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Chapter 1 User's Manuals 

Please read the following user’s manuals along with this document. 

Manual Name Document Number 

CC-RL Compiler R20UT3123EJ0106 
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Chapter 2 Changes 

This section describes changes to CC-RL from V1.05.00 to V1.06.00. 

The features of the latter can only be used if the compiler is registered under the professional license. 

They are indicated by [Professional edition] from here on. 
 

2.1 C99 standard 
To select conformance of the language specifications with the C99 standard, the -lang and -strict_std 
compiler options have been added. 
Note that this version of the compiler does not support variable-length arrays and complex types, and 
some standard library functions. 
 
 
 
When the -lang=c option is specified, the language specifications conform with the C90 standard. 
When the -lang=c99 option is specified, the language specifications conform with the C99 standard. 
 
 
 
This option selects processing of the C source program in strict accordance with the language standard 
(C90 or C99) specified with the -lang option. Error and warning messages are output in response to 
code that violates the given standard. 
V1.05.00 and earlier versions have the -ansi option to select the processing of C source programs in 
strict accordance with the C90 standard; however, in V1.06.00 and later versions, the -strict_std option 
is used. If the -ansi option is specified in V1.06.00 and later versions, it is automatically converted to the 
-strict_std option for input to the compiler. 

 
2.2 Improvements to the feature for checking source code against 

MISRA-C:2012 rules [Professional edition] 
The following rule numbers have been added to those which can be designated as arguments of the 
-misra2012 option for use with the C99 standard, which selects checking by the compiler of source 
code against the specified MISRA-C:2012 rules. 

[Mandatory rules] 17.6 

[Required rules] 8.14 , 9.4 , 9.5, 13.1, 18.7, 21.11 

[Advisory rules] 21.12 

-lang={c|c99} 

-strict_std 
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The following are the numbers of MISRA-C:2012 rules against which each revision of compilers can 
check source code for compliance. 
 
Rule classification (number 
of rules in the standard) 

V1.02.00 V1.03.00 V1.04.00 V1.05.00 V1.06.00 

Mandatory rules (16) 3 3 4 6 7 

Required rules (108) 31 58 76 80 86 

Advisory rules (32) 7 21 23 25 26 

Total number of rules (156) 41 82 103 111 119 

 

2.3 Feature for detecting illegal indirect function calls [Professional edition] 
A feature for detecting indirect function calls to illegal addresses has been added. 

The compiler checks the branch destination addresses of indirect calls of functions through the 
following steps and calls an error function if it detects a problem. 

1. The compiler automatically extracts functions which may be indirectly called in the C-source 
program and the linker consolidates the information to generate a list of functions in the executable 
files.  

2. The compiler inserts processing for calling the “__control_flow_integrity” checking function 
immediately before calls of indirect functions it finds in analyzing the C-source program. The branch 
destination address of the call of the indirect function is passed as an argument to this checking 
function.  

3. Within the checking function at the time of execution, the branch destination address given as the 
argument is checked to see if it is included in the list of functions. If the address is not included, it is 
regarded as an illegal indirect function call, so the “__control_flow_chk_fail” error function will be 
called.  

 
The following C-source program shows an example of an illegal indirect function call.  
 
 
 
 
 
 
 
 

extern void func1(void); 
extern void func2(void); 
 
void (*fp)(void) = &func1; 
 
void main(void) { 

(*fp)();          // Function func1 is indirectly called. 
func2();         // Function func2 is directly called. 

} 
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Since the address of func1 is acquired in the fourth line, the call of func1 is regarded as indirect and 
added to the list of functions. 
Since a function pointer fp is used to indirectly call func1 in the seventh line, the compiler acquires the 
value of fp immediately before this call and generates code to call the “__control_flow_integrity” 
checking function by specifying the acquired value as an argument. Within the checking function, a 
check of whether the value specified by the argument (the address of func1 in the case of normal 
operation) is included in the list of functions is conducted and subsequent operation is as follows. 

- If the list includes the value, the compiler continues to process the C-source program.  
- If the list does not include the value, the “__control_flow_chk_fail” error function is called. 

Illegal indirect function calls can thus be detected in the way described above. 
Since the call of func2 is direct, the eighth line is not detected. 
Specify the following options to enable this feature. 

 
 
 
 

This option selects the generation of code for detecting illegal indirect function calls. 
 
 
 
 

This option selects the generation of a list of functions for use in detecting illegal indirect function calls. 
 
The following linker options have also been added in association with this feature. 
 -cfi_add_func 

This option adds the symbols or addresses of functions which are specified as arguments to the 
list of functions. 

 -cfi_ignore_module 
This option selects the non-addition of the addresses of functions included in a file which is 
specified as an argument to the list of functions. 

