
 

To our customers, 
 

Old Company Name in Catalogs and Other Documents 

 
On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology 

Corporation, and Renesas Electronics Corporation took over all the business of both 
companies. Therefore, although the old company name remains in this document, it is a valid 
Renesas Electronics document. We appreciate your understanding. 
 

Renesas Electronics website: http://www.renesas.com 
 
 
 
 

April 1st, 2010 
Renesas Electronics Corporation 

 
 
 
 
 
Issued by: Renesas Electronics Corporation (http://www.renesas.com) 

Send any inquiries to http://www.renesas.com/inquiry. 

 



Notice 
1. All information included in this document is current as of the date this document is issued. Such information, however, is 

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please 
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to 
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website. 

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights 
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.  
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights 
of Renesas Electronics or others. 

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. 
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of 

semiconductor products and application examples.  You are fully responsible for the incorporation of these circuits, software, 
and information in the design of your equipment.  Renesas Electronics assumes no responsibility for any losses incurred by 
you or third parties arising from the use of these circuits, software, or information. 

5. When exporting the products or technology described in this document, you should comply with the applicable export control 
laws and regulations and follow the procedures required by such laws and regulations.  You should not use Renesas 
Electronics products or the technology described in this document for any purpose relating to military applications or use by 
the military, including but not limited to the development of weapons of mass destruction.  Renesas Electronics products and 
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited 
under any applicable domestic or foreign laws or regulations. 

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics 
does not warrant that such information is error free.  Renesas Electronics assumes no liability whatsoever for any damages 
incurred by you resulting from errors in or omissions from the information included herein. 

7. Renesas Electronics products are classified according to the following three quality grades:  “Standard”, “High Quality”, and 
“Specific”.  The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as 
indicated below.  You must check the quality grade of each Renesas Electronics product before using it in a particular 
application.  You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior 
written consent of Renesas Electronics.  Further, you may not use any Renesas Electronics product for any application for 
which it is not intended without the prior written consent of Renesas Electronics.  Renesas Electronics shall not be in any way 
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an 
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written 
consent of Renesas Electronics.  The quality grade of each Renesas Electronics product is “Standard” unless otherwise 
expressly specified in a Renesas Electronics data sheets or data books, etc. 

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual 
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots. 

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support. 

“Specific”:  Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or 
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare 
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life. 

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, 
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation 
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or 
damages arising out of the use of Renesas Electronics products beyond such specified ranges. 

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have 
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, 
Renesas Electronics products are not subject to radiation resistance design.  Please be sure to implement safety measures to 
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a 
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire 
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures.  Because 
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system 
manufactured by you. 

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental 
compatibility of each Renesas Electronics product.  Please use Renesas Electronics products in compliance with all applicable 
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS 
Directive.  Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with 
applicable laws and regulations. 

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas 
Electronics. 

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this 
document or Renesas Electronics products, or if you have any other inquiries. 

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries. 

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics. 



Application Note

µPD780988 Subseries

8-Bit Single-Chip Microcontrollers

µPD780982 µPD780982(A)

µPD780983 µPD780983(A)

µPD780984 µPD780984(A)

µPD780986 µPD780986(A)

µPD780988 µPD780988(A)

µPD78F0988A µPD78F0988A(A)

Document No. U16486EE1V1AN00 
Date Published January 2003 

  NEC Corporation 2003
Printed in Germany

3-Phase Brushless DC Motor Control



2  Application Note U16486EE1V1AN00

NOTES FOR CMOS DEVICES

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and

ultimately degrade the device operation.  Steps must be taken to stop generation of static electricity

as much as possible, and quickly dissipate it once, when it has occurred.  Environmental control

must be adequate.  When it is dry, humidifier should be used.  It is recommended to avoid using

insulators that easily build static electricity.  Semiconductor devices must be stored and transported

in an anti-static container, static shielding bag or conductive material.  All test and measurement

tools including work bench and floor should be grounded.  The operator should be grounded using

wrist strap.  Semiconductor devices must not be touched with bare hands.  Similar precautions need

to be taken for PW boards with semiconductor devices on it.

2 HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction.  If no connection is provided

to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence

causing malfunction.  CMOS devices behave differently than Bipolar or NMOS devices.  Input levels

of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry.  Each unused

pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of

being an output pin.  All handling related to the unused pins must be judged device by device and

related specifications governing the devices.

3 STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device.  Production process of MOS

does not define the initial operation status of the device.  Immediately after the power source is

turned ON, the devices with reset function have not yet been initialized.  Hence, power-on does

not guarantee out-pin levels, I/O settings or contents of registers.  Device is not initialized until the

reset signal is received.  Reset operation must be executed immediately after power-on for devices

having reset function.



3 Application Note U16486EE1V1AN00

• The information in this document is current as of 24.01, 2003. The information is subject to change
without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or
data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products
and/or types are available in every country. Please check with an NEC sales representative for
availability and additional information.

• No part of this document may be copied or reproduced in any form or by any means without prior
written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that
may appear in this document.

• NEC Electronics does not assume any liability for infringement of patents, copyrights or other
intellectual property rights of third parties by or arising from the use of NEC Electronics products
listed in this document or any other liability arising from the use of such NEC Electronics products.
No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual
property rights of NEC Electronics or others.

• Descriptions of circuits, software and other related information in this document are provided for
illustrative purposes in semiconductor product operation and application examples. The incorporation
of these circuits, software and information in the design of customer's equipment shall be done
under the full responsibility of customer. NEC Electronics no responsibility for any losses incurred by
customers or third parties arising from the use of these circuits, software and information. 

• While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics
products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated
entirely. To minimize risks of damage to property or injury (including death) to persons arising from
defects in NEC Electronics products, customers must incorporate sufficient safety measures in their
design, such as redundancy, fire-containment and anti-failure features.

• NEC Electronics products are classified into the following three quality grades: “Standard”, “Special”
and “Specific”.

The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-
designated “quality assurance program” for a specific application. The recommended applications of
NEC Electronics product depend on its quality grade, as indicated below. Customers must check the
quality grade of each NEC Electronics product before using it in a particular application.

"Standard": Computers, office equipment, communications equipment, test and measurement
equipment, audio and visual equipment, home electronic appliances, machine tools,
personal electronic equipment and industrial robots.

"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems,
anti-disaster systems, anti-crime systems, safety equipment and medical equipment 
(not specifically designed for life support).

"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, 
life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is “Standard” unless otherwise expressly specified in
NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in
applications not intended by NEC Electronics, they must contact NEC Electronics sales representative
in advance to determine NEC Electronics 's willingness to support a given application.

Notes: 1. " NEC Electronics" as used in this statement means NEC Electronics Corporation and 
also includes its majority-owned subsidiaries.

2. " NEC Electronics products" means any product developed or manufactured by or for
NEC Electronics (as defined above).

M8E 02.10



4  Application Note U16486EE1V1AN00

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC
product in your application, please contact the NEC office in your country to obtain a list of authorized
representatives and distributors. They will verify:

• Device availability

Ordering information

Product release schedule

Availability of related technical literature

Development environment specifications (for example, specifications for third-party tools and
components, host computers, power plugs, AC supply voltages, and so forth)

Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary
from country to country.

NEC Electronics Inc. (U.S.)
Santa Clara, California
Tel: 408-588-6000

800-366-9782
Fax: 408-588-6130

800-729-9288

NEC Electronics (Europe) GmbH
Duesseldorf, Germany
Tel: 0211-65 03 01
Fax: 0211-65 03 327

Sucursal en España
Madrid, Spain
Tel: 091- 504 27 87
Fax: 091- 504 28 60

Succursale Française
Vélizy-Villacoublay, France
Tel: 01-30-67 58 00
Fax: 01-30-67 58 99

NEC Electronics Hong Kong Ltd.
Hong Kong
Tel: 2886-9318
Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.
Seoul Branch
Seoul, Korea
Tel: 02-528-0303
Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.
Singapore
Tel: 65-6253-8311
Fax: 65-6250-3583

NEC Electronics Taiwan Ltd.
Taipei, Taiwan
Tel: 02-2719-2377
Fax: 02-2719-5951

NEC do Brasil S.A.
Electron Devices Division
Guarulhos, Brasil
Tel: 55-11-6465-6810
Fax: 55-11-6465-6829

Filiale Italiana
Milano, Italy
Tel: 02-66 75 41
Fax: 02-66 75 42 99

Branch The Netherlands
Eindhoven, The Netherlands
Tel: 040-244 58 45
Fax: 040-244 45 80

Branch Sweden
Taeby, Sweden
Tel: 08-63 80 820
Fax: 08-63 80 388

United Kingdom Branch
Milton Keynes, UK
Tel: 01908-691-133
Fax: 01908-670-290

•

•

•

•

•



Table of Contents

Chapter 1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.1 Abstract  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3 Overview of µPD78F0988A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Chapter 2 3-Phase BLDC Motor Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1 3-Phase BLDC Motor Basics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 3-Phase BLDC Motor Control Requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Chapter 3 System Design Concept  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1 System Concept. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 System Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Chapter 4 Hardware Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1 µPD78F0988A Configuration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Peripherals I/O Assignments  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3 16-Bit Timer Function  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.4 Inverter Control Timer Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.5 Real- Time Output Port Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.6 Interrupts Function  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Chapter 5 Software Process Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.1 Data Flow Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2 Initialization  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.3 Interval_Timer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.4 Key_Input, Menu, Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.5 Start Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.6 Speed Measurement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.7 PI-Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Chapter 6 Software Flow Charts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.1 Concept and Main Flow Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.2 Peripherals initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.3 Main Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.4 Interval Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.5 Speed Measurement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.6 Control Signal Generation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.7 PI-Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Chapter 7 Program Listing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5 Application Note U16486EE1V1AN00



6  Application Note U16486EE1V1AN00



List of Figures

Figure 2-1: 3-Phase BLDC motor with one pole pair permanent magnet ...................................... 13
Figure 2-2: Connection between the electrical and mechanical revolution of the motor................ 13
Figure 2-3: Three-Phase Inverter and the current flow.................................................................. 15
Figure 2-4: Output signal from the 3-Hall sensors included in the BLDC motor ............................ 16
Figure 3-1: Principal block diagram of the system configuration ................................................... 19
Figure 3-2: System Configuration with the peripherals of the µPD78F0988A ............................... 20
Figure 3-3: System topology and relationship between the control software 

and hardware of the system ........................................................................................ 20
Figure 4-1: Measurement Process of the 16-bit timer TM00 ......................................................... 25
Figure 4-2: 10-bit Inverter Control Timer Block Diagram ............................................................... 26
Figure 4-3: Operating timing of the inverter control timer TM7 ...................................................... 27
Figure 4-4: Block Diagram of the Real- Time Output Port RTP1................................................... 28
Figure 4-5: External interrupts signal flow synchronized with the Hall sensor signals 

of the BLDC motor....................................................................................................... 30
Figure 5-1: Principal Data Flow Diagram....................................................................................... 31
Figure 5-2: Initialization process .................................................................................................... 32
Figure 5-3: Start sequence ............................................................................................................ 34
Figure 6-1: Main Program Flowchart ............................................................................................. 37
Figure 6-2: Peripherals initialization............................................................................................... 38
Figure 6-3: Endless Loop function flow.......................................................................................... 39
Figure 6-4: Interval timer function flow........................................................................................... 40
Figure 6-5: Speed measurement flow............................................................................................ 41
Figure 6-6: Signal generation flow in synchronization with the rotor position 

of the BLDC motor....................................................................................................... 42
Figure 6-7: PI-Regulator function flow ........................................................................................... 43
7 Application Note U16486EE1V1AN00



8  Application Note U16486EE1V1AN00



List of Tables

Table 1-1: Functional Outline........................................................................................................... 12
Table 2-1: Hall sensor signal input codes........................................................................................ 16
Table 4-1: µPD78F0988A Peripheral I/O Assignment ..................................................................... 22
Table 4-2: Relationship between registers settings and output effects ........................................... 29
9 Application Note U16486EE1V1AN00



10  Application Note U16486EE1V1AN00



Chapter 1 Overview

1.1 Abstract

NEC’s µPD780988A Subseries microcontroller is specifically designed for motor control applications.
This Application Note serves as an example of 3-Phase BLDC motor control with Hall Signals by using
the NEC µPD78F0988A device. The concept of this application is based on a closed loop speed control
with Hall sensor signal mode.

