCL = "H"	tнigн		0.6	-	us
Data setup time (reception)	tsu: dat		100	-	ns
Data hold time (transmission) Note2	thd: dat		0	0.9	us
Setup time of stop condition	tsu: sto		0.6	-	us
Bus-free time	t BUF		1.3	-	us

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.

Note 2. The maximum value (MAX.) of tHD: DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

IICA serial transfer timing

Remark n = 0

5.7.3 POR circuit characteristics

(T_A = -40 to +85 °C, VSS = VCHG = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power on/down reset	VPOR	Voltage threshold on VDD rising	1.47	1.51	1.55	V
threshold	Vpdr	Voltage threshold on VDD falling Note 1	1.46	1.50	1.54	V
Minimum pulse width Note 2	TPW		300	-	-	us

Note 1. However, when the operating voltage falls while the LVD is off, enter STOP mode, or enable the reset status using the external reset pin before the voltage falls below the operating voltage range shown in 5.6 AC Characteristics.

Note 2. Minimum time required for a POR reset when VDD is below VPDR. This is also the minimum time required for a POR reset when VDD exceeds VPOR after VDD is below 0.7 V during STOP mode or while the main system clock is stopped by setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

5.7.4 LVD circuit characteristics

Reset Mode

 $(T_A = -40 \text{ to } +85 \text{ °C}, 2.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{VSS} = \text{VCHG} = 0 \text{ V})$

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Voltage	Supply voltage level	VLVIO	Power supply rise time	3.98	4.06	4.14	V
detection			Power supply fall time	3.90	3.98	4.06	V
threshold		VLVI1	Power supply rise time	3.68	3.75	3.82	V
			Power supply fall time	3.60	3.67	3.74	V
		VLVI2	Power supply rise time	3.07	3.13	3.19	V
			Power supply fall time	3.00	3.06	3.12	V
		Vlvi3	Power supply rise time	2.96	3.02	3.08	V
			Power supply fall time	2.90	2.96	3.02	V
		VLVI4	Power supply rise time	2.86	2.92	2.97	V
			Power supply fall time	2.80	2.86	2.91	V
		VLVI5	Power supply rise time	2.76	2.81	2.87	V
			Power supply fall time	2.70	2.75	2.81	V
		VLVI6	Power supply rise time	2.66	2.71	2.76	V
			Power supply fall time	2.60	2.65	2.70	V
		VLVI7	Power supply rise time	2.56	2.61	2.66	V
			Power supply fall time	2.50	2.55	2.60	V
		VLVI8	Power supply rise time	2.45	2.50	2.55	V
			Power supply fall time	2.40	2.45	2.50	V
		VLVI9	Power supply rise time	2.05	2.09	2.13	V
			Power supply fall time	2.00	2.04	2.08	V
Minimum puls	se width	tLW		300	-	-	us
Detection del	ay time	tld		-	-	300	us

5.7.5 Sigma-delta A/D converter characteristics

(T_A = -40 to +85 °C, 2.0 V ≤ VDD ≤ 5.5 V, VSS = VCHG = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution Note1	RESAD	Conversion time = 64 ms	-	-	18	bit
		Conversion time = 32 ms	-	-	17	bit
		Conversion time = 16 ms	-	-	16	bit
		Conversion time = 8 ms	-	-	15	bit
		Conversion time = 4 ms	-	-	14	bit
		Conversion time = 2 ms	-	-	13	bit
		Conversion time = 1 ms	-	-	12	bit
		Conversion time = 0.5 ms	-	-	11	bit
		Conversion time = 0.25 ms	-	-	10	bit
Input voltage range	VINAD		-0.1	-	5.1	V
Input voltage range VBAT	VRA1		2.0	-	5.1	V
Input voltage range AN0	VRA2		0.0	-	1.72	V
Integral nonlinearity	INLAD	15-bit resolution	-27	-	27	LSB
		End fit				
Conversion result	ADZERO	VIN = 0 V	-	3240	-	LSB
in zero input		15-bit resolution		Note 2		
Temperature dependency	dTADZERO	VIN = 0 V	-0.24	-	+0.24	LSB/°C
In zero input		15-bit resolution				
Conversion result	ADFS	VIN = 5.1 V	-	30964	-	LSB
in full-scale input		15-bit resolution		Note 2		
Temperature dependency	dTADFS	VIN = 5.1 V	-0.24	-	+0.24	LSB/°C
in full-scale input		15-bit resolution				
Input resistance	RINAD		-	(1.0)	-	MΩ
During cell voltage	ERRCELL1	$T_A = +25 \text{ °C}$ After calibration	-	-	(±5)	mV
measurement error		$2.5 \text{ V} \leq \text{VDD} = \text{VBAT} \leq 5.0 \text{ V}$				
	ERRCELL2	$T_A = -25$ to +85 °C After calibration	-	-	(±10)	mV
		$2.5 \text{ V} \leq \text{VDD} = \text{VBAT} \leq 5.0 \text{ V}$				

Note 1. AD conversion result is output in 18 bits.

