To our customers,

Old Company Name in Catalogs and Other Documents

On April $1^{\text {st }}, 2010$, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1 ${ }^{\text {st }}, 2010$
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
"Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

H8/300L Super Low Power Series

Addition of Single-Precision Floating-Point Numbers (FADD)

Introduction

The software FADD adds single-precision floating-point numbers placed in general-purpose registers and places the result of addition in general-purpose registers.

Target Device

H8/38024

Contents

1. Arguments. 2
2. Changes to Internal Registers and Flags 2
3. Specifications 2
4. Notes 3
5. Description 3
6. Flowchart 7
7. Program List 15
About Single-Precision Floating-Point Numbers <Reference> 19

1. Arguments

Description		Memory area	Data length (bytes)
Input	Augend	R0, R1	4
	Addend	R2, R3	4
Output	Result of addition	R0, R1	4

2. Changes to Internal Registers and Flags

R0	R1	R2	R3	R4	R5	R6	R7
\circ	\circ	\times	\times	\times	\times	\times	-
I	U	H	U	N	Z	V	C
-	-	\times	-	\times	\times	\times	

Legend
-: No change
x : Undefined
o: Result

3. Specifications

Program memory (bytes)
280
Data memory (bytes)
0
Stack (bytes)
0
Clock cycle count
268
Reentrant
Possible
Relocation
Possible
Interrupt
Possible

4. Notes

The clock cycle count (268) in the specifications is for the example shown in figure 1.
For the format of floating-point numbers, see "About Single-precision floating-point Numbers <Reference>."

5. Description

5.1 Details of functions

1. The following arguments are used with the software FADD:
a. Input arguments:

R0: Sets the upper 2 bytes of a single-precision floating-point as augend.
R1: Sets the lower 2 bytes of a single-precision floating-point as augend.
R2: Sets the upper 2 bytes of a single-precision floating-point as addend.
R3: Sets the lower 2 bytes of a single-precision floating-point as addend.
b. Output arguments:

R0: The upper 2 bytes of a single-precision floating-point are placed here as the result of addition.
R1: The lower 2 bytes of a single-precision floating-point are placed here as the result of addition.
2. The following figure illustrates the execution of the software FADD. When the input arguments are set as shown in (1), the result of addition is placed in R0 and R1 as shown in (2).

Figure 1 Example of Software FADD Execution

5.2 Notes on usage

1. The maximum and minimum values that can be handled by the software FADD are as follows:
$\begin{cases}\text { Positive maximum } & \text { H'}^{\prime} 7 \mathrm{~F} 800000 \\ \text { Positive minimum } & \text { H' }^{\prime} 00000001\end{cases}$
$\{$ Negative maximum H'80000001
Negative minimum H'FF800000
2. All positive single-precision floating-point numbers $\mathrm{H}^{\prime} 7 \mathrm{~F} 800001$ to $\mathrm{H}^{\prime} 7 \mathrm{FFFFFFF}$ are treated as a maximum value (H'7F800000). All negative single-precision floating-point numbers H'FF800000 to H'FFFFFFFF are treated as a minimum value (H'FF800000).
3. As a maximum value is treated as infinity (∞), the result of $\infty+100$ or $\infty-100$ becomes infinite. (See table 1.)

Table 1 Examples of Operation with Maximum Values Used as Arguments

Augend	Addend	Result
H'7F800000 to H"7FFFFFFF	${ }^{* * * * * * * *}$	H'7F800000
Not H'7F800000 to H'FFFFFFFF	H''rF800000 to H'7FFFFFFF $^{\text {H'7F800000 }}$	
H'FF800000 to H'FFFFFFFF	${ }^{* * * * * * * *}$	H'FF800000
Not H'7F800000 to H"7FFFFFFF	H'FF800000 to H'FFFFFFFFF $^{\text {H'FF800000 }}$	

Note: * represents a hexadecimal number.
4. $\mathrm{H}^{\prime} 80000000$ is treated as $\mathrm{H}^{\prime} 00000000$ (zero).
5. After execution of the software FADD, the augend and addend data will be lost. When the input arguments are still needed after software FADD execution, save them in memory.