1.2 Introduction

The requirements of the new generation equipment are growing rapidly. High performance, better effi-
ciency, reduced electromagnetic interference, higher flexibility and reduction of development time are
some of the requirements that must be achieved while at the same time reducing the system costs. The
BLDC motor technology combines lower cost with high reliability and high efficiency. Longer life,
because of no brushes, high starting torque, high no load speed and smaller energy losses are some of
the characteristics of the BLDC motor.
NEC offers the µPD780988x Subseries as a member of the low-cost, high performance 78K Family of
8-bit microcontrollers, designed specifically for midrange motor control applications. The device used in
this application note is the µPD78F0988A from the 780988x subseries.
The purpose of this application note is to help users understand the dedicated motor control peripherals
of the µPD780988 subseries by using a sample application. The software and hardware configurations
published here are just examples and are not intended for mass production.
11 Application Note U16486EE1V1AN00



Chapter 1 Overview
1.3 Overview of µPD78F0988A

Notes: 1. The capacity of the flash memory can be changed using the internal memory size select
register.

2. The capacity of the internal expansion RAM can be changed using the internal expansion
RAM size select register.

3. Standard quality grade products only.

Table 1-1: Functional Outline

Item Function

Internal 
memory

Flash memory 60 KBNote 1

High-speed RAM 1024 bytes

Expansion RAM 1024 bytes Note 2

Memory space 64 KB

General-purpose register 8 bits x 32 register (8 bits x 8 register x 4 banks)

Instruction cycle On-chip instruction execution time variable function system clock 8.38 MHz

Instruction set

16-bit operation

Multiply/divide (8 bits x 8 bits, 16 bits / 8 bits)

Bit manipulation (set, reset, test, Boolean operation)

BCD adjust, etc.

I/O ports

Total: 47

CMOS inputs: 8

CMOS I/O: 39

Real-time output ports
8 bits x 1 or 4 bits x 2

6 bits x 1 or 4 bits x 1

A/D converter 10-bit resolution x 8 channels

Serial interface
UART mode:                2 channels

3-Wire serial I/O mode: 1channel

Timer

16-bit timer/event counter:   2 channels

8-bit timer/event counter:     3 channels

10-bit inverter control timer: 1 channel

Watchdog timer:                1channel

Timer outputs
General-purpose outputs: 5

Inverter control outputs:    6

Vectored
interrupt
sources

Maskable Internal: 16, external 8

Non-maskable Internal:1

Software 1

Power supply voltage VDD = 4.0 to 5.0 V

Operating ambient temperature TA = -40 to +85°C

Package
64-pin plastic SDIPNote 3

64-pin plastic QFP and LQFP
12  Application Note U16486EE1V1AN00



Chapter 2 3-Phase BLDC Motor Basics

2.1 3-Phase BLDC Motor Basics

The properties and physical laws of the BLDC motor are almost similar to the DC machine. The struc-
ture of the BLDC motor is divided into two parts: The moving part is the rotor, represented by the per-
manent magnet, and the fixed part is the stator, represented by the phase windings of the magnetic
circuit. 

Figure 2-1: 3-Phase BLDC motor with one pole pair permanent magnet

The rotor is attracted to the electromagnetic field caused by the energized stator windings and starts to
rotate. With an appropriate electromagnetic rotating field on the stator, the rotor follows the electromag-
net poles and a rotation of the permanent magnet is created and maintained. There are two main char-
acteristics of a BLDC motor: The first is the EMF (electromotive force) of the motor, which is
proportional to its speed and the second is the synchronization between the stator flux and the perma-
nent magnet rotor flux. This fundamental action used in the BLDC motor generates the highest torque
of the motor. The synchronization of these two terms requires knowledge of the rotor position. The
number of the permanent magnet poles can vary. A greater number of poles create a greater torque for
the same current level. It defines also the ratio between electrical and mechanical revolution of the
motor, which is described in Figure 2-2. 

Figure 2-2: Connection between the electrical and mechanical revolution of the motor

N

S Permanent Magnet

  Phase
windings

Electrical revolution

Mechanical revolution

360e̊lectrical
13 Application Note U16486EE1V1AN00



Chapter 2 3-Phase BLDC Motor Basics
The mathematical relationship between the electrical and mechanical revolution is given with the equa-
tion (1). 

Where p is the pole number of the motor, ωE the electrical speed and ωM the motor speed. The BLDC
motor used in this Application has six pole pairs, thus with 12 poles. So the calculation is

This means that the electrical speed is six times faster as the mechanical speed of the motor, as shown
on Figure 2-2 above. In another words, the electrical supply to the motor has to rotate six times to pro-
duce one mechanical turn of the rotor. 

The rotor position, which is needed for the synchronization between the rotor and the rotating field, can
be estimated by two methods. The absolute position of the BLDC motor can be detected by implement-
ing 3 Hall sensors (sensor mode), or Back-EMF detection (sensorless mode). The motor used in this
application is equipped with the 3-Hall sensors, so that the absolute position can be determined to gen-
erate precise firing commands. Velocity feedback for the speed control loop is also provided.

The absence of the brushes in the BLDC motor requires electronic commutation to produce a rotating
field on the stator.

An external circuit, known as an Inverter circuit, provides this electronic commutation. The topology and
the function of the Inverter will be described in the next chapter.

The 3-phase BLDC motor used in this application has 3-phase coil configuration Y –connected. The
supply voltage is 24 V and max. current 5 A. 

ωE  =
p
2

× ωM (1)

ωE  = × ωM 6 (2)
14  Application Note U16486EE1V1AN00



Chapter 2 3-Phase BLDC Motor Basics
2.2 3-Phase BLDC Motor Control Requirements

As already mentioned, a 3-Phase Inverter performs the electronic commutation. The principal structure
of the 3-Phase inverter is shown below, in Figure 2-3.

Figure 2-3: Three-Phase Inverter and the current flow

The circuit contains 3 half bridges divided into high side and low side transistors. T1, T3 and T5 are the
high side and T2, T4 and T6 are the low side transistors of the circuit. The chosen current switching in
this application is soft chopping, because it allows control of the current and the rate of change of the
current with minimized current ripple. When using soft chopping two transistors in any one bridge
remains in the complementary state. This means that the low side transistor (e.g. T4) is left ON during
the phase supply to the motor and the high side transistor (e.g. T5 or T1) switches according to the
pulsed control signal. During each supply step, two from three phases of the motor are controlled in this
way. This method needs six PWM signals. The current flow during the six - step control is depicted in
Figure 2-3 above. 

Phase A

Phase B

Phase C

T5
T4

T5
T2

T3
T2

T3
T6

T1
T6

T1
T4

T5
T4

6-Step Control
On each step are the
pair wise transistors on

t

t

t

Phase A

Phase C

Phase B

DC Supply

T1

T2

T3

T4

T5

T6
15 Application Note U16486EE1V1AN00



Chapter 2 3-Phase BLDC Motor Basics
The synchronization between the rotor and the rotating field requires knowledge of the rotor position.
The BLDC motor used in this application has 3-Hall sensors implemented. The output signal flow of the
sensors, which describes the electrical rotor position, is shown in Figure 2-4.

Figure 2-4: Output signal from the 3-Hall sensors included in the BLDC motor

The Hall sensor signals supply the information needed for the synchronization between the rotor and
the rotating field and therefore the time points for the precise firing commands for the inverter to gener-
ate the rotating field.
With the three sensor signals from the motor, there are eight possible input code combinations as
shown in Table 2-1 bellow. Two of them are not valid for the rotor estimation and are usually caused by
an open or shorted sensor line. 

The sensors are placed electrically 1200 apart which equates to a 600 mechanical displacement for a
six pole motor. The signal flow for each electrical rotation is shown in Figure 2-4.

Table 2-1: Hall sensor signal input codes

Hall A Hall B Hall C

0 0 0

1 0 1

1 0 0

1 1 0

0 1 0

0 1 1

0 0 1

1 1 1

Phase APhase A

Phase CPhase C

Phase BPhase B

Hall AHall A

Hall CHall C
Hall BHall B

Level Hall xLevel Hall x

AA

BB

CC

ϕ / [°]120˚120˚ 360˚360˚
16  Application Note U16486EE1V1AN00



Chapter 2 3-Phase BLDC Motor Basics
BLDC motor control requirements are summarized below:

• Knowledge of the rotor position

• Mechanism to commutate the motor

For the closed-loop speed control of the motor there are two further requirements:

• Measurement of the motor speed and/or motor current

• PWM signal to control the motor speed and power.
17 Application Note U16486EE1V1AN00



[MEMO]
18  Application Note U16486EE1V1AN00



Chapter 3 System Design Concept

3.1 System Concept

Figure 3-1 shows the principal block diagram of the system concept for the BLDC motor control.

Figure 3-1: Principal block diagram of the system configuration

The µPD78F0988A processes the feedback from the sensor to control the motor driver that supplies the
3-phases of the BLDC motor. At the same time the speed of the BLDC motor is derived from the sensor
signals and used to provide velocity feedback for the closed speed loop. The actual motor speed is indi-
cated on the display. 

µPD78F0988A

Motor Driver BLDC
Motor

Hall Sensors

Display

Keys
19 Application Note U16486EE1V1AN00



Chapter 3 System Design Concept
3.2 System Configuration

Figure 3-2 shows the system configuration and the peripherals of the µPD78F0988A device used for
the BLDC motor control.

Figure 3-2: System Configuration with the peripherals of the µPD78F0988A

The rotor position information delivered from the Hall sensor of the BLDC motor is estimated with the 
3-external interrupts of the device. The speed of the motor is measured with the 16-bit timer TM0 and
the appropriate control signal for the BLDC motor is generated with the 10-bit inverter timer and the
Real-Time Port 1of the device. The System configuration shows how the requirements of the BLDC
motor control are fulfilled with the µPD78F0988A device. The function from each of the peripherals is
described in the next chapter. 
The system topology with the relationship between the hardware and software of the system is shown
in Figure 3-3.

Figure 3-3: System topology and relationship between the control software 
and hardware of the system

16-Bit Timer
TM00

EXT IRQ

EXT IRQ

EXT IRQ

Real-Time
Port 1

10-Bit
Inverter
Timer

µPD78F0988A

Motor
Driver

3-Phase
BLDC Motor

Hall
Sensor

A
B

C

I/O
P

or
ts

3x7 Segment LED x3
Display

Key 1 Key 2

Motor Driver
BLDC Motor

Ext. IRQ

Real-Time Por tInverter Timer

Phase Switch Control
Control
Signal

Output
Control Signal

Hall Signals
16-Bit Timer

ω

S/W
PI Regulator

Y

ω
Set

ω
Actual

∆ω
20  Application Note U16486EE1V1AN00



Chapter 4 Hardware Configuration

4.1 µPD78F0988A Configuration

The µPD78F0988A device is a member of the high performance 78K Family 8-bit microcontrollers,
designed specifically for mid-range motor control. The configuration of the device and the operating
environment used in this application is listed below:

• CPU: µPD78F0988A

• Operating clock: System clock 8.38 MHz (incoming 12 MHz)

• Operating Voltage: 5 V

• Internal ROM: 60 Kbytes

• Internal RAM: 2   Kbytes

• External expansion memory: not used.
21 Application Note U16486EE1V1AN00



Chapter 4 Hardware Configuration
4.2 Peripherals I/O Assignments

Table 4-1 lists all pins of the µPD78F0988A device and the ones that are used in this application are
described with their associated function.