 -show=cfi 
This option selects the output of the contents of the list of functions to the list file which is output 
in response to specifying the -list option. 

 
2.4 Specifying more than one vector table address for a hardware interrupt 

handler 
#pragma interrupt can be used to specify more than one vector table address for a single function. 

 
 
 

-control_flow_integrity 

[compile option] 

-cfi 

[linker option] 
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2.5 Accessing indirect references by pointers in 1-byte units 

To support the porting of code written for the CA78K0R compiler, the CC-RL compiler newly supports 
the -unaligned_pointer_for_ca78k0r option that leads to the generation of code for indirect reference 
with 1-byte access to types without the volatile qualifier. 

 
2.6 Enhanced optimization 

For V1.06.00, optimization has been further enhanced on points (1) to (2), listed and described below. 
 

(1) Handling of bitwise operations 

Handling of bitwise operations for data having a narrow bit width has been enhanced. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

<Example of source code> 
void func(unsigned char *t, unsigned char i, unsigned char j, unsigned char v) { 
 unsigned char *p = &t[i & 0xff]; 
 unsigned char m = j >> (i & 0xf); 
 *p = v ? m : ~m; 
} 

<Code generated by V1.05.00 (1/2) > 
_func: 
 .STACK _func = 8 
 push bc 
 push hl 
 movw hl, ax 
 mov a, b 
 mov [sp+0x00], a 
 mov a, c 
 and a, #0x0F 
 mov b, a 
 mov a, [sp+0x00] 
 shrw ax, 8+0x00000 
 cmp0 b 
 bz $.BB@LABEL@1_2 
.BB@LABEL@1_1: ; entry 
 shrw ax, 0x01 
 dec b 
 bnz $.BB@LABEL@1_1 
.BB@LABEL@1_2: ; entry 
 movw [sp+0x00], ax  
 clrb a  

<Code generated by V1.06.00 (1/2) > 
_func: 
 .STACK _func = 8 
 push bc 
 push hl 
 movw hl, ax 
 mov a, b 
 mov [sp+0x00], a 
 mov a, c 
 and a, #0x0F 
 mov b, a 
 mov a, [sp+0x00] 
 shrw ax, 8+0x00000 
 cmp0 b 
 bz $.BB@LABEL@1_2 
.BB@LABEL@1_1: ; entry 
 shrw ax, 0x01 
 dec b 
 bnz $.BB@LABEL@1_1 
.BB@LABEL@1_2: ; entry 
 movw bc, ax 
 mov a, e 

<Example> 
#pragma  interrupt  func(vect=2, vect=8) 
or 

#pragma  interrupt  func(vect=2) 
#pragma  interrupt  func(vect=8) 
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(2) Alias analysis 

Optimization by alias analysis has been enhanced. Alias analysis was implemented in V1.05.00 and is 
enabled by specifying the -Oalias=ansi option. 
In V1.05.00, alias analysis is disabled when the -Omerge_files option is specified. However, in V1.06.00, 
it is enabled even when the -Omerge_files option is specified. 
When optimization by alias analysis is enabled, the effect is the same as in V1.05.00. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

<Code generated by V1.05.00 (2/2) > 
 movw bc, ax 
 mov a, e 
 cmp0 a 
 bnz $.BB@LABEL@1_4 
.BB@LABEL@1_3: ; bb22 
 movw ax, [sp+0x00]  
 mov a, #0xFF  
 xch a, x  
 xor a, #0xFF 
 xch a, x  
 movw bc, ax  
.BB@LABEL@1_4: ; bb25 
 mov a, [sp+0x02] 
 shrw ax, 8+0x00000 
 addw ax, hl 
 movw de, ax 
 mov a, c 
 mov [de], a 
 addw sp, #0x04 
 ret 

<Code generated by V1.06.00 (2/2) > 
 cmp0 a 
 mov a, c  
 mov b, a  
 bnz $.BB@LABEL@1_4 
.BB@LABEL@1_3: ; bb22 
 xor a, #0xFF 
 mov b, a  
.BB@LABEL@1_4: ; bb25 
 mov a, [sp+0x02] 
 shrw ax, 8+0x00000 
 addw ax, hl 
 movw de, ax 
 mov a, b 
 mov [de], a 
 addw sp, #0x04 
 ret 