5.3 Description of data memory

The software FADD uses no data memory.

5.4 Example of usage

Set an augend and an addend in the general-purpose registers and call the software FADD as a subroutine.

5.5 Operation

Addition of single-precision floating-point numbers is done in the following steps:

1. The software checks whether the augend and addend are $+\infty$ or $-\infty$.
a. When the exponent of the augend is H'FF, either of the following values is output depending on the state of the sign bit:

Sign bit	Output value
0 (positive)	H'$^{\prime} 7 \mathrm{~F} 800000(+\infty)$
1 (negative)	H'FF800000 $_{(-\infty)}$

b. The table above also applies when the augend is neither $+\infty$ nor $-\infty$ and the exponent of the addend is H'FF.
2. The software checks whether the augend and addend are " 0 ".
a. If either the augend or addend is " 0 ", the other number is output (if both are " 0 ", " $H^{\prime} 00000000$ " is output).
3. The software attempts to match the exponent of the augend with that of the addend.
a. The smaller number of the exponent is incremented and, at the same time, the mantissa (including the implicit MSB) is shifted digit by digit to right until the exponent of the augend matches that of the addend. (In the case of the denormalized format, 1 is added to the exponent and the MSB of the mantissa is taken as implicitly being zero.
4. The mantissas are added.
5. The result of addition is corrected to produce a number in the floating-point data format.
(Example)

$$
\begin{aligned}
\text { Augend }= & 1.20888876915 \times 2^{114} \\
& \left(H^{\prime} 789 A B C D E\right) \\
& \text { Sign bit }=0, \text { exponent }=H^{\prime} \text { F1, mantissa }=H^{\prime} 1 \text { ABCDE } \\
& \text { (implicit MSB is not included) } \\
\text { Addend }= & 1.21282410622 \times 2^{-117} \\
& \left(H^{\prime} 7 A 1 B 3 D D 2\right) \\
& \text { Sign bit }=0, \text { exponent }=H^{\prime} F 4, \text { mantissa }=H^{\prime} 1 B 3 D D 2 \\
& \text { (implicit MSB is not included) }
\end{aligned}
$$