Table 4-1: µPD78F0988A Peripheral I/O Assignment (1/2)

Pin No. Pin Name Mode setting Function

1 P50 Input Key Select

2 P51 Input SCK

3 P52 Input SI

4 P53 Output SO

5 P54 Input Key Select

6 P55 Input Speed measure

7 P56 Output Common Display

8 P57 Output Common Display

9 VSS0 Ground

10 VDD0 Supply Voltage

11 TO70 Output Phase A

12 TO71 Output Phase A

13 TO72 Output Phase B

14 TO73 Output Phase B

15 TO74 Output Phase C

16 TO75 Output Phase C

17 P20 Output Common Display

18 P21 Output Not used

19 P22 Output Not used

20 P23 Output Not used

21 P24 Output Not used

22 P25 Output Not used

23 P26 Output Not used

24 VDD1 Supply Voltage

25 AVSS Connect to VSS

26 P17 Output Not used

27 P16 Output Not used

28 P15 Output Not used

29 P14 Output Not used

30 P13 Output Not used

31 P12 Output Not used

32 P11 Output Not used

33 P10 Output Not used

34 AVREF Connect to VDD

35 AVDD Connect to VDD
22  Application Note U16486EE1V1AN00



Chapter 4 Hardware Configuration
Pin No. Pin Name Mode setting Function

36 RESET Input Reset Input

37 P02 Input Ext. IRQ Hall C

38 P03 Input Ext. IRQ Hall A

39 VPP Connect to VSS

40 X2 System Clock

41 X1 Input System Clock

42 VSS1 Ground

43 P00 Output Not used

44 P01 Output Not used

45 P30 Output Not used

46 P31 Output Not used

47 P32 Output Not used

48 P33 Output Not used

49 P34 Output Not used

50 P35 Output Not used

51 P36 Output Not used

52 P37 Output Not used

53 P64 Output Not used

54 P65 Output Not used

55 P66 Output Not used

56 P67 Output Not used

57 P40 Output Segment Display

58 P41 Output Segment Display

59 P42 Output Segment Display

60 P43 Output Segment Display

61 P44 Output Segment Display

62 P45 Output Segment Display

63 P46 Output Segment Display

64 P47 Output Segment Display

Table 4-1: µPD78F0988A Peripheral I/O Assignment (2/2)
23 Application Note U16486EE1V1AN00



Chapter 4 Hardware Configuration
4.3 16-Bit Timer Function

As shown in the explanation of the hardware, the speed of the BLDC motor is measured with using the
16-bit timer TM00 of the µPD78F0988A Device.
The timer has the following operating modes:

• Interval Timer
- Generates interrupt request at the preset time interval

• PPG mode
- Outputs a square wave who’s frequency and output pulse can be set freely

• Pulse width measurement
- Measures the pulse width of an external input signal

• External event counter
- Measures the number of pulses of an external input signal

• Square-Wave output
- Outputs a square wave with any selected frequency.

The pulse width measurement function of the timer was chosen to measure a motor speed that is in the
range of 600 rpm…4800 rpm (= 10 Hz…80 Hz). Calculation using equation 2 produces the range of the
hall sensor: 60 Hz…480 Hz. The count frequency of the timer, based on the hall sensor range, is set to
262 KHz.

The measurement process reacts to the rising edge of the input signal and calculates the time differ-
ence between the two rising edges of the input signal. The calculated difference is proportional to the
frequency of the input signal.

Figure 4-1 describes the principal flow of the motor speed measurement with the 16-bit timer TM00.
The values D1…D4 are the captured values in the CR000 capture register. The second register CR010
of the 16-bit timer is used as a compare register to detect the overflow of the timer during the measure-
ment that has to be taken into consideration for the motor speed calculation.
24  Application Note U16486EE1V1AN00



Chapter 4 Hardware Configuration
Figure 4-1: Measurement Process of the 16-bit timer TM00

D1

D2
D3

Input signal
Hall

t

t

(D2 - D1)x t

D4

216 216

( - D3 + D4)x t216

16-bit timer TM00

0 0
25 Application Note U16486EE1V1AN00



Chapter 4 Hardware Configuration
4.4 Inverter Control Timer Function

The inverter control timer TM7 is a 10-bit up/down counter that makes inverter control possible. It
includes an 8-bit dead-time generation timer and allows generating of waveforms with non-overlapping
active level. It generates six pair wise inverted PWM signals. Thus 3 positive and 3 negative output sig-
nals are generated. Figure 4-2 shows the configuration of the 10-bit inverter control timer (TM7).

The TM7 counts in synchronization with the rising edge of the count clock. The up/down count opera-
tion is defined with the value set in the CM3 compare register. Thus when the CM3 value matches the
count value of the TM7, the timer TM7 is switched to count down operation until an underflow occurs
(0000H value of the timer). The carrier frequency of the signal is set in the compare register CM3 and
the dead time is set in the dead time setting register DTIME. The signal level conditions are defined with
the set values in the three-compare register CM0, CM1 and CM2. The 10-bit buffer register BFCM0 to
BFCM3 transfers the data into the compare registers (CM0 to CM3) with the timing of the interrupt
request signal INTTM7.

Figure 4-2: 10-bit Inverter Control Timer Block Diagram

The buffer transfer control timer RTM0 is a 3-bit up counter and has the function of dividing the interrupt
request signal INTTM7. 

fx

fx

fx/2
fx/4
fx/8
fx/16
fx/32

CM3

CM0

CM1

CM2

BFCM3

BFCM0

BFCM1

BFCM2

DTIME

DTM0

DTM1

DTM2

RTM0TM7

Pulse
Generator
Circuit

INTTM7

TO70

TO71

TO72

TO73

TO74

TO75

U Phase

U Phase

V Phase

W Phase

W Phase

V Phase
26  Application Note U16486EE1V1AN00



Chapter 4 Hardware Configuration
Figure 4-3 describes the operating timing of the inverter control timer TM7.

The calculation of the values needed for the definition of the desired output signal from the inverter con-
trol timer are performed with the following equations: 

(3)

(4)

(5)

(6)

(7)

Figure 4-3: Operating timing of the inverter control timer TM7

fX is the chosen system clock oscillation of the timer TM7. Equation (3) delivers the timer TM7 count
clock and the equation (4) the PWM cycle of the signal. 
The dead time between the active level of the signal pair, shown in Figure 4-3 with grey surface, is cal-
culated with the equation (5). The equation (6) calculates the Active Width of the Positive Phase
(AWPP) and the equation (7) the Active Width of the Negative Phase (AWNP) of the output signal.

X
TM f
T 1

7
=

72 TMCYCLE TPWM ⋅=

7)1( TMWIDTH TDTIMEDTM ⋅+=

( ) ( )[ ] ( )
77 3233 TMXTMDOWNUP TCMCMTCMCMCMCMAWPP ⋅−⋅=⋅−+−=

( )
DTMTMXDTMTMUPDOWN TTCMTTCMCMAWNP −⋅⋅=−⋅+=

77 2

A

A A

A

B

B B

B

CBFCMn

CMn

DTMn

TO70, TO72, TO74

TO71, TO73, TO75

INTTM7INTTM7 INTTM7

X

Y

T1 T1 T2 T2

Up Count Down Count

X,Y,.. Values of the CM3 register
27 Application Note U16486EE1V1AN00



Chapter 4 Hardware Configuration
4.5 Real- Time Output Port Function

The Real -Time output Port (RTP) transfers previously set data in the real-time buffer register to the out-
put latch by hardware. The transfer is controlled with timer interrupts or external interrupt request gener-
ation. It is also possible to perform PWM modulation of a special pin with output pattern that can be
specified in one bit unit. 
The µPD780988 subseries has 2 channels of real-time output ports on chip. The RTP0 port is shared
with Port 3 and RTP1 is shared with inverter control timer TM7. The real-time port used in this applica-
tion is the RTP1 port. Therefore the function of the RTP1 port will be described in detail.

Figure 4-4: Block Diagram of the Real- Time Output Port RTP1

Figure 4-4 shows the block diagram of the real-time output port RTP1 that shares the output with the
inverter control timer TM7. 

The real-time output buffer register 1 (RTBH01, RTBL01) is the register that holds the data in advance.
It is specified in entirely 6 bits that can be select either as 1 channel x 4 bits or 1 channel x 6 bits. The
real time output mode is set with the port mode register RTPM01 that allows 1-bit units selection. The
real-time output port control register RTPC01 sets the operating mode, enables/disables the operation
of the real-time output port. The DC control register DCCTL1 controls the PWM modulation, enabling/
disabling of the output waveform inversion.

Internal Bus

TO7n (from TM7)

Real-Time output port 0
output latch

Real-time output
port mode
register 1
(RTPM01)

DC control
register 1

(DCCTL1)

Real-time output
buffer register 1
Lower 4 bits
(RTBL01)

Real-time output
buffer register 1
Higher 2 bits
(RTBH01)

Real-time output port control
register 1 (RTPC01)

RTPOE01 BYTE01

Output trigger
controller

TO75.........................TO70

INTTM001
(from TM01)

PWM modulation
28  Application Note U16486EE1V1AN00



Chapter 4 Hardware Configuration
The relationship between the register settings of the real-time output port and the effects on the output
is described in the Table 4-2 bellow:

The interaction between the generated signal from the inverter control timer and the modulation of it
with the real time output port makes generation of a wide range of signal wave forms possible. The
solution of the signal generation for the control of the 3-phase inverter circuit that supplies the BLDC
motor will be described in Chapter 5, where the software will also be introduced and described.

Table 4-2: Relationship between registers settings and output effects

TMC7.7 DCCTL1.7 DCCTL1.4
DCCTL1.5

RTPC01.7 RTPM01.n
RTBH01

Pin TO7n Status
DCCTL1.6 RTBL01

0 x x x x x x Hi-Z

1 0 x x x x x TO7n

1 0 0 0 x x “low” output

1 0 x “low” output

1 0 “low” output

1 “high” output

1 0 x x TO7n

1 0 x TO7n

1 0 TO7n

1 “high” output

1 0 0 x x “high” output

1

0 x “high” output

1
0 “high” output

1 “low” output

1 0 x x TO7n

1 0 x TO7n

1 0 TO7n

1 “low” output
29 Application Note U16486EE1V1AN00



Chapter 4 Hardware Configuration
4.6 Interrupts Function

The µPD780988 Subseries includes several internal and external interrupt sources (see Table 1-1,
“Functional Outline,” on page 12). In this application 3 external interrupts are used to detect the rotor
position of the motor with the Hall sensors. The interrupts are maskable and are set to detect both
edges of the input signal. The switching control of the real-time output port RTP1 that modulates the
output signal from the inverter timer TM7 is than synchronized with the rotor position of the BLDC
motor.
Figure 4-5 describes the generation of the external interrupt signal that is used to generate the control
signal for the inverter circuit that supplies the BLDC motor synchronized with the Hall sensor signals.

Figure 4-5: External interrupts signal flow synchronized with the Hall sensor signals 
of the BLDC motor

IRQ1 IRQ1 IRQ1

IRQ2IRQ2IRQ2IRQ2

IRQ3 IRQ3 IRQ3 IRQ3

IRQ1Hall A

Hall B

Hall C

Ext_IRQ 1

Ext_IRQ 2

Ext_IRQ 31
30  Application Note U16486EE1V1AN00



Chapter 5 Software Process Description

5.1 Data Flow Diagram

Figure 5-1 shows the principal data flow diagram and the relationship between the software modules
and hardware peripherals that are involved in the control of the motor.

Figure 5-1: Principal Data Flow Diagram

The external interrupts are the service routines with the highest priority in the system that can’t be dis-
turbed and controls the bit pattern of the real-time output port synchronised with input signals from the
Hall sensor of the BLDC motor. 
The other functions of the system shown in Figure 5-1 are sequential and implemented and executed in
the main endless loop of the software.

Key_Input
Interval_Timer

START

Menu

Display

Start Sequence

Start Regulator

PI_regulator

Real-Time port

Inverter Timer

Speed Measurement

Output

ISR Ext. Interrupt
Phase CISR Ext. Interrupt

Phase B
ISR Ext. Interrupt

Phase A

ISR-Reload

Initialization

Reset

Actual speed Switch appropriate
bit pattern

New Duty cycle
31 Application Note U16486EE1V1AN00



Chapter 5 Software Process Description
5.2 Initialization

The initialization process is responsible for the initializing the µPD78F0988A device after a system
reset. It configures the basic clock settings of the device, initializes the peripherals that are used for the
motor control application and disables/ enables interrupts. The initialization contains two parts as
shown in Figure 5-2, the first part that initializes the configuration of the device and the second part ini-
tialize the peripherals with their operating mode.

Figure 5-2: Initialization process

5.3 Interval_Timer

The watchdog timer is used to realize the interval timer function. It is used to generate an interrupt
request at the preset time interval. The interval time length is set to the period of T = 977.6 µs. The
interrupt request flag of the watchdog timer is polled and the function Interval_Timer is executed each
time the interrupt request flag is detected high in the main loop.
The function Interval_Timer controls the execution of the key input function, the menu points function
and the display function of the system. It’s responsible also to start the BLDC motor running with the
start sequence of the system at the start of running. 

5.4 Key_Input, Menu, Display

These are the three functions that are responsible for getting the key inputs, to make the user able to
make a choice between the menu points and to display the input and the actual rpm of the motor. 

The Key_Input function is event controlled and it is executed only when a key entry is recognized. The
sample time of the key entry is defined with the elapse time of the Interval_Timer function. The menu
function is immediately executed when the key entry is recognized through the key input function.
The Display is refreshed every time with the executing of the interval timer function.