<Example of source code> 
struct tag1 { 
  char member1; 
  int  member2; 
  long long member3; 
} StructArray[2]; 
 
struct tag2 { 
  short index0; 
  short index1; 
  short index2; 
}; 
     
void func(struct tag2 *p) { 
  StructArray[p->index1].member1 = 1; 
  StructArray[p->index1].member2 = 2; 
  StructArray[p->index1].member3 = 3; 
} 
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Although the address of StructArray[p->index1] would be calculated three times in V1.04.00, it is only calculated 

once in V1.06.00. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.7 Upper limits on usable amounts of memory 
The amounts of memory on the host computer that are usable by the CC-RL compiler have been 
expanded. 
 2 Gbytes with the 32-bit and 64-bit OSs [V1.05.00 and earlier versions]  
 3 Gbytes with the 32-bit OS and 4 Gbytes with the 64-bit OS [V1.06.00 and later versions]  

 
2.8 Control of messages 

The -change_message compiler option, which is used to change warning messages to error messages, 
has been added to avoid oversights in the form of warning messages not being noticed. 
In addition, the -no_warning_num compiler option that controls the output of warning messages can 
now specify messages with numbers from 0510000. 
 W0520000 to W0559999 can be controlled. [V1.05.00 and earlier versions] 
 W0510000 to W0559999 can be controlled. [V1.06.00 and later versions] 

 
2.9 Fixing of the record length of the Intel HEX file 

The -fix_record_length_and_align option, which causes the output addresses of Intel HEX files (.hex) 

<Code generated by V1.04.00> 
 movw de, ax 
 movw bc, #0x000C 
 movw ax, [de+0x02] 
 mulh 
 movw bc, ax 
 mov LOWW(_StructArray)[bc], #0x01 
 movw ax, [de+0x02] 
 movw bc, #0x000C 
 mulh 
 addw ax, #LOWW(_StructArray+0x00002) 
 movw hl, ax 
 onew ax 
 incw ax 
 movw [hl], ax 
 movw ax, [de+0x02] 
 movw bc, #0x000C 
 mulh 
 addw ax, #LOWW(_StructArray+0x00004) 
 movw de, ax 
 clrw ax 
 movw [de+0x06], ax 
 movw [de+0x04], ax 
 movw [de+0x02], ax 
 movw ax, #0x0003 
 movw [de], ax 
 ret 

 

<Code generated by V1.06.00> 
 push hl 
 movw de, ax 
 movw bc, #0x000C 
 movw ax, [de+0x02] 
 mulh 
 addw ax, #LOWW(_StructArray) 
 movw [sp+0x00], ax 
 movw de, ax 
 movw ax, de 
 mov [de+0x00], #0x01 
 incw ax 
 incw ax 
 movw de, ax 
 onew ax 
 incw ax 
 movw [de], ax 
 movw ax, [sp+0x00] 
 addw ax, #0x0004 
 movw de, ax 
 clrw ax 
 movw [de+0x06], ax 
 movw [de+0x04], ax 
 movw [de+0x02], ax 
 movw ax, #0x0003 
 movw [de], ax 
 pop hl 
 ret 
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and Motorola S-record files (.mot) to have a specified alignment and be output with a fixed record length, 
has been added. Since with this option a HEX file is always output with a fixed record length, it can 
improve the efficiency of work such as comparing HEX files. 
The -byte_count option has also been extended to allow its specification along with the -form=stype 
option. 
 

2.10 Addition of a message at linkage 
In V1.05.00 and earlier versions, the warning code W0561322 was output if sections with different 
alignment conditions but the same names were linked. In V1.06.00, warning code W0561331 is output 
when sections with the same names but different alignment conditions, with the condition for one not 
being a multiple of that of the other, are linked. 
W0561322: Section alignment mismatch : " section" 
W0561331：Section alignment is not adjusted : " section " 
In both cases, specification of the greater value of the alignment condition is enabled and the sections 
are linked. 
W0561322 can be ignored since it does not indicate a problem with operation. However, since 
W0561331 indicates a possible problem with operation, the alignment conditions must be reviewed. 

 
2.11 Rectified points for caution 

The points for caution on the following four items no longer apply. For details, refer to Tool News. 
- Relational Operators in the Control Expressions of switch Statements (CCRL#015) 
- Using a goto statement to move to a label in a switch statement (CCRL#016) 
- When a function has multiple arguments and also has assignment or comparison between formal 

arguments (CCRL#017) 
- Loop statements with loop-control variables in which constants are used as the condition for ending 

the loop (CCRL#018) 
 
2.12 Other changes and improvements 

The generation of an internal error in response to building has been corrected. 
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Chapter 3 Points for Caution 

Please refer to the user's manual for caution regarding V1.06.00 of the CC-RL compiler. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
All trademarks and registered trademarks are the property of their respective owners. 
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Page Summary 
Rev.1.00 Dec 20,2017  First Edition issued 
Rev.1.01 Jan 16,2021 9 The error in rectified points for caution is corrected. 
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