Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

H8/300H Tiny Series

EEPROM Back-Up Processing upon Detecting Low Voltage

Introduction

An internal low-voltage detection circuit is used to back up data stored in RAM into EEPROM.

Target Device

H8/3687G

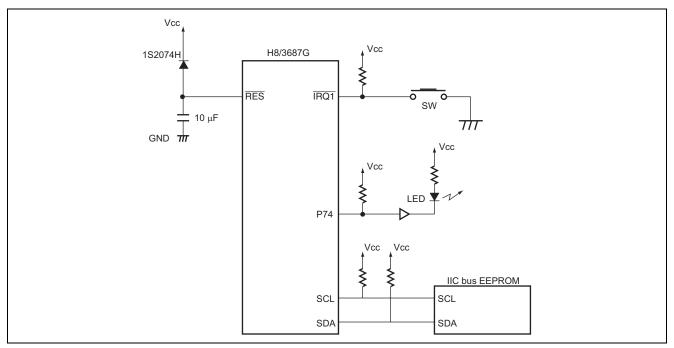
Contents

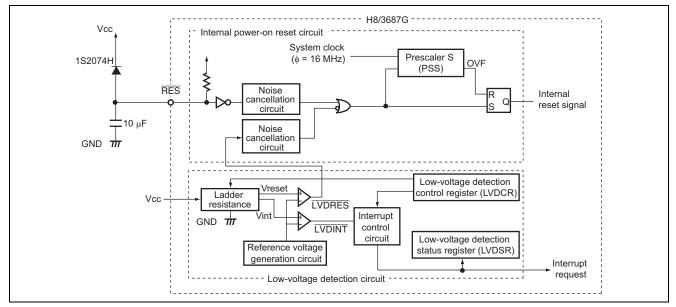
1.	Specifications	2
2.	Description of Functions	3
3.	Description of Operation	5
4.	Description of Software	8
5.	Flowcharts	15
6.	Program Listing	22

1. Specifications

KENESAS

- 1. An internal low-voltage detection circuit is used, and the operating state is changed.
- 2. In active mode, the LED is lit according to the blinking interval data read from the external EEPROM.
- 3. The LED blinking interval is changed through the IRQ1 switch, and the blinking interval data is stored in RAM.
- 4. While in active mode, when the voltage falls to 3.7 V or lower, the blinking interval data in RAM is written to the external EEPROM, and a transition to standby mode is made.
- 5. If, while in standby mode, the voltage rises to 4.0 V or higher, the system is returned to active mode.
- 6. When the voltage falls to 2.3 V or below, an internal reset signal is generated.
- 7. A connection example for this task is shown in figure 1.1.




Figure 1.1 Connection example for this task

2. Description of Functions

ENESAS

In this sample task, the optional internal low-voltage detection circuit is used to control the operating state at low voltages. A block diagram of the low-voltage detection circuit is shown in figure 2.1. Below, the block diagram of the low-voltage detection circuit is described.

- System clock (ϕ) is a 16 MHz clock which serves as the reference clock for operation of the CPU and peripheral functions.
- Prescaler S (PSS) is functions as a 13-bit counter with ϕ as an input, counting up one each cycle.
- Low-voltage detection control register (LVDCR) is controls the low-voltage detection circuit. In this sample task, the low-voltage detection circuit is used to generate an IRQ0 interrupt when the voltage rises or falls, and sets the reset detection voltage to 2.3 V.
- Low-voltage detection status register (LVDSR) is flags indicating whether the power supply voltage has risen or fallen from a constant voltage.

Figure 2.1 Block diagram of the low-voltage detection circuit

A standard IIC bus interface format (EEPROM byte write) is shown in figure 2.2.

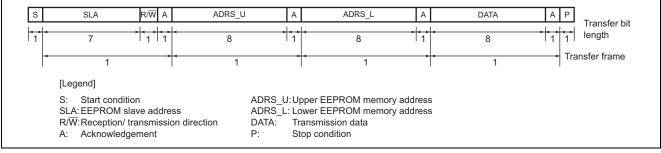


Figure 2.2 IIC bus interface format

A connection example of the IIC bus EERPOM is shown in figure 2.3.

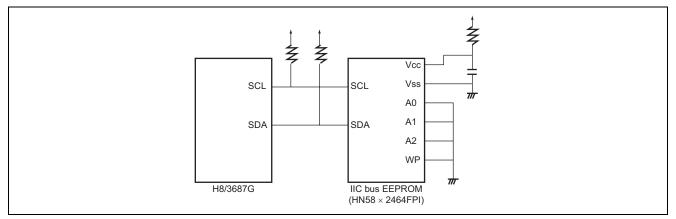


Figure 2.3 IIC Bus EEPROM Connection Example

2. Function allocations in this sample task are shown in table 2.1. Functions are allocated as shown in table 2.1, and EEPROM back-up processing is performed upon low voltage detection.

Function	Function allocation
PSS	A 13-bit counter with the system clock used as an input signal
LVDCR	Controls operation/cancellation of the low-voltage detection circuit
LVDSR	Flags indicating whether the power supply voltage has risen or fallen from a certain constant voltage
PDR7	In order to confirm the operating mode, an LED connected to pin P74 is lit
PCR7	Pin P74 is set to an output pin
SYSCR1	Controls low-power consumption modes
SYSCR2	Controls low-power consumption modes
IRQ1	LED blinking interval modification switch
SCL	Contact pin to EEPROM
SDA	Contact pin to EEPROM

Table 2.1 Function allocations

3. Specifications of the IIC bus EEPROM used in this sample task are described below.

The IIC bus EEPROM is a two-wired serial interface EEPROM (electrically erasable/programmable ROM). In this sample task, 64-kbit EEPROM (HN58X2464FPI) manufactured by Renesas Technology Corp. is used. The features of the EEPROM used in this sample task are shown in table 2.2.