6. Flowchart

7. Program List

PROGRAM NAME $=$								
1								
2						;*		
3						;*	00 - NAME	:FLOATING POINT ADDITION (FADD)
4						;*		
5								
6						;*		
7						;*	ENTRY	: R0 (UPPER WORD OF SUMMAND)
8						;*		R1 (LOWER WORD OF SUMMAND)
9						;*		R2 (UPPER WORD OF ADDEND)
10						;*		R3 (LOWER WORD OF ADDEND)
11						;*		
12						;*	RETURNS	:RO (UPPER WORD OF RESULT)
13						;*		R1 (LOWER WORD OF RESULT)
14						;*		
15								
16						;		
17	FADD_cod		0000				. SECTION	FADD_code, CODE, ALIGN=2
18							.EXPORT	FADD
19						; ${ }^{\text {a }}$		
20	FADD_cod	C		00000000	FADD	.EQU \$; Entry point
21	FADD_cod	C	0000	FE00		MOV.B	\#H'00,R6L	; Clear R6L
22	FADD_cod	C	0002	79057 F 80		MOV. W	\#H'7F80, R5	; Set "H'7F80"
23					;			
24	FADD_cod	C	0006	7770		BLD	\# 7, R0H	
25	FADD_cod	C	0008	670 E		BST	\#0,R6L	; Set sign bit to bit 0 of R6L
26	FADD_cod	C	000A	7270		BCLR	\# 7 , ROH	; Bit clear bit 7 of ROH
27					;			
28	FADD_cod	C	000C	7772		BLD	\#7, R2H	
29	FADD_cod	C	000E	671 E		BST	\#1,R6L	; Set sign bit to bit 1 of R6L
30	FADD_cod	C	0010	7272		BCLR	\# 7, R2H	; Bit clear bit 7 of R2H
31					;			
32	FADD_cod	C	0012	1D05		CMP. W	R0, R5	
33	FADD_cod	C	0014	4306		BLS	LBL1	; Branch if "exponent of summand"="H'FF"
34	FADD_cod	C	0016	1D25		CMP. W	R2, R5	
35	FADD_cod	C	0018	421A		BHI	LBL4	; Branch if not "exponent of summand"="H'FF"
36	FADD_cod	C	001A	110 E		SHLR	R6L	; Shift R6L 1 bit right
37	FADD_cod	C	001C		LBL1			
38	FADD_cod	C	001C	770 E		BLD	\#0,R6L	; Bit load sign bit
39	FADD_cod	C	001E	450A		$B C S$	LBL3	; Branch if sign bit=1
40	FADD_cod	C	0020		LBL2			
41	FADD_cod	C	0020	79007 F 80		MOV. W	\#H'7F80,R0	; Set plus maximum number
42	FADD_cod	C	0024	79010000		MOV.W	\#H'0000,R1	
43	FADD_cod	C	0028	5470		RTS		
44	FADD_cod	C	002A		LBL3			
45	FADD_cod	C	002A	7900 FF 80		MOV. W	\#H'FF80, R0	; Set minus minimum number
46	FADD_cod	C	002E	79010000		MOV.W	\#H'0000,R1	
47	FADD_cod		0032	5470		RTS		
48					;			

49	FADD_cod	C	0034			LBL4			
50	FADD_cod	C	0034	0D11			MOV.W	R1, R1	;
51	FADD_cod	C	0036	4608			BNE	LBL5	; Branch if $\mathrm{Z}=0$
52	FADD_cod	C	0038	0D00			MOV.W	R0, R0	
53	FADD_cod	C	003A	4604			BNE	LBL5	; Branch if $\mathrm{Z}=0$
54	FADD_cod	C	003C	707 E			BSET	\#7, R6L	; Bit set bit 7 of R6L
55	FADD_cod	C	003E	720 E			BCLR	\#0,R6L	; Bit clear bit 0 of R6L
56	FADD_cod	C	0040			LBL5			
57	FADD_cod	C	0040	0D33			MOV.W	R3, R3	
58	FADD_cod	C	0042	4608			BNE	LBL6	; Branch if $\mathrm{Z}=0$
59	FADD_cod	C	0044	0D22			MOV.W	R2, R2	
60	FADD_cod	C	0046	4604			BNE	LBL6	; Branch if $\mathrm{Z}=0$
61	FADD_cod	C	0048	706 E			BSET	\# 6, R6L	; Bit set bit 6 of R6L
62	FADD_cod	C	004A	721E			BCLR	\#1, R6L	; Bit clear bit 1 of R6L
63	FADD_cod	C	004C			LBL 6			
64	FADD_cod	C	004C	777 E			BLD	\#7, R6L	
65	FADD_cod	C	004 E	746 E			BOR	\#6, R6L	
66	FADD_cod	C	0050	440C			BCC	LBL8	; Branch if not summand=addend=0
67	FADD_cod	C	0052	0931			ADD.W	R3, R1	; Set summand and addend to result
68	FADD_cod	C	0054	0920			ADD.W	R2, R0	
69	FADD_cod	C	0056	770 E			BLD	\#0, R6L	
70	FADD_cod	C	0058	741 E			BOR	\#1, R6L	
71	FADD_cod	C	005A	6770			BST	\#7, R0H	; Set sign bit
72	FADD_cod	C	005C	5470			RTS		
73						;			
74	FADD_cod	C	005E			LBL8			
75	FADD_cod	C	005E	7778			BLD	\#7, ROL	
76	FADD_cod	C	0060	1200			ROTXL	R0H	; Set exponent of summand to R0H
77						;			
78	FADD_cod	C	0062	777A			BLD	\#7, R2L	
79	FADD_cod	C	0064	1202			ROTXL	R2H	; Set exponent of addend to ROL
80						;			
81	FADD_cod	C	0066	7278			BCLR	\#7, ROL	
82	FADD_cod	C	0068	0 C 00			MOV.B	R0H, R0H	
83	FADD_cod	C	006A	4704			BEQ	LBL9	; Branch if summand is normalized
84	FADD_cod	C	006 C	7078			BSET	\#7, R0L	; Set implicit MSB to summand
85	FADD_cod	C	006 E	4002			BRA	LBL10	; Branch always
86	FADD_cod	C	0070			LBL9			
87	FADD_cod	C	0070	8001			ADD. B	\#H'01, R0H	
88	FADD_cod	C	0072			LBL10			
89	FADD_cod	C	0072	727A			BCLR	\#7, R2L	
90	FADD_cod	C	0074	0C22			MOV.B	R2H, R2H	
91	FADD_cod	C	0076	4704			BEQ	LBL11	; Branch if addend is normalized
92	FADD_cod	C	0078	707A			BSET	\#7, R2L	; Set implicit MSB to addend
93	FADD_cod	C	007A	4002			BRA	LBL12	; Branch always
94	FADD_cod	C	007C			LBL11			
95	FADD_cod	d		007C	8201			ADD.B	\#H'01,R2H
96						;			
97	FADD_cod	C	007E			LBL12			
98	FADD_cod	C	007E	0 C 05			MOV.B	R0H, R5H	
99	FADD_cod	C	0080	0C2D			MOV.B	R2H, R5L	
100	FADD_cod	C	0082	1 CD 5			CMP.B	R5L, R5H	
101	FADD_cod	C	0084	4738			BEQ	LBL16	; Branch if R5H=R5L
102	FADD_cod	C	0086	451A			BCS	LBL14	; Branch if R5H<R5L