Set processor clock

Initialization

Set port mode
Define and

enable interrupts

Configure
Peripherals

Define
operating mode
32  Application Note U16486EE1V1AN00



Chapter 5 Software Process Description
5.5 Start Sequence

The start sequence of the system is the function that allows a non-reflecting start of the motor. The con-
cept of the function is to force an external interrupt that generates the appropriate switching of the real
time output port. The generation of the external interrupt request depends on the start position of the
rotor. As already described there are six possible Hall sensor positions that describe the rotor position.
The start sequence derives three absolute start positions from these six positions that correspond to
the external interrupts. The sequence proceeds upon the detection of the actual level of the input pins
of the external interrupts, to force the next incoming external interrupt that switch the real time port. The
table below describes the proceeding of the start sequence in both turn directions of the motor:

Right Direction

Hall A 0 0 0 1 1 1

Hall B 1 1 0 0 0 1

Hall C 0 1 1 1 0 0

Start Phase C B A C B A

Left Direction

Hall A 1 1 1 0 0 0

Hall B 1 0 0 0 1 1

Hall C 0 0 1 1 1 0

Start Phase B C A B C A
33 Application Note U16486EE1V1AN00



Chapter 5 Software Process Description
Figure 5-3 describes the connection between the six Hall sensor positions and the three derived results
to force the appropriate external interrupt and describes also how the table described above has been
used.

Figure 5-3: Start sequence

The left turn direction of the motor can be derived from the left turn direction table of the motor also
described above.

5.6 Speed Measurement

The Hall_Measurement function has the task to measure the motor speed. The measured value is used
as a feedback for the closed speed loop control. 
The 16-bit Timer TM0 is used in the pulse width measurement mode and it’s defined to react on the ris-
ing edge of the input signal from one chosen Hall sensor signal of the motor. The function is executed
every time when one of the three interrupt service routines is active. Accordingly the elapsed time of the
function, depending from the motor speed, is synchronized with the frequency of the three interrupt
service routines which are modified, as already described in Chapter 4.6 “Interrupts Function” on
page 30, to detect both edges of the input Hall signal from the motor. Thus the sample time of the func-
tion is equal with the actual motor speed.

Hall A

Hall B

Hall C

Ext_IRQ 1

Ext_IRQ 2

Ext_IRQ 3

1
1
0

A
B
C

0
1
0

0
1
1

0
0
1

1
0
1

1
0
0

IRQ1 IRQ3 IRQ2 IRQ1 IRQ3 IRQ2
A C B A C B

Force IRQ
Phase

Right Direction of the Motor
34  Application Note U16486EE1V1AN00



Chapter 5 Software Process Description
5.7 PI-Regulator

The Pl-Regulator used is the classical Proportional Integral (PI) control method in the closed loop con-
trol of the BLDC motor.

The regulator is based on the recursive PI algorithm known also as the speed algorithm and takes the
form of:

Transformed into a discrete form:

where: KP presents the proportional gain
KI presents the integral gain

XP presents the speed error

ΣXD presents the accumulated speed error

The coefficients KP and KI were derived empirically and optimized based on system 
behaviour produced by disturbances during the system testing.

The sample time of the regulator is set to 30 ms. The duration of the regulator execution time includes
also two additional operations that have the task to normalise the value and to transform the calculated
regulated quantity into the duty cycle of the PWM signal. The normalised value transforms the actual
count (= motor speed) of the 16-bit timer TM00 into the range of the regulator which is defined as a 
10-bit range.

G(s) = KP + KI × 
1

S

KP × XD + KI × (ΣXD)

XD = X(n) - X(n - 1)
35 Application Note U16486EE1V1AN00



[MEMO]
36  Application Note U16486EE1V1AN00



Chapter 6 Software Flow Charts

This chapter describes the important functions used in the system of the BLDC motor control applica-
tion. The functions that are responsible for the key input, the display, the menu points,  the normalising
and transform values functions are not included in this chapter. Please refer in the software source
codes if more information about these functions is needed. 

6.1 Concept and Main Flow Diagram

Figure 6-1 shows the main program flow chart.

Figure 6-1: Main Program Flowchart

Main Routine

Reset

Disable all interrupts

Initialize Hardware

Initialize peripherals

Initialize variables

Enable all interrupts

Endless loop

Detect the rotor
start position

Run Watchdog
Timer

Run Inverter control
Timer TM7

1

2

3

37 Application Note U16486EE1V1AN00



Chapter 6 Software Flow Charts
6.2 Peripherals initialization

Figure 6-2 shows the initialization of the used hardware peripherals of the µPD78F0988A device with
their operation mode in this application.

Figure 6-2: Peripherals initialization

2.42.4

Inverter Control Timer
TM7

2.12.1

Clear and Stop
Timer TM7

Set Timer count
clock to f = 8.38MHzx

Disable Output

Set Active Level to low

Set valid edge
as falling

Disable output
by valid edge

Enable output
by valid interrupt

INTWDT

Inverter Control Timer
TM7

16-bit timer TM00

Watchdog Timer Watchdog Timer

Real-Time Port
RTP1

Initialize Peripherals
2

2.12.1

2.22.2

2.32.3

2.42.4

2.22.2

Real-Time Port
RTP1

Set output buffer to 1

Set Port mode output
from inverter timer

Enable operation with
6 x 1 bit channel

Enable PWM modulation
on TO71,TO73,TO75

Disable PWM modulation
on TO70,TO72,TO74

Waveform inversion
enabled

2.32.3

16-bit timer TM00

Stop timer

Set free running mode

Set timer clock count

Set rising edge
detection

Disable output
and inversion

Set CR000 as capture
and CR010 as compare

register

Set compare value
0xFFFF to CR010
as overflow value

Set timer mode
to Interval timer

Set interval length
38  Application Note U16486EE1V1AN00



Chapter 6 Software Flow Charts
6.3 Main Concept

Figure 6-3 shows the endless loop of the main program used in this application.

Figure 6-3: Endless Loop function flow

Main

Y

Y Y

N

N N

IRQ_WDTM = 1? Intervall_timer()

Start_regulator
and Break off? Break on?

Norm Actual
Speed value

PI-Regulator

Transform
into Duty cycle

Stop system
running

Endless loop
3

Stop Flag for
Start Sequence

Start Flag for
Start Sequence
39 Application Note U16486EE1V1AN00



Chapter 6 Software Flow Charts
6.4 Interval Timer

Figure 6-4 shows the Interval timer function flow realized with the watchdog timer of the µPD78F0988A
device in this application. 

Figure 6-4: Interval timer function flow

Intervall_Timer

Key recognized ?
Y

Y

Y

N

N

N

Y

N

LED_OUT()

Start_Sequence()

Read_Key_Input() Menu()

Break ON? Set system Break ON

Transform Actual Data
into Display Format

Set system Break OFF

Start Sequence
Flag = 0?

Update System
Input Data

Update Interval
reached ?
40  Application Note U16486EE1V1AN00



Chapter 6 Software Flow Charts
6.5 Speed Measurement

Figure 6-5 shows the speed measurement function flow realised with the 16-bit timer TM00.

Figure 6-5: Speed measurement flow

Hall_Meassurement

Overflow count = 1?

Overflow Check OK?

Y

Y

Y

Y

Y

Timer interrupt
set?

Timer interrupt
set?

Delete timer
interrupt

Delete timer
interrupt

Read the capture
register value

Read the capture
register value

Delete overflow
count

Set signal width
to max. 0xFFFF

Set signal width
to max. 0xFFFF

Return signal width

Return actual value

N

N

N

N

New capture value <
Old capture value?

Signal width = 0x10000-value(n-1)+value(n)

Signal width = - Old capture valueNew capture value

Delete overflow count

value(n-1) = value(n)
41 Application Note U16486EE1V1AN00



Chapter 6 Software Flow Charts
6.6 Control Signal Generation

Figure 6-6: Signal generation flow in synchronization with the rotor position 
of the BLDC motor

BFCM3 = PWM_Cycle

BFCM2 = Duty_Cycle

BFCM1 = Duty_Cycle

BFCM0 = Duty_Cycle

Inverter Timer interrupt
Hall X

External interrupt

INTTM7 INTPY

RETI

RETI

Interrupt occurred
every TM7 timer underflow.
Task: Reload the Inverter
Timer buffer register with new
Duty cycle values calculated
from the PI-regulator

Read the actual
rotor position

Left Direction
and break off?

Right Direction
and break off?

Y

Y

N

Switch RTP for
left turn direction

Switch RTP for
right turn direction

Get actual speed
Hall_Measurement()

X = A, B, C
Y = INTP3, INTP2, INTP1
3 x External interrupts
detect both edges of the
Hall sensor signals.
42  Application Note U16486EE1V1AN00



Chapter 6 Software Flow Charts
6.7 PI-Regulator

Figure 6-7 shows the function flow of the implemented PI-Regulator in the system.

Figure 6-7: PI-Regulator function flow

PI-Regulator

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

N

N

N

N

N

N

N

N

N

N

XD = setpoint - actual_value Calculate Speed Error

lbuf = XD

lbuf = XD

lbuf = lbuf * Kp

lbuf = lbuf * Ki

lbuf > Yp_max?

lbuf > Yi_max?

lbuf < Yp_min?

lbuf < Yi_min?

Yp = lbuf

Yi = Integrator

Y = Yp + Yi

Yi = lbuf

Integrator=Intergrator + Yi

lbuf = Yp_max

lbuf = Yi_max?

lbuf = Yp_min

Integrator = Min

Yi = Yi_Min

Y = Y_Min

Integrator = Max

Yi = Yi_Max

Y = Y_Max

lbuf = Yi_min?

Intergrator > Max?

Yi > Yi_Max?

Y > Y_Max?

Intergrator < Min?

Yi < Yi_Min?

Y < Y_Min?

Return Y
43 Application Note U16486EE1V1AN00



[MEMO]
44  Application Note U16486EE1V1AN00



Chapter 7 Program Listing

/*=========================================================================================
** The listed example source code in this chapter was developed in cooperation with the Expert Assistant Manager 
** Mr. Ludger Lenzen.
** PROJECT      = Motor control
** MODULE       =  hdwinit()
** VERSION      = V0.1  
** DATE            = 20.06.2002
** LAST CHANGE  = 
**  
** Author:Jusuf Suad
** NEC Electronics (Europe) GmbH
** Technical Product Support
** Semiconductors and Displays Business Unit
** D-40472 Düsseldorf, Germany                        
** =========================================================================================
** Description: Module initializes the UPD78F0988A Hardware
** ========================================================================================= */

void hdwinit (void)
   {
   // processor clock
           PCC  = 0x00;            // with speed
           OSTS = 0x04;
   
   // port latch
           
           P0=0x00;                // set output latch to 0
           P2=0x00;                // set output latch to 0
           P3=0x00;                // set output latch to 0
           P4=0x00;                // set output latch to 0
           P5=0x00;                // set output latch to 0
           P6=0x00;                // set output latch to 0
   
   // port mode
           PM0  = 0x0E;          // port 0 = input  ---> EXT-IRQ1, EXT-IRQ2, EXT-IRQ3 to detect the Rotor Pos
                                          // port 1 is only input
           PM2  = 0x00;          // port 2 = output (P2.0 = DIG1 !!!!)
           PM3  = 0x00;          // port 3 = output
           PM4  = 0x00;          // port 4 = output  
           PM5  = 0x31;          // port 5.5 = TM01 input and 5.0 = Key Up and 5.4 = Key Down input 
           PM6  = 0x00;          // port 6 = output
   
   // pull up resistors
           PU0 = 0x00;             // no pull up-resistors
           PU2 = 0x00;             // no pull up-resistors
           PU3 = 0x00;             // no pull up-resistors
           PU4 = 0x00;             // no pull up-resistors
           PU5 = 0x11;             // pull up-resistors for the P5.0= Key Up and P5.4= Key Down Pin 
           PU6 = 0x00;             // no pull up-resistors
   
   // interrupt definition
           IF0L = 0x00;            // INT request
           IF0H = 0x00;            // INT request
           IF1L = 0x00;            // INT request
                                           // 7 6 5 4 3 2 1 0 
           MK0L = 0xE3;          // 1 1 1 0 0 0 1 1  EXT 1,2,3 enable
           MK0H = 0xFD;         // 1 1 1 1 1 1 0 1  INT INTTM001 & TMMK7 enable
           MK1L = 0xFF;          // 1 1 1 1 1 1 1 1  INT not masked
   