Table 2.2 64-kbit EEPROM manufactured by Renesas Technology Corp. (HN58X2464FPI)

Single power supply		1.8 to 5.5 V
Two-wired serial interfac	се	IIC bus interface
Operating frequency		400 kHz
Current consumption	At standby	3 µA (max.)
	At reading	1 mA (max.)
	At writing	3 mA (max.)
Page rewriting		Page size: 32 bytes
Rewrite time		10 ms (2.7 to 5.5 V or higher)/15ms (1.8 to 2.7 V)
Number of times for rev	vriting	10 ⁵ (during page rewriting)

3. Description of Operation

1. Timing Charts

Figure 3.1 shows the procedure for setting and canceling LVDI, and transitions to standby mode triggered by low-voltage detection interrupts.

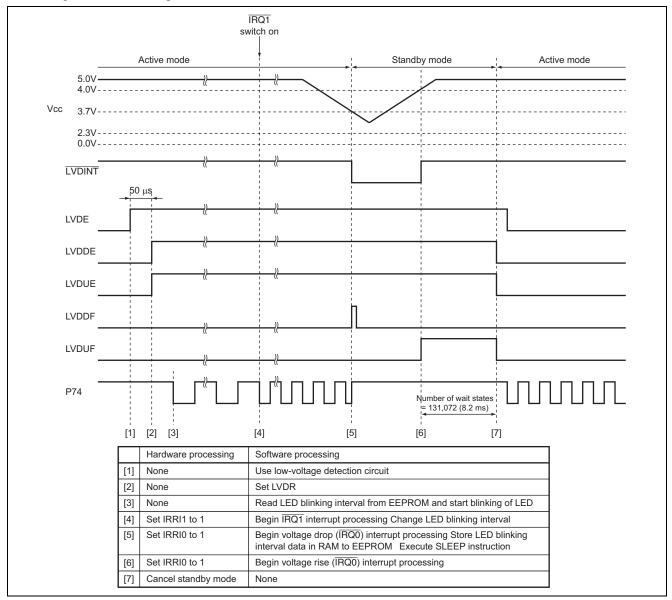


Figure 3.1 Description of operation (1)

Figure 3.2 illustrates a transition to standby mode triggered by a low-voltage detection interrupt, and reset operation on low voltage detection.

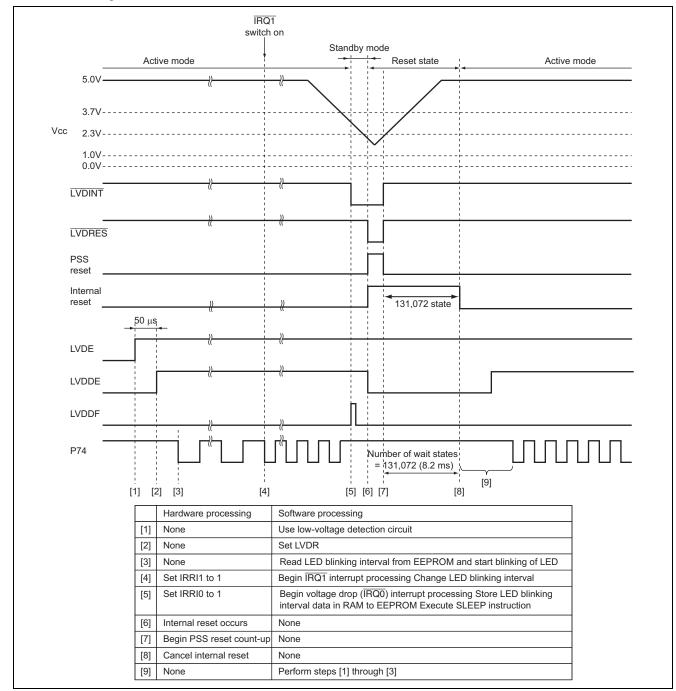


Figure 3.2 Description of operation (2)

2. EEPROM Write-in Time

In this sample task, data (4 bytes) in RAM is backed up in EEPROM at low voltage. Processing time from the beginning of interrupts to the end of write-in to EEPROM at low voltage is shown in table 3.1. The power supply voltage should be kept at the operation guaranteed lower limit voltage (3.0 V) or higher until back-up processing completes.

Table 3.1 EEPROM backup processing time

Data size to be written	Processing time
4 bytes	330 µs

4. Description of Software

4.1 Description of modules

Modules in this sample task are listed in table 4.1.

Table 4.1 Description of modules

Module name	Label name	Function
Main routine	main	Set low-voltage detection circuit, enable interrupts, read EEPROM
		data, control LED (P74), and judge switch connected to IRQ0
Low-voltage	irq0int	IRQ0 interrupt processing
detection interrupt		Clear LVD flag, set lpcnt to 0 or 1, and EEPROM back-up processing
Switch on	irq1int	IRQ1 interrupt processing
		Set lpcnt to 2
EEPROM access	Read_n_EEPROM	Read n bytes from EEPROM
routine	Write_n_byte	Write n bytes to EEPROM