103					;			
104	FADD_cod	C	0088	18D5		SUB. B	R5L, R5H	
105	FADD_cod	C	008A	A518		CMP. B	\#D'24,R5H	; Set bit counter
106	FADD_cod	C	008C	4508		BCS	LBL13	; Branch if R5H<D'24
107	FADD_cod	C	008E	79020000		MOV.W	\#H'0000,R2	; Clear addend
108	FADD_cod	C	0092	0D23		MOV.W	R2, R3	
109	FADD_cod	C	0094	4028		BRA	LBL16	; Branch always
110	FADD_cod	C	0096		LBL13			
111	FADD_cod	C	0096	110A		SHLR	R2L	; Shift mantissa of addend 1 bit left
112	FADD_cod	C	0098	1303		ROTXR	R3H	
113	FADD_cod	C	009A	130B		ROTXR	R3L	
114	FADD_cod	C	009C	1 A05		DEC.B	R5H	; Decrement bit counter
115	FADD_cod	C	009E	$46 F 6$		BNE	LBL13	; Branch Z=0
116	FADD_cod	C	00A0	401 C		BRA	LBL1 6	; Branch always
117					;			
118	FADD_cod	C	00A2		LBL14			
119	FADD_cod	C	00A2	185D		SUB.B	R5H, R5L	
120	FADD_cod	C	00A4	AD18		CMP.B	\#D'24,R5L	
121	FADD_cod	C	00A6	450A		BCS	LBL15	; Branch if R5L<D'24
122	FADD_cod	C	00A8	0 C 20		MOV. B	R2H, R0H	
123	FADD_cod	C	00AA	79010000		MOV.W	\#H'0000,R1	; Clear summand
124	FADD_cod	C	OOAE	0 C 98		MOV. B	R1L, R0L	
125	FADD_cod	C	00B0	400 C		BRA	LBL16	; Branch always
126	FADD_cod	C	00B2		LBL15			
127	FADD_cod	C	00B2	1108		SHLR	ROL	; Shift mantissa of summand 1 bit right
128	FADD_cod	C	00B4	1301		ROTXR	R1H	
129	FADD_cod	C	00B6	1309		ROTXR	R1L	
130	FADD_cod	C	00B8	1A0D		DEC.B	R5L	; Decrement bit counter
131	FADD_cod	C	00BA	46F6		BNE	LBL15	; Branch if $\mathrm{Z}=0$
132	FADD_cod	C	OOBC	0 C 20		MOV. B	R2H, R0H	
133					;			
134	FADD_cod	C	OOBE		LBL1 6			
135	FADD_cod	C	OOBE	770 E		BLD	\#0,R6L	
136	FADD_cod	C	00C0	751 E		BXOR	\#1, R6L	
137	FADD_cod	C	00C2	4516		BCS	LBL17	; Branch if different sign bit
138					;			
139	FADD_cod	C	00C4	0931		ADD.W	R3, R1	; Addition mantissa
140	FADD_cod	C	00c6	0EA8		ADDX.B	R2L, R0L	
141	FADD_cod	C	00C8	442A		BCC	LBL19	; Branch if $\mathrm{C}=0$
142	FADD_cod	C	00CA	1308		ROTXR	ROL	; Rotate mantissa 1 bit right
143	FADD_cod	C	00CC	1301		ROTXR	R1H	
144	FADD_cod	C	00CE	1309		ROTXR	R1L	
145	FADD_cod	C	OOD0	8001		ADD. B	\# ' $01, \mathrm{R} 0 \mathrm{H}$; Increment exponent
146	FADD_cod	C	00D2	A0FF		CMP. B	\#H'FF, R0H	
147	FADD_cod	C	00D4	4638		BNE	LBL23	; Branch if not exponent=H'FF
148	FADD_cod	C	00D6	5A000000		JMP	@LBL1	; Jump
149					;			
150	FADD_cod	C	00DA		LBL17			
151	FADD_cod	C	00DA	1931		SUB.W	R3, R1	; Substruct mantissa
152	FADD_cod	C	O0DC	1EA8		SUBX.B	R2L, R0L	
153	FADD_cod	C	OODE	4604		BNE	LBL18	; Branch if $\mathrm{Z}=0$
154	FADD_cod	C	OOEO	F000		MOV. B	\# ${ }^{\prime}$ O0, ROH	; Clear R0H
155	FADD_cod	C	O0E2	5470		RTS		