Note 2. This value is before subtracting the offset voltage.

Caution 1. Except for During cell voltage measurement error (ERRCELL), these parameters are sigma-delta A/D converter circuit characteristics.

Caution 2. Calibration is needed to keep high accuracy in system.

Remark Values in parentheses are design value.

5.7.6 On-chip simple temperature sensor

$(T_A = -40 \text{ to } +85 \text{ °C}, 2.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{ VSS} = \text{VCHG} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature coefficient	FVTMPS	Temperature sensor that depends on	-	-1.6	-	mV/°C
		the temperature				

RAA241200

5.7.7 Current integration circuit characteristics

 $(T_A = -40 \text{ to } +85 \text{ °C}, 2.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{VSS} = \text{VCHG} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	RESCC		-	18	-	bit
Conversion time	тсс		250	1000	4000	ms
Input voltage range	VINCC	ISENS1 to ISENS0	-50	-	+50	mV
Integral nonlinearity	INLCC	End fit	-	-	0.02	%FSR
Input resistance	RINCC	ISENS0, ISENS1	-	(1.0)	-	MΩ
Current measurement	ERRCURR	After calibration	-	-	(±50)	uV
error		-25 °C ≤ T _A ≤ 85 °C				
		$2.5 \text{ V} \leq \text{VDD} \leq 5.0 \text{ V}$				

Caution 1. Except for Current measurement error (ERRCURR), these parameters are current integration circuit characteristics.

Caution 2. Calibration is needed to keep high accuracy in system.

Remark Values in parentheses are design value.

5.7.8 Overcurrent detection / wakeup current detection circuit characteristics

 $(T_A = -40 \text{ to } +85 \text{ °C}, 2.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{VSS} = \text{VCHG} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Discharge short-circuit current detection setting voltage step	dSVSC	24 mV to 240 mV	-	12	-	mV
Discharge short-circuit current detection voltage error	dVSC	24 mV to 240 mV	-	-	±12	mV
Discharge overcurrent detection setting voltage step	dSVDOC	3 mV to 31.2 mV	-	0.3	-	mV
Discharge overcurrent detection voltage error Note 1	dVDOC	3 mV to 31.2 mV	-	-	±1	mV
Charge overcurrent detection setting voltage step	dSVCOC	-3 mV to -25.2 mV	-	0.3	-	mV
Charge overcurrent detection voltage error Note 1	dVCOC	-3 mV to -25.2 mV	-	-	±1	mV
Discharge wakeup current detection setting voltage step	dSVDWU	3 mV to 31.2 mV		0.3	-	mV
Discharge wakeup current detection voltage error Note 1	dVDWU	3 mV to 31.2 mV	-	-	±1	mV
Charge wakeup current detection setting voltage step	dSVCWU	-31.2 mV to -3 mV	-	0.3	-	mV
Charge wakeup current detection voltage error Note 1	dVCWU	-31.2 mV to -3 mV	-	-	±1	mV
Discharge short-circuit current detection time error Note 4	dTSC	AOCO, ALOCO 0 us to 916 us (61 us step)	-	-	30.5	us
		LOCO 0 us to 1005 us (67 us step)	-	-	67	us
Discharge overcurrent detection time error Note 4	dTDOC	AOCO, ALOCO 0.122 ms to 31.25 ms ^{Note 3} (0.122 ms step)	-	-	30.5	us
		LOCO 0.266 ms to 34.1 ms (0.133 ms step)	-	-	67	us
Charge overcurrent detection time error Note 2	dTCOC	0.122 ms to 31.25 ms (0.122 ms step)	-	-	30.5	us
Discharge wakeup current detection time error Note 2	dTDWU	3.91 ms to 62.56 ms (3.91 ms step)	-	-	3.91	ms
Charge wakeup current detection time Error ^{Note 2, 4}	dTCWU	AOCO, ALOCO, LOCO 3.91 ms to 62.56 ms (3.91 ms step)	-	-	3.91	ms

Note 1. This is the specification after zero-calibration is executed.

Note 2. These values are when AOCO and ALOCO are selected.

Note 3. These ranges and steps are added 9% when using fil clock.

Note 4. The frequency error of AFE On-chip oscillator (AOCO and ALOCO) and MCU On-chip oscillator (LOCO) are excluded from these detection time error.