45 Application Note U16486EE1V1AN00



Chapter 7 Program Listing
           PR0L = 0xFF;           // INT low priority
           PR0H = 0xFF;          // INT low priority
           PR1L = 0xFF;          // INT low priority
   
   
           EGP = 0x0F;             // Rising  & Falling Edge
           EGN = 0x0F;             // Only Rising => EGN = 0x00
   }
46  Application Note U16486EE1V1AN00



Chapter 7 Program Listing
/*=========================================================================================
** PROJECT      = Motor control
** MODULE       =  Inverter_INIT()
** VERSION      = V0.1  
** DATE            = 20.06.2002
** LAST CHANGE  = 

** Author:Jusuf Suad
** NEC Electronics (Europe) GmbH
** Technical Product Support
** Semiconductors and Displays Business Unit
** D-40472 Düsseldorf, Germany                       
**                           
** =========================================================================================
** Description: Module initializes the 10-bit Inverter timer of the UPD78F0988A
** ========================================================================================= */
void Inverter_INIT(void)
   {
   // Inverter timer control register format
   // ---------------------------------------------------------------------
                             // 7 6 5 4 3 2 1 0 Bit Nummber
           TMC7 = 0x00;      // 0 0 1 0 1 0 0 0
                             // 7-> 0/1 => Clear and Stop / Count enable
                             // 6-> 0   => Must be Zero            
                             //            5 4 3   
                             //         => 0 0 0 -> 0x00 => fclockcount = fx = 8,38 MHz
                             //         => 0 0 1 -> 0x08 => fclockcount = fx = 4.19 MHz
                             //         => 0 1 0 -> 0x10 => fclockcount = fx = 2.1  MHz
                             //         => 0 1 1 -> 0x18 => fclockcount = fx = 1.05 MHz
                             //         => 1 0 0 -> 0x20 => fclockcount = fx = 524  KHz
                             //         => 1 0 1 -> 0x28 => fclockcount = fx = 262  KHz
                             // 2,1,0   => INTTM7 occures every TM7 underflows                  
   
   // Inverter Timer mode Register
   //----------------------------------------------------------------------------
   
           TMM7 = 0x00;      // 7 6 5 4 3 2 1 0 Bit Nummber
                             // 0 0 0 1 0 0 0 0
                             // 7-> 0   => Must be Zero
                             // 6-> 0   => Must be Zero            
                             // 5-> 0   => Must be Zero
                             // 4-> 0/1 => TM7 output disabled status/TM7 output enabled status
                             // 3-> 0/1 => Low/High TO70...TO75 output active level specification  
                             // 2-> 0/1 => Falling/Rising TOFF7 valid edge                
                             // 1-> 0/1 => Output not stoppet/Output stopped by valid EDGE
                             // 0-> 0/1 => Output not stoppet/Output stopped by valid INTWDT
                             
           bALV = 0;          // ALV = Output active spec.
   }
47 Application Note U16486EE1V1AN00



Chapter 7 Program Listing
/*=========================================================================================
** PROJECT      = Motor control
** MODULE       =  Real_Time_INIT()
** VERSION      = V0.1  
** DATE            = 20.06.2002
** LAST CHANGE  = 
**
** Author:Jusuf Suad
** NEC Electronics (Europe) GmbH
** Technical Product Support
** Semiconductors and Displays Business Unit
** D-40472 Düsseldorf, Germany                        
**                           
** =========================================================================================
** Description: Module initializes the Real-Time Otput port RTP1 of the UPD78F0988A
** ========================================================================================= */

void Real_Time_INIT(void)
   {
   // Real-Time Output Buffer Register
   //----------------------------------------------------------------------
           RTBL01 = 0x0F;          // real-time output buffer register low
   
           RTBH01 = 0x30;          // real-time output buffer register high
   
   // Real-Time Output Port Mode Register 1
   //----------------------------------------------------------------------
   
           RTPM01 = 0x3F;          // real-time output port mode register
                                   // Output is TO70 to TO75 !!!!
                                   // Bit 7 & 6 must be set to Zero !!!! 
                                   
   // Real-Time Output Port Control Register 1
   //----------------------------------------------------------------------
                                   // 7 6 5 4 3 2 1 0
           RTPC01 = 0xA0;          // 1 0 1 0 0 0 0 0 
                                   // |___|_____Enables Operation and 6-Bits x 1 Channel
                                   // real-time output port control register
                                   // Output is TO70 to TO75 !!!!
                                   
   // DC control Resgister 1 (DCCTL1)
   //----------------------------------------------------------------------
                               // 7 6 5 4 3 2 1 0 Bit Nummber    
            DCCTL1 = 0x90;     // 1 0 0 1 0 0 0 0 
                               // 7-> 0/1 => Inverter Timer Output/PWM Modulated RTP Output
                               // 6-> 0/1 => PWM Modulation disabled/enabled on TO70,TO72,TO74
                               // 5-> 0/1 => PWM Modulation disabled/enabled on TO71,TO73,TO75
                               // 4-> 0/1 => Inversion disabled/enabled => Output Waveform specification
            TM7_PWML = 1; // PWM Modulation enabled on TO71,TO73,TO75
            TM7_PWMH = 0; // PWM Modulation disabled on TO70,TO72,TO74
          
          //TM7_RTP = 0;
            
            bINV = 1;
   }
48  Application Note U16486EE1V1AN00



Chapter 7 Program Listing
/*=========================================================================================
** PROJECT      = Motor control
** MODULE       =  TM00_INIT()
** VERSION      = V0.1  
** DATE            = 20.06.2002
** LAST CHANGE  = 
**                           
** Author:Jusuf Suad
** NEC Electronics (Europe) GmbH
** Technical Product Support
** Semiconductors and Displays Business Unit
** D-40472 Düsseldorf, Germany                        
** =========================================================================================
** Description: Module initializes the 16-bit timer TM00 of the UPD78F0988A
** ========================================================================================= */

void TM00_INIT(void)
   {
   TMC00 = 0x00;           // Stop operation
   
   PRM00 = 0x12;           // TI000 rising edge detection and count clock = 262KHz
   
   TOC00 = 0x00;           // inversion disabled, F/F no change, output disabled
                                      // inversion enabled by match of TM00 and CR010, Timer output reset 
                                      // ->F/F set to zero & output disabled
                           
   CRC00 = 0x01;           // CR000 capture on TIO10 valid edge and CR010 as compare register
   
   CR010 = 0xFFFF;       // compare value -> OVF detection!
   
   TMC00 = 0x06;           // Free-running mode; IRQ generated on match between TM00 and CR000, 
                                      // or match between TM00 and CR010
   IRQ_TM00 = 0;           // clear IRQ for security
   IRQ_OVF = 0;
   }
49 Application Note U16486EE1V1AN00



Chapter 7 Program Listing
/*=========================================================================================
** PROJECT      = Motor control
** MODULE       =  WDTM_INITt()
** VERSION      = V0.1  
** DATE            = 20.06.2002
** LAST CHANGE  = 
**       
** Author:Jusuf Suad
** NEC Electronics (Europe) GmbH
** Technical Product Support
** Semiconductors and Displays Business Unit
** D-40472 Düsseldorf, Germany                                            
** =========================================================================================
** Description: Module initialize the Watch-Dog  timer of the UPD78F0988A as Interval Timer
** ========================================================================================= */

void WDTM_INIT(void)
   {
   // WDCS = 0x00 --> 488.8 microsec
   //             = 0x01 --> 977.6 microsec
   //             = 0x02 --> 3.91  msec
   //             = 0x03 --> 7.82  msec
   //             = 0x04 --> 15.6  msec
   //             = 0x05 --> 31.3  msec
   //             = 0x06 --> 125.1 msec
   
   WDCS = 0x01; // Intervall Timer 
   WDTM = 0x00; // Intervall Timer mode
   }
50  Application Note U16486EE1V1AN00



Chapter 7 Program Listing
/*=========================================================================================
** PROJECT      = Motor control
** MODULE       =  Regulator()
** VERSION      = V0.1  
** DATE            = 20.06.2002
** LAST CHANGE  = 
**
** Author:Jusuf Suad
** NEC Electronics (Europe) GmbH
** Technical Product Support
** Semiconductors and Displays Business Unit
** D-40472 Düsseldorf, Germany                                                   
** =========================================================================================
** Description: PI- Regulator
** ========================================================================================= */
int Regulator(void)
   {
   /*      PI Regulator
   Range of values:
   
   setpoint           =    0%...+100% = (integer) =          0...+4400
   actual_value   =    0%...+100% = (integer) =          0...+4400
   XD                = -100%...+100% = (integer) =  -4400...0...+4400
   
   Yp              = -100%...+100% = (integer) =  -4096...0...+4095
   Yi               = -100%...+100% = (integer) =  -4096...0...+4095
   Y                =    0%...+100% = (integer) =          0...+4095
   Integrator   = -400%...+400% = (integer) = -16384...0...+16383
   Kp              = -100%...+100% = (integer) =  -4096...0...+4095
   Ki               = -100%...+100% = (integer) =  -4096...0...+4095
   */
   
   /* local variables */
   static long lbuf; // local long type calculation buffer
   int XD;              // Delta_X
   long Yp;           // Y proportional part
   long Yi;            // Y integral part
   long Y;             // Y result
   
   /* value range limits */
   #define Yp_max           1048575l     // +4095 * 256
   #define Yp_min          -1048575l      // -4095 * 256
   #define Yi_max           4194303l      // +4095 * 1024
   #define Yi_min          -4194303l       // +4095 * 1024
   #define Integrator_max   4194303l  // +4095 * 1024
   #define Integrator_min  -4194303l   // -4095 * 1024
   #define Y_max            4194303l      // +4095 * 1024
   #define Y_min                  0l             //         0 * 1024

   // calculate XD
   XD = setpoint - actual_value;
   
   // calculate Yp and limit 
   // Note: Kp = kp * 256
   // calculate Yp = XD * Kp;
   lbuf = XD;
   lbuf = lbuf * Kp; // Yp (long)
   
   // limit Yp
   if (lbuf > Yp_max)
      {
      lbuf = Yp_max;
      }
   else
51 Application Note U16486EE1V1AN00



Chapter 7 Program Listing
      {
      if (lbuf < Yp_min)
         {
         lbuf = Yp_min;
         }
      }
   Yp = lbuf; // Yp = yp * 256
   
   // calculate Yi and limit 
   // note: Ki = ki * 1024
   // calculate Yi(t) = XD * Ki;
   lbuf = XD;
   lbuf = lbuf* Ki;// Yi(t) (long)
   
   // limit Yi(t)
   if (lbuf > Yi_max)
      {
      lbuf = Yi_max;
      }
   else
      {
      if (lbuf < Yi_min)
         {
         lbuf = Yi_min;
         }
      }
   Yi = lbuf;
   
   // update integrator
   Integrator = (Integrator + Yi);
   
   // limit Integrator
   if (Integrator > Integrator_max)
      {
      Integrator = Integrator_max;
      }
   else
      {
      if (Integrator < Integrator_min)
         {
         Integrator = Integrator_min;
         }
      }
   Yi = Integrator;
   
   // limit Yi (Yi = yi * 1024)
   if (Yi > Yi_max)
      {
      Yi = Yi_max;
      }
   else
      {
      if (Yi < Yi_min)
         {
         Yi = Yi_min;
         }
      }
   // calculate Y and limit */
   // note; Yi = yi * 1024, Yp = yp * 256
   // calculate Y = yp * 1024 + yi * 1024
   Y = Yp + Yi;
   
   // limit Y
   if (Y > Y_max)
52  Application Note U16486EE1V1AN00



Chapter 7 Program Listing
      {
      Y = Y_max;
      }
   else
      {
      if (Y < Y_min)
         {
         Y = Y_min;
         }
      }
return (int)(Y >> 10); // return y = Y / 1024
  }
53 Application Note U16486EE1V1AN00



Chapter 7 Program Listing
/*=========================================================================================
** PROJECT      = Motor control
** MODULE       =  Speed_Measurement()
** VERSION      = V0.1  
** DATE            = 20.06.2002
** LAST CHANGE  = 
**    
** Author:Jusuf Suad
** NEC Electronics (Europe) GmbH
** Technical Product Support
** Semiconductors and Displays Business Unit
** D-40472 Düsseldorf, Germany                                               
** =========================================================================================
** Description: Speed measurement of the motor 
** ========================================================================================= */

unsigned int Speed_Measurement( unsigned int cnt )
   {
   
   // Overflow detection
   if (IRQ_OVF)
      {
      IRQ_OVF = 0;
      ovf_one++;
      if (ovf_one > 3)
         {
         ovf_one = 3;
         }
      }
   if (ovf_one > 1)
      {
      if (IRQ_TM00)
         {
         IRQ_TM00 = 0;
         value_old_one = CR000;// Read the value on the rising edge
         ovf_one = 0;
         }
      signalwidth_one = 0xFFFF;
      }
   else
      {
      // Check timer and Calculate signal width 
         if (IRQ_TM00)
         {
         IRQ_TM00 = 0;
         value_new_one = CR000;// Read the value on the rising edge
         if (value_new_one < value_old_one)
            {
            signalwidth_one = (unsigned int)(0x10000 - value_old_one + value_new_one);
            }
         else
            {
            if (ovf_one)
               {
               signalwidth_one = 0xFFFF;
               }
            else
               {
               signalwidth_one = value_new_one - value_old_one;
               }
            }
         ovf_one = 0;
         value_old_one = value_new_one;
         }
54  Application Note U16486EE1V1AN00



Chapter 7 Program Listing
      else
         {
         return cnt;
         }
      }
   return signalwidth_one;   }
55 Application Note U16486EE1V1AN00



Chapter 7 Program Listing
/*=========================================================================================
** PROJECT      = Motor control
** MODULE       =  ISR Phase_A()
** VERSION      = V0.1  
** DATE            = 20.06.2002
** LAST CHANGE  = 
**     
** Author:Jusuf Suad
** NEC Electronics (Europe) GmbH
** Technical Product Support
** Semiconductors and Displays Business Unit
** D-40472 Düsseldorf, Germany
** =========================================================================================
** Description: Detection of the Hall A sensor from the motor and switching of the bit pattern for the RTP port
** ========================================================================================= */

interrupt [INTP3_vect] void Phase_A(void) //P00 -> 38
   {
   Motor_Pos = P0 & 0x0E; //Detect Actuall Rotor Position
   
   //LEFT TURN
   if (!Motor_Dir && !BREAK)
      {
         RTPM01 = RTP_SWITCH_LEFT[Motor_Pos];   
       
      //RIGHT TURN
      }
   else
      {
      if (Motor_Dir && !BREAK)
         {
         RTPM01 = RTP_SWITCH_RIGHT[Motor_Pos];
         }
      }
   actual_count = Speed_Measurement( actual_count );
   }
56  Application Note U16486EE1V1AN00



Chapter 7 Program Listing
/*=========================================================================================
** PROJECT      = Motor control
** MODULE       =  ISR Phase_B()
** VERSION      = V0.1  
** DATE            = 20.06.2002
** LAST CHANGE  = 
**                           
** =========================================================================================
** Description: Detection of the Hall B sensor from the motor and switching of the bit pattern for the RTP port
** ========================================================================================= */

interrupt [INTP1_vect] void Phase_B(void) //P01 -> 37
   {
   Motor_Pos = P0 & 0x0E; //Detect Actuall Rotor Position
   
   //LEFT TURN
   if (!Motor_Dir && !BREAK)
      {
        RTPM01 = RTP_SWITCH_LEFT[Motor_Pos];
      //RIGHT TURN
      }
   else
      {
      if (Motor_Dir && !BREAK)
         {
         RTPM01 = RTP_SWITCH_RIGHT[Motor_Pos];
         }
      }
   actual_count = Speed_Measurement( actual_count );
   }
57 Application Note U16486EE1V1AN00



Chapter 7 Program Listing
/*=========================================================================================
** PROJECT      = Motor control
** MODULE       =  ISR Phase_C()
** VERSION      = V0.1  
** DATE            = 20.06.2002
** LAST CHANGE  = 
**          
** Author:Jusuf Suad
** NEC Electronics (Europe) GmbH
** Technical Product Support
** Semiconductors and Displays Business Unit
** D-40472 Düsseldorf, Germany 
** =========================================================================================
** Description: Detection of the Hall C sensor from the motor and switching of the bit pattern for the RTP port
** ========================================================================================= */

interrupt [INTP2_vect] void Phase_C(void) // P01 -> 44
   {
   Motor_Pos = P0 & 0x0E; //Detect Actuall Rotor Position
   
   //LEFT TURN
   if (!Motor_Dir && !BREAK)
      {
          RTPM01 = RTP_SWITCH_LEFT[Motor_Pos];
      //RIGHT TURN
      }
   else
      {
      if (Motor_Dir && !BREAK)
         {
         RTPM01 = RTP_SWITCH_RIGHT[Motor_Pos];
         }
      }
   actual_count = Speed_Measurement( actual_count );
   }
58  Application Note U16486EE1V1AN00



Chapter 7 Program Listing
/*=========================================================================================
** PROJECT      = Motor control
** MODULE       =  ISR TM7exception()
** VERSION      = V0.1  
** DATE            = 20.06.2002
** LAST CHANGE  = 
**                           
** =========================================================================================
** Description: Reload inverter timer TM7with new values
** ========================================================================================= */

interrupt [INTTM7_vect] void TM7exception (void)
   {
   BFCM3 = PWM_CYCLE;  //BFCM3_value = PWM Cycle;
   BFCM2 = DUTY_CYCLE; //BFCM2_value = Duty Cycle TO74, TO75
   BFCM1 = DUTY_CYCLE; //BFCM1_value = Duty Cycle TO72, TO73
   BFCM0 = DUTY_CYCLE; //BFCM0_value = Duty Cycle TO70, TO71
   }
59 Application Note U16486EE1V1AN00



Chapter 7 Program Listing
/*=========================================================================================
** PROJECT      = Motor control
** MODULE       =  Start_Sequence()
** VERSION      = V0.1  
** DATE            = 20.06.2002
** LAST CHANGE  = 
**         
** Author:Jusuf Suad
** NEC Electronics (Europe) GmbH
** Technical Product Support
** Semiconductors and Displays Business Unit
** D-40472 Düsseldorf, Germany 
** =========================================================================================
** Description: Start of the motor
** ========================================================================================= */

void Start_Sequence(void)
   {
   //Start motor left or right */
   if (Motor_Dir  //Right turn
      )
      {
      if ((Motor_Pos == 0x04) || (Motor_Pos == 0x0A)  // 4 & 10
         )
         {
         IF0L.4 = 1; // Start Phase A
         }
      if ((Motor_Pos == 0x06) || (Motor_Pos == 0x08) // 6 & 8
         )
         {
         IF0L.2 = 1; // Start Phase B
         }
      if ((Motor_Pos == 0x02) || (Motor_Pos == 0x0C) // 2 & 12
         )
         {
         IF0L.2 = 3; // Start Phase C
         }
      }
   else
      {
      if (!Motor_Dir//Left turn
         )
         {
         if ((Motor_Pos == 0x02) || (Motor_Pos == 0x0C))
            {
            IF0L.4 = 1; // Start Phase A
            }
         if ((Motor_Pos == 0x04) || (Motor_Pos == 0x0A))
            {
            IF0L.2 = 1; // Start Phase B
            }
         if ((Motor_Pos == 0x06) || (Motor_Pos == 0x08))
            {
            IF0L.3 = 1; // Start Phase C
            }
         }
      }
   START_REGULATOR = 1;
   }
60  Application Note U16486EE1V1AN00



Chapter 7 Program Listing
/*=========================================================================================
** PROJECT      = Motor control
** MODULE       =  Interval_Timer()
** VERSION      = V0.1  
** DATE            = 20.06.2002
** LAST CHANGE  = 
**            
** Author:Jusuf Suad
** NEC Electronics (Europe) GmbH
** Technical Product Support
** Semiconductors and Displays Business Unit
** D-40472 Düsseldorf, Germany 
** =========================================================================================
** Description: Key Input, Menu, Display and start sequence control
** ========================================================================================= */

void Interval_Timer (void)
   {
   // Display und Key_input run
   if (!P5.0 || !P5.4)
      {
      if ((delay_count > 5) && (!P5.0 || !P5.4))
         {
         input_key = Read_Key_Input();
         Menu(input_key);
         Motor_Dir = input_point.motor_dir;
         setpoint = motor_rpm;
         delay_count = 0;
         }
      else
         {
         delay_count++;
         }
      }
   // Adaptation of the RPM value for the Display
   // Transform the RPM valueinto number A.B.C. for the Display
   dummy_value = actual_value;
   i = 0;
   s[3] = s[2] = s[1] = s[0] = 0;
   do
      {
      s[i++] = dummy_value %10;
      }
   while ((dummy_value /= 10) > 0);
   if (loop_Menu == 5)
      {
      uc_num_A = s[3];
      uc_num_B = s[2];
      uc_num_C = s[1];
      loop_Menu = 0;
      }
   else
      {
      loop_Menu++;
      }
   LED_OUT();
   if (break_active.on_off)
      {
      BREAK = 1;
      }
   else
      {
      BREAK = 0;
      if (stop_start_sequence)
61 Application Note U16486EE1V1AN00



Chapter 7 Program Listing
         {
         Start_Sequence();
         }
      }
   }
62  Application Note U16486EE1V1AN00



Chapter 7 Program Listing
/*=========================================================================================
** PROJECT      = Motor control
** MODULE       =  LED_OUT()
** VERSION      = V0.1  
** DATE            = 20.06.2002
** LAST CHANGE  = 
**     
** Author:Jusuf Suad
** NEC Electronics (Europe) GmbH
** Technical Product Support
** Semiconductors and Displays Business Unit
** D-40472 Düsseldorf, Germany 
** =========================================================================================
** Description: Display control (3 x 7Segment Display)
** ========================================================================================= */
void LED_OUT(void)
   {
   void Loop_Pause(unsigned int);
   void LED_Fkt(unsigned char, unsigned char, unsigned char);
   // Make choice between Menu and Menu function */
   if (menu_flag)
      {
       switch (menu_choice) // switch(menu_choice)
         {
         case DIR_LEFT:
            // Display : d.-L */
            LED_Fkt(12,10,21); //0xDE, 0x40, 0x38
            break;
       case DIR_RIGHT:
            // Display : d.-r */
            LED_Fkt(12,10,13); //0xDE, 0x40, 0x50
            break;
         case UP_RPM:
            // Display: r.-u */
            LED_Fkt(14,10,15);   //0xD0, 0x40, 0x1C
            break;
         case DOWN_RPM:
            // Display : r.-d */
            LED_Fkt(14,10,11); //0xD0, 0x40, 0x5E
            break;
         case STOP:
            // Display : Stp. */
            LED_Fkt(22,17,23); // 0x6D, 0x78, 0xF3
            break;
         case ACT_RPM:
            // Display : Acr. */
            LED_Fkt(26,25,13); //0x50, 0x1C, 0xD4
            break; } }
   else
      {
      if (Menu_fkt)
         {
          switch (menu_choice) // switch(Menu_fkt)
            {
            case UP_RPM
               LED_Fkt(led_input.uc_a, led_input.uc_b, led_input.uc_c);
               break;

case DOWN_RPM:
               LED_Fkt(led_input.uc_a, led_input.uc_b, led_input.uc_c);
               break;
            case STOP:
               LED_Fkt(0x0A, break_active.on_off_old, break_active.on_off);
               break;
            case ACT_RPM:
63 Application Note U16486EE1V1AN00



Chapter 7 Program Listing
               LED_Fkt(uc_num_A, uc_num_B, uc_num_C);
               break;
            }}}}
64  Application Note U16486EE1V1AN00



Chapter 7 Program Listing
/*=========================================================================================
** PROJECT      = Motor control
** MODULE       =  LED_Fkt() and Loop_Pause()
** VERSION      = V0.1  
** DATE            = 20.06.2002
** LAST CHANGE  = 
**       
** Author:Jusuf Suad
** NEC Electronics (Europe) GmbH
** Technical Product Support
** Semiconductors and Displays Business Unit
** D-40472 Düsseldorf, Germany 
** =========================================================================================
** Description: Display control (3 x 7Segment Display)
** ========================================================================================= */

void LED_Fkt(unsigned char a, unsigned char b, unsigned char c)
   {
   DIG_2 = 0;
   DIG_3 = 0;
   LED_PORT = LED_CODE[a];
   DIG_1 = 1;
   
   Loop_Pause(500);
   
   DIG_1 = 0;
   DIG_3 = 0;
   LED_PORT = LED_CODE[b];
   DIG_2 = 1;
   
   Loop_Pause(400);
   
   DIG_1 = 0;
   DIG_2 = 0;
   LED_PORT = LED_CODE[c];
   DIG_3 = 1;
   