About Single-Precision Floating-Point Numbers <Reference>

Single-Precision Floating-Point Formats:

1. Internal representation of single-precision floating-point numbers

In this Application Note, the following formats are applied to single-precision floating-point numbers depending on their values ($\mathrm{R}=$ real number):
A. Internal representation for $\mathrm{R}=0$

313029				. .	2	1	0
0	0		0	. \cdot. ${ }^{\text {a }}$	0	0	0

All of the 32 bits are 0's.
B. Normalized format

| 3130 | 2322 | 0 | |
| :--- | :--- | :--- | :--- | :--- |
| s | α | β | 0 |

α is an exponent whose field is 8 bits long. β is a mantissa whose field is 23 bits long. The value of R can be represented by the following equation (on conditions that $1 \leq \alpha \leq 254$) :

$$
R=2^{S} \times 2^{\alpha-127} \times\left(1+2^{-1} \times \beta_{22}+2^{-2} \times \beta_{21}+\ldots \ldots+2^{-23} \times \beta_{0}\right)
$$

where $\beta \mathrm{i}$ is the value of the i -th bit $(0 \leq \mathrm{i} \leq 22)$ and S is the sign bit.
C. Denormalized format

where β is a mantissa whose field is 23 bits long. This format is used to represent a real number too small to be represented in the normal format. In this format, R can be represented by the following equation:

$$
R=2^{S} \times 2^{-126} \times\left(2^{-1} \times \beta_{22}+2^{-2} \times \beta_{21}+\ldots \ldots+2^{-23} \times \beta_{0}\right)
$$