<R>

5.7.9 Overvoltage / Undervoltage detection circuit characteristics

 $(T_A = -40 \text{ to } +85 \text{ °C}, 2.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{VSS} = \text{VCHG} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Under voltage detection range	VUVP	50 mV step	2200	2500	3000	mV
Under voltage detection accuracy	VUVP_ACC	T _A = 25 °C 2500 mV setting	-50	-	+50	mV
		T _A = -40 to +85 °C	-100	-	+100	mV
Under voltage release hysteresis voltage	VUVP_HYS	100 mV step	100	-	500	mV
Under voltage detection delay	tUVP		-	20	-	ms
			-	96	-	ms
			-	128	-	ms
			-	144	-	ms
Under voltage release delay	tUVP_REL	Auto release function	-	1	-	ms
Over voltage detection range	VOVP	5 mV step	4300	4460	4800	mV
Over voltage detection accuracy	VOVP_ACC	T _A = 25 °C 4460 mV setting	-10	-	10	mV
		T _A = -40 to +85 °C	-50	-	50	mV
Over voltage release hysteresis voltage	VOVP_HYS	100 mV step	100	-	400	mV
Over voltage detection delay	tOVP		-	400	-	ms
			-	600	-	ms
			-	800	-	ms
			-	1000	-	ms
Over voltage release delay	tOVP_REL	Auto release function	-	8	-	ms

5.7.10 Charger connect detection circuit characteristics

 $(T_A = -40 \text{ to } +85 \text{ °C}, 2.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{ VSS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Charger detection voltage	VCHG_DET		VDD - 1.5	VDD - 1.1	VDD -0.5	V
Internal resistance	RCHG		-	10	-	MΩ

RAA241200

5.8 RAM Data Retention Characteristics

 $(T_A = -40 \text{ to } +85 \text{ °C}, 2.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{VSS} = \text{VCHG} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	Vdddr		1.46 ^{Note}	-	5.5	V

Note The value depends on the POR detection voltage. When the voltage drops, the RAM data is retained before a POR reset is effected, but RAM data is not retained when a POR reset is effected.

5.9 Flash Memory Programming Characteristics

 $(T_A = -40 \text{ to } +85 \text{ °C}, 2.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{VSS} = \text{VCHG} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
System clock frequency	fc∟ĸ		1	-	8	MHz
Number of code flash rewrites Note 1, 2, 3	Cerwr	Retained for 20 years TA = 85 °C	1,000	-	-	Times
Number of data flash rewrites Note 1, 2, 3		Retained for 1 year T _A = 25 °C	-	1,000,000	-	
		Retained for 5 years TA = 85 °C	100,000	-	-	
		Retained for 20 years TA = 85 °C	10,000	-	-	

Note 1. 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.

Note 2. When using flash memory programmer and Renesas Electronics self-programming library.

Note 3. These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

5.10 Dedicated Flash Memory Programmer Communication

 $(T_A = -40 \text{ to } +85 \text{ °C}, 2.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{VSS} = \text{VCHG} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200	-	1,000,000	bps

RAA241200

5.11 Timing of Entry to Flash Memory Programming Modes

 $(T_A = -40 \text{ to } +85 \text{ °C}, 2.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{VSS} = \text{VCHG} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
How long from when an external reset ends until the initial communication settings are specified	t SUINIT	POR and LVD reset must end before the external reset ends.	-	-	100	ms
How long from when the TOOL0 pin is placed at the low level until an external reset end	ts∪	POR and LVD reset must end before the external reset ends.	10	-	-	us
How long the TOOL0 pin must be kept at the low level after an external reset end (excluding the processing time of the firmware to control the flash memory)	thd	POR and LVD reset must end before the external reset ends.	1	-	-	ms

<1> The low level is input to the TOOL0 pin.

<2> The external reset ends (POR and LVD reset must end before the external reset ends).

<3> The TOOL0 pin is set to the high level.

<4> Setting of the flash memory programming mode by TOOL0 pin and complete the baud rate setting.

Remark	tSUINIT:	The segment shows that it is necessary to finish specifying the initial communication settings within 100 ms from		
		when the external resets end.		
	tSU:	How long from when the TOOL0 pin is placed at the low level until a pin reset ends		
	tHD:	How long to keep the TOOL0 pin at the low level from when the external resets end		
		(excluding the processing time of the firmware to control the flash memory)		

CHAPTER 6. PACKAGE OUTLINE

6.1 PACKAGE OUTLINE

Caution This product has some assembly sites.

RAA241200

6.2 Recommended Land Pattern Dimension

REVISION HISTORY

Rev.	Date	Page	Description			
1.00	Jun. 15, 2021		First release			
1.01	Jul. 08, 2021	Chap	Chapter 5. ELECTRICAL SPECIFICATION			
		p.32	Updated description for 5.5 Pin characteristics			
		p.41	Updated condition for 5.7.5 Sigma-delta A/D converter characteristics			
		p.42	Updated condition for 5.7.7 Current integration circuit characteristics			
1.02	Aug. 23, 2022	Chap	Chapter 5. ELECTRICAL SPECIFICATION			
		p.28	Updated condition for 5.3 Supply current characteristics (Sleep mode current 2)			
		p.28	Updated condition for 5.3 Supply current characteristics (Normal mode current)			
		p.44	Added condition of VUVP_ACC for 5.7.9 Overvoltage / Undervoltage detection circuit			
			characteristics			

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products

covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products. 1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power is supplied until the power reaches the level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (Max.) and V_{IH} (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (Max.) and V_{IH} (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export, manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
- 5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- 6. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION ("Vulnerability Issues"). RENESAS ELECTRONICS DISCLAIMS ANY AND ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
- 8. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,

Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/.

(Rev.5.0-1 October 2020)