   Loop_Pause(300);
   }

void Loop_Pause(unsigned int loop)
   {
   for (loop_pause=0;loop_pause<loop;loop_pause++)
      {
      }
   }
65 Application Note U16486EE1V1AN00



Chapter 7 Program Listing
/*=========================================================================================
** PROJECT      = Motor control
** MODULE       =  Read_Key_Input()
** VERSION      = V0.1  
** DATE            = 20.06.2002
** LAST CHANGE  = 
**          
** Author:Jusuf Suad
** NEC Electronics (Europe) GmbH
** Technical Product Support
** Semiconductors and Displays Business Unit
** D-40472 Düsseldorf, Germany 
** =========================================================================================
** Description: Detect the key input
** ========================================================================================= */

unsigned char Read_Key_Input(void)
   {
   // MENU:
   // Menu Choice: 
   //                 1.Turn Direction 
   //                 2.RPM     
   //                 3.STOP
   
   #define NO_KEY    0xFF
   unsigned char key_code;
   
   /* Intern Prototyp function */
   void delay(void);
   
   // Read Key 2 times with delay between */
   KEY_PORT = P5;
   
   KEY_PORT &= 0x11;
   
   delay();
   
   key_code = P5;
   
   key_code &= 0x11;
   
   // Check if key input ok and return key code value */
   if ((key_code == KEY_PORT) && (key_code != NO_KEY))
      {
      // Return Key Code */
      if (key_code == 0x01)
         {
         key_down_pushed = 1;
         }
      else
         {
         key_up_pushed = 1;
         }
      return key_code;
      }
   else
      {
       key_up_pushed   = 0;
      key_down_pushed = 0;
      return NO_KEY;
      }
   }
/*   delay */
66  Application Note U16486EE1V1AN00



Chapter 7 Program Listing
void delay(void)
   {
   unsigned int loop_delay;
   for (loop_delay = 0; loop_delay < 1000; loop_delay++)
      {
      }   }
67 Application Note U16486EE1V1AN00



Chapter 7 Program Listing
/*=========================================================================================
** PROJECT      = Motor control
** MODULE       =  Menu()
** VERSION      = V0.1  
** DATE            = 20.06.2002
** LAST CHANGE  = 
**         
** Author:Jusuf Suad
** NEC Electronics (Europe) GmbH
** Technical Product Support
** Semiconductors and Displays Business Unit
** D-40472 Düsseldorf, Germany 
** =========================================================================================
** Description: Detect and control the menu points
** ========================================================================================= */

void Menu(unsigned char input_key )
   {
   void rpm_input(void);
   void turn_dir(void);
   void break_input(void);
   if (input_key == 0x10 && Menu_flag)
      {
      // Main Menu Choice
      if (menu_choice <= 0xC0)
         {
         menu_choice = 0xFE;
         }
      else
         {
         menu_choice = menu_choice << 1;
         }
      }
   else
      {
      /* BLOCK MENU_CHOISE, GET THE INPUT & SELECT FUNCTION */
      switch (menu_choice)
         {
         case UP_RPM:
            //Drehzahl vergroessern
            input_point.rpm_motor_up = 1;
            input_point.rpm_motor_down = 0;
            rpm_input();
            break;
         case DOWN_RPM: 
            input_point.rpm_motor_down = 1;
            input_point.rpm_motor_up = 0;
            rpm_input();
            break;
         case DIR_LEFT:
            input_point.motor_dir_left = 1;
            input_point.motor_dir_right = 0;
            turn_direction();
            break;
         case DIR_RIGHT:
           input_point.motor_dir_right = 1;
            input_point.motor_dir_left = 0;
            drehrichtung();
            break;
         case STOP:

input_point.break = 1;
            break_input();
            break;
         case ACT_RPM:
68  Application Note U16486EE1V1AN00



Chapter 7 Program Listing
            input_point.act_rpm = 1;
           break;
         }
      }
69 Application Note U16486EE1V1AN00



Chapter 7 Program Listing
   // DOWN Key pushed: -> Go to Menu function and block the main Menu choice
   if (input_key == 0x01)
      {
      Menu_flag = 0;
      Menu_fkt = 1;
      }
   else
      {
      //  FREE MENU_CHOISE */
      if (input_key == 0x00)
         {
         Menu_flag = 1;
         Menu_fkt = 0; 
        }
   }
}

70  Application Note U16486EE1V1AN00



Chapter 7 Program Listing
/*=========================================================================================
** PROJECT      = Motor control
** MODULE       = rpm_input()
** VERSION      = V0.1  
** DATE            = 20.06.2002
** LAST CHANGE  = 
**        
** Author:Jusuf Suad
** NEC Electronics (Europe) GmbH
** Technical Product Support
** Semiconductors and Displays Business Unit
** D-40472 Düsseldorf, Germany 
** =========================================================================================
** Description: calculate input up or down rpm of the motor and transform it for the display
** ========================================================================================= */

void rpm_input(void)
   {
   // setpoint:
   // Zahl = a.b.c
   // Aktuell: nur 100'er schritte
   // UP_DOWN_RPM
   if ((input_key == 0x10) && Menu_fkt)
      {
      if (input_point.rpm_motor_up)
         {
         // UP_RPM
         if (motor_rpm < 4500)
            {
            motor_rpm +=100;
            if ((led_input.uc_b < 9)&&(led_input.uc_a <=4))
               {
               led_input.uc_b++;
               }
            else
               {
               led_input.uc_b = 0;
               if (motor_rpm < 1000)
                  {
                  led_input.uc_c = 0;
                  led_input.uc_a = 0;
                  }
               else
                  {
                  if (led_input.uc_a <4)
                     {
                     led_input.uc_a++;
                     }
                  else
                     {
                     led_input.uc_a = 4;
                     if (led_input.uc_b > 5)
                        {
                        led_input.uc_b = 5;
                        }
                     }
                  }
               }
            }
         else
            {
            motor_rpm = 4500; //max rpm x 10
            led_input.uc_a = 4;
            led_input.uc_b = 5;
71 Application Note U16486EE1V1AN00



Chapter 7 Program Listing
            led_input.uc_c = 0;
            }
         }
72  Application Note U16486EE1V1AN00



Chapter 7 Program Listing
      else
         {
         // DOWN_RPM */
         if (input_point.rpm_motor_down  && !input_point.break)
            {
            }
         if ((motor_rpm > 0) && (motor_rpm <= 4500))
            {
            motor_rpm -=100;
            if (led_input.uc_b > 0)
               {
               led_input.uc_b--;
               }
            else
               {
               led_input.uc_b = 9;
               if (led_input.uc_a > 0)
                  {
                  led_input.uc_a--;
                  led_input.uc_c = 0;
                  }
               else
                  {
                  led_input.uc_a = 0;
                  led_input.uc_c = 0;
                  }
               }
            }
         else
            {
            motor_rpm = 0; //min rpm x 10
            led_input.uc_a = 0;
            led_input.uc_b = 0;
            led_input.uc_c = 0;
            }
         }
      }
   }
 

73 Application Note U16486EE1V1AN00



Chapter 7 Program Listing
/*=========================================================================================
** PROJECT      = Motor control
** MODULE       = turn_direction()
** VERSION      = V0.1  
** DATE            = 20.06.2002
** LAST CHANGE  = 
**         
** Author:Jusuf Suad
** NEC Electronics (Europe) GmbH
** Technical Product Support
** Semiconductors and Displays Business Unit
** D-40472 Düsseldorf, Germany 
** =========================================================================================
** Description: detect the turn direction of the motor
** ========================================================================================= */
void turn_direction(void)
   {
   if ((input_key == 0x10) && Menu_fkt)
      {
      if (input_point.motor_dir_right == 1)
         {
         input_point.motor_dir = 1;
         }
      else
         {
         input_point.motor_dir = 0;
         }
      }}
74  Application Note U16486EE1V1AN00



Chapter 7 Program Listing
/*=========================================================================================
** PROJECT      = Motor control
** MODULE       = break_input()
** VERSION      = V0.1  
** DATE            = 20.06.2002
** LAST CHANGE  = 
**     
** Author:Jusuf Suad
** NEC Electronics (Europe) GmbH
** Technical Product Support
** Semiconductors and Displays Business Unit
** D-40472 Düsseldorf, Germany 
** =========================================================================================
** Description: detect break input
** ========================================================================================= */
 
void break_input(void)
   {
 
   if (input_point.break &&(input_key == 0x10) && Menu_fkt)
      {
      break_active.on_off ^= input_point.break;
      input_point.break = 0;
      input_point.rpm_motor_up = 0;
      input_point.rpm_motor_down = 0;
      }
   }       
75 Application Note U16486EE1V1AN00



Chapter 7 Program Listing
/*=========================================================================================
** PROJECT      = Motor control
** MODULE       = norm_value()
** VERSION      = V0.1  
** DATE            = 20.06.2002
** LAST CHANGE  = 
**         
** Author:Jusuf Suad
** NEC Electronics (Europe) GmbH
** Technical Product Support
** Semiconductors and Displays Business Unit
** D-40472 Düsseldorf, Germany 
** =========================================================================================
** Description: norm the value into the dregulator range
** ========================================================================================= */

unsigned int norm_value( unsigned int cnt )
   {
   // norm the input values
   unsigned long lbuf;
   unsigned int  ibuf;
   if (cnt > actual_count_min)
      {
      lbuf = norm_constant;
      lbuf = lbuf / (unsigned long)cnt;
      ibuf = (unsigned int)lbuf;
      ibuf++;
      ibuf = ibuf >> 1; // div by two
      if (ibuf > actual_value_ovr)
         {
         ibuf = actual_value_ovr;
         }
      return ibuf;
      }
   else
      {
      // if cnt below min -> max. value
      return actual_value_ovr;
      }
   }
76  Application Note U16486EE1V1AN00



Chapter 7 Program Listing
/*=========================================================================================
** PROJECT      = Motor control
** MODULE       = transform_regulated_quantity()
** VERSION      = V0.1  
** DATE            = 20.06.2002
** LAST CHANGE  = 
**         
** Author:Jusuf Suad
** NEC Electronics (Europe) GmbH
** Technical Product Support
** Semiconductors and Displays Business Unit
** D-40472 Düsseldorf, Germany 
** =========================================================================================
** Description: Transform the calculated quantity into duty cycle
** ========================================================================================= */

unsigned int transfrom_regulated_quantity( unsigned int y_in, unsigned int period )
   {
   /*
           Convert Y (0...4095) into PWM set value.
           Limit of PWM set value = 0...period [0...512]
   */
   
   unsigned long lbuf;
   if (period)
      {
      lbuf = (unsigned long)(period << 1); // use (period * 2) to increase precision
      lbuf = lbuf * (unsigned long)y_in;
      lbuf = lbuf / (unsigned long)4096;
      lbuf++;
      lbuf = lbuf >> 1;                    // devide by two (precision)
      return (unsigned int)lbuf;
      }
   else
      {
      // result allways 0
      return 0;
      }
   }
77 Application Note U16486EE1V1AN00



Chapter 7 Program Listing
/*=========================================================================================
** PROJECT      = Motor control
** MODULE       = main()
** VERSION      = V0.1  
** DATE            = 20.06.2002
** LAST CHANGE  = 
**         
** Author:Jusuf Suad
** NEC Electronics (Europe) GmbH
** Technical Product Support
** Semiconductors and Displays Business Unit
** D-40472 Düsseldorf, Germany 
** =========================================================================================
** Description: Main function of the system
** ========================================================================================= */
void main(void)
   {
   _DI();// Disable all interrupts

   actual_value   = 0;
   value_old_one    = 0x0;
   value_new_one    = 0xFFFF;
   signalwidth_one = 0xFFFF;
   break_active.on_off = 1;
   BREAK = 1;

   /* uPD init */
   hdwinit();

   /* Perihperals init*/

   //16-bit Timer TM00 (Speed measurement)
   TM00_INIT();

   //10-bit Inverter Timer TM7 (Six PWM signal generation)
   Inverter_INIT();

   //Real-Time output port (Signal modulation )
   Real_Time_INIT();

   //Watch-Dog Timer (Interval timer)
   WDTM_INIT();

   // Read the actual position of the motor
   Motor_Pos    = P0 & 0x0E;

   _EI();//Enable all interrupts

   RUN_WDTM = 1;  // Start counting with the WDTM as Intervall Timer
   DTIME = 0x14;  // delay time setting = 2,5Ýs
   TMC7.7 = 1;    // start inverter timer

   while (1)
      {
      if (IRQ_WDTM)
         {
         IRQ_WDTM = 0;
         Intervall_Timer();
         }
      if (START_REGULATOR & !BREAK)
         {
         stop_start_sequenc = OFF;
78  Application Note U16486EE1V1AN00



Chapter 7 Program Listing
         // Transform timer count in actual_value used in the Regulator
         actual_value = norm_value( actual_count );
         //Calculate regulating quantity 
         Y = Regelung();
         // Transform regulated quantity into Duty Cycle
         DUTY_CYCLE = transfrom_regulated_quantity( Y, PWM_CYCLE );
         }
      else
         {
         if (BREAK)
            {
            // STOP the SYSTEM RUNNING
            START_REGULATOR  = OFF;
            signalwidth_one        = OFF;
            actual_value              = OFF;
            DUTY_CYCLE           = OFF;
            Y                                = OFF;
            RTPM01                     = 0x3F;
            stop_start_sequence = ON;
            }
         }
      }
   }
79 Application Note U16486EE1V1AN00



Chapter 7 Program Listing
/*=========================================================================================
** PROJECT      = Motor control
** MODULE       = 
** VERSION      = V0.1  
** DATE            = 20.06.2002
** LAST CHANGE  = 
**     
** Author:Jusuf Suad
** NEC Electronics (Europe) GmbH
** Technical Product Support
** Semiconductors and Displays Business Unit
** D-40472 Düsseldorf, Germany 
** =========================================================================================
** Description: Variables used in the system
** ========================================================================================= */

#define OFF 0;
#define ON 1;

/* LED ANZEIGE: Display */                      
// SEGMENTE
#define LED_PORT P4

// COMMON
#define DIG_1  P2.0
#define DIG_2  P5.6
#define DIG_3  P5.7

/* Menu Points */
#define DIR_LEFT  0xF8 
#define DIR_RIGHT 0xF0 
#define UP_RPM    0xFE 
#define DOWN_RPM  0xFC 
#define STOP      0xE0
#define ACT_RPM   0xC0

/* mode register definitions */

/* interrupt register definitons */

/* constant definitions */

//                           0    1    2    3    4    5    6    7    8    9
unsigned int LED_CODE[27] ={0x3F,0x06,0x5B,0x4F,0x66,0x6D,0x7D,0x07,0x7F,0x6F,
//                           -     d     d.    r     r.    u     u.    t     t.   
                            0x40, 0x5E, 0xDE, 0x50, 0xD0, 0x1C, 0x9C, 0x78, 0xF8,
//                          n     n.    L     S     P.    E     C     A
                            0x54, 0xD4, 0x38, 0x6D, 0xF3, 0x79, 0x39, 0x77 };

/* Regulator constants: */

#define norm_constant       5237500l      // double of constant to norm the actual_count to actual_value
#define actual_count_min         524      // minimum valid count value
#define actual_value_ovr        5000      // limit if count exceeds measurment rang - to do
#define actual_value_max        4400
#define actual_value_min        0
#define setpoint_max            4400
#define setpoint_min            0

/*   Variables definition */
unsigned int count_irq = 0; //Event counter to recognize key
80  Application Note U16486EE1V1AN00



Chapter 7 Program Listing
unsigned char delay_count = 0; //Event counter to recognize key

unsigned int count_sample_value = 0; //counter for the PI sample time

unsigned int sample_counter_value = 0; //var. for the PI sample time definition

unsigned char stop_start_sequenc = 0; //Flag for the start sequenc

unsigned char uc_num_A; // Display number 
unsigned char uc_num_B;
unsigned char uc_num_C;

unsigned char s[4]; //Display nummber array
unsigned char i =0; //loop var for the s[] array

unsigned int dummy_value; //to get the actuall speed 
                          //and transform for the display

unsigned char loop_Menu;

int ovf_one; //Overflow var. to count the ovf. from TM00
unsigned int signalwidth_one;//Actual count of the TM00
unsigned int wert_old_one = 0;//Count value (n-1) from TM00 
unsigned int wert_new_one = 0;//Count value (n) from TM00
/* motor position control variables */
unsigned char Motor_Pos;

/* regulation variables */
unsigned int actual_count = 0xFFFF;    // actual timer count value for speed (16 Bit = [0 ... 65535])
int actual_value = 0;
long Integrator = 0;
int setpoint = 0; 
int Y = 0;   // actual output value (12 bit [0...4095])
int Kp = 15; // Kp = kp * 256
int Ki = 50; // Ki = ki * 1024

/* LED variables */
static unsigned char key_down_pushed ;
static unsigned char key_up_pushed ;
static unsigned char KEY_PORT;

unsigned char loop_main = 1;
unsigned char uc_count = 0;
unsigned char uc_dir = 0;
unsigned char uc_rpm_count = 0;
unsigned char uc_rpm = 0;
unsigned char uc_stop = 0;
unsigned char menu_choice = 0xFF;
unsigned char menu_fkt = 0;
unsigned char menu_flag = 1;
unsigned char input_key;

unsigned int motor_rpm = 0;
unsigned int loop_pause;

/* PWM & DUTY CYCLE definition */
unsigned int PWM_CYCLE  = 125; //max 512;
unsigned int DUTY_CYCLE = 0;//20;
unsigned int DUTY_CYCLE_OLD;

//   RTP bit pattern tables 
81 Application Note U16486EE1V1AN00



Chapter 7 Program Listing
unsigned char RTP_SWITCH_RIGHT[15] = {0x00, 0x00, 0x06, 0x00, 0x18, 0x00, 0x0B, 0x00, 0x21, 0x00, 0x32, 0x00, 0x2C, 
0x00, 0x07};

unsigned char RTP_SWITCH_LEFT[15]  = { 0x00, 0x00, 0x2C, 0x00, 0x32, 0x00, 0x21, 0x00, 0x0B, 0x00, 0x18, 0x00, 0x06, 
0x00, 0x07};

/* bit variables */
bit Motor_Dir;    // Turn Direction of the Motor

bit START_REGLER; // Start flag for the regulato
bit BREAK;       // Break flag to stop the system running

/* TM7 bit definition */
bit TM7_RTP = DCCTL1.7;
bit TM7_PWMH = DCCTL1.6;
bit TM7_PWML = DCCTL1.5;
bit bINV = DCCTL1.4;
bit bALV = TMM7.3;

/* WDTM bit definition */
bit RUN_WDTM = WDTM.7; //Start counting with the watchdog timer
bit IRQ_WDTM = IF0L.0; //WDTM IRQ FLAG

/* TM00 IRQ-bit definitions */
bit INTTM000 = MK0H.2;
bit INTTM010 = MK0H.3;

bit TMIF000 = IF0H.2;
bit TMIF010 = IF0H.3;

bit IRQ_TM00 = IF0H.2; //Measure

/* TM01 IRQ-bit definitions */

bit INTTM001 = MK0H.4;
bit INTTM011 = MK0H.5;

bit TMIF001 = IF0H.4;
bit TMIF011 = IF0H.5;

bit IRQ_OVF  = IF0H.3; //OVF = compare TM010

// Menu 
struct Menu
   {
   unsigned char dir_left;
   unsigned char dir_right;
   unsigned char up_rpm;
   unsigned char down_rpm;
   unsigned char stop;
   unsigned char rpm_act;
   } Menu_point;

// input 

struct input
   {
   unsigned char motor_dir_right;
   unsigned char motor_dir_left;
   unsigned char motor_dir;
82  Application Note U16486EE1V1AN00



Chapter 7 Program Listing
   unsigned char rpm_motor_up;
   unsigned char rpm_motor_down;
   unsigned char break;
   unsigned char run_in;
   unsigned char act_rpm;
   } input_point;

struct value
   {
   unsigned char uc_a;
   unsigned char uc_b;
   unsigned char uc_c;
   unsigned int led_value;
   } led_input;

struct break
   {
   unsigned char on_off;
   unsigned char on_off_old;
   } break_active;

struct input_return
   {
   unsigned char ready;
   unsigned char ready_old;
   } return_active;
83 Application Note U16486EE1V1AN00



[MEMO]
84  Application Note U16486EE1V1AN00



Although NEC has taken all possible steps
to ensure that the documentation supplied
to our customers is complete, bug free
and up-to-date, we readily accept that
errors may occur.  Despite all the care and
precautions we've taken, you may
encounter problems in the documentation.
Please complete this form whenever
you'd like to report errors or suggest
improvements to us.

Hong Kong, Philippines, Oceania
NEC Electronics Hong Kong Ltd.
Fax:  +852-2886-9022/9044

Korea
NEC Electronics Hong Kong Ltd.
Seoul Branch
Fax:  02-528-4411

Taiwan
NEC Electronics Taiwan Ltd.
Fax:  02-2719-5951

Address

North America
NEC Electronics Inc.
Corporate Communications Dept.
Fax: 1-800-729-9288

1-408-588-6130

Europe
NEC Electronics (Europe) GmbH
Market Communication Dept.
Fax:  +49-211-6503-274

South America
NEC do Brasil S.A.
Fax:  +55-11-6465-6829

Asian Nations except Philippines
NEC Electronics Singapore Pte. Ltd.
Fax:  +65-6250-3583

Japan
NEC Semiconductor Technical Hotline

I would like to report the following error/make the following suggestion:

Document title:

Document number: Page number:

Thank you for your kind support.

If possible, please fax the referenced page or drawing.

Excellent Good Acceptable PoorDocument Rating

Clarity

Technical Accuracy

Organization

CS  99.1

Name

Company

From:

Tel. FAX

Facsimile  Message

Fax:  +81- 44-435-9608



[MEMO]


	COVER
	Table of Contents
	Chapter 1� Overview
	1.1 � Abstract
	1.2 � Introduction
	1.3 � Overview of µPD78F0988A
	Table 1-1:� Functional Outline


	Chapter 2� 3-Phase BLDC Motor Basics
	2.1 � 3-Phase BLDC Motor Basics
	Figure 2-1:� 3-Phase BLDC motor with one pole pair permanent magnet
	Figure 2-2:� Connection between the electrical and mechanical revolution of the motor

	2.2 � 3-Phase BLDC Motor Control Requirements
	Figure 2-3:� Three-Phase Inverter and the current flow
	Figure 2-4:� Output signal from the 3-Hall sensors included in the BLDC motor
	Table 2-1:� Hall sensor signal input codes


	Chapter 3� System Design Concept
	3.1 � System Concept
	Figure 3-1:� Principal block diagram of the system configuration

	3.2 � System Configuration
	Figure 3-2:� System Configuration with the peripherals of the µPD78F0988A
	Figure 3-3:� System topology and relationship between the control software and hardware of the sy...


	Chapter 4� Hardware Configuration
	4.1 � µPD78F0988A Configuration
	4.2 � Peripherals I/O Assignments
	Table 4-1:� µPD78F0988A Peripheral I/O Assignment (1/2)

	4.3 � 16-Bit Timer Function
	Figure 4-1:� Measurement Process of the 16-bit timer TM00

	4.4 � Inverter Control Timer Function
	Figure 4-2:� 10-bit Inverter Control Timer Block Diagram
	Figure 4-3:� Operating timing of the inverter control timer TM7

	4.5 � Real- Time Output Port Function
	Figure 4-4:� Block Diagram of the Real- Time Output Port RTP1
	Table 4-2:� Relationship between registers settings and output effects

	4.6 � Interrupts Function
	Figure 4-5:� External interrupts signal flow synchronized with the Hall sensor signals of the BLD...


	Chapter 5� Software Process Description
	5.1 � Data Flow Diagram
	Figure 5-1:� Principal Data Flow Diagram

	5.2 � Initialization
	Figure 5-2:� Initialization process

	5.3 � Interval_Timer
	5.4 � Key_Input, Menu, Display
	5.5 � Start Sequence
	Figure 5-3:� Start sequence

	5.6 � Speed Measurement
	5.7 � PI-Regulator

	Chapter 6� Software Flow Charts
	6.1 � Concept and Main Flow Diagram
	Figure 6-1:� Main Program Flowchart

	6.2 � Peripherals initialization
	Figure 6-2:� Peripherals initialization

	6.3 � Main Concept
	Figure 6-3:� Endless Loop function flow

	6.4 � Interval Timer
	Figure 6-4:� Interval timer function flow

	6.5 � Speed Measurement
	Figure 6-5:� Speed measurement flow

	6.6 � Control Signal Generation
	Figure 6-6:� Signal generation flow in synchronization with the rotor position of the BLDC motor

	6.7 � PI-Regulator
	Figure 6-7:� PI-Regulator function flow


	Chapter 7� Program Listing