D. Infinity

where β is a mantissa whose field is 23 bits long. In this Application Note, however, the following rules apply if all exponents are 1's;
Positive infinity when $S=0$
$\mathrm{R}=+\infty$
Negative infinity when $S=1$
$R=-\infty$
2. Example of internal representation

$$
\text { If } \quad \begin{aligned}
S & =B^{\prime} 0 \text { (binary) } \\
\alpha & =B^{\prime} 10000011 \text { (binary) } \\
\beta & =B^{\prime} 1011100 \ldots . .0 \text { (binary) }
\end{aligned}
$$

Then the corresponding real number is as follows:

$$
\begin{aligned}
& \mathrm{R}=2^{0} \times 2^{131-127} \times\left(1+2^{-1}+2^{-3}+2^{-4}+2^{-5}\right) \\
& =16+8+2+1+0.5=27.5
\end{aligned}
$$

A. Maximum and minimum values

The maximum value ($\mathrm{R}_{\text {MAX }}$) and minimum value ($\mathrm{R}_{\text {MII }}$), in terms of the absolute value, are as follows:

$$
\begin{aligned}
& \text { RMAX }=2^{254-127} \times\left(1+2^{-1}+2^{-2}+2^{-3} \ldots \ldots+2^{-23}\right) \\
& =3.37 \times 10^{38} \\
& \text { RMIN }=2^{-126} \times 2^{-23}=2^{-140}=1.40 \times 10^{-45}
\end{aligned}
$$

The absolute values within the above range can be represented.

Website and Support

Renesas Technology Website
http://www.renesas.com/
Inquiries
http://www.renesas.com/inquiry csc@renesas.com

Revision Record

		Description	
Rev.	Date	Page	Summary
1.00	Sep.18.03	-	First edition issued
2.00	Nov.30.06	All pages	Content correction

Notes regarding these materials

1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of Renesas or any third party with respect to the information in this document.
2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out of the use of any information in this document, including, but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples.
3. You should not use the products or the technology described in this document for the purpose of military applications such as the development of weapons of mass destruction or for the purpose of any other military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations.
4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas products listed in this document, please confirm the latest product information with a Renesas sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas such as that disclosed through our website. (http://www.renesas.com)
5. Renesas has used reasonable care in compiling the information included in this document, but Renesas assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information included in this document.
6. When using or otherwise relying on the information in this document, you should evaluate the information in light of the total system before deciding about the applicability of such information to the intended application. Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any particular application and specifically disclaims any liability arising out of the application and use of the information in this document or Renesas products.
7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of which may cause a direct threat to human life or create a risk of human injury or which require especially high quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. If you are considering the use of our products for such purposes, please contact a Renesas sales office beforehand. Renesas shall have no liability for damages arising out of the uses set forth above.
8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:
(1) artificial life support devices or systems
(2) surgical implantations
(3) healthcare intervention (e.g., excision, administration of medication, etc.)
(4) any other purposes that pose a direct threat to human life

Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas Technology Corp., its affiliated companies and their officers, directors, and employees against any and all damages arising out of such applications.
9. You should use the products described herein within the range specified by Renesas, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or damages arising out of the use of Renesas products beyond such specified ranges.
10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
11. In case Renesas products listed in this document are detached from the products to which the Renesas products are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You should implement safety measures so that Renesas products may not be easily detached from your products. Renesas shall have no liability for damages arising out of such detachment.
12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written approval from Renesas.
13. Please contact a Renesas sales office if you have any questions regarding the information contained in this document, Renesas semiconductor products, or if you have any other inquiries.
© 2006. Renesas Technology Corp., All rights reserved.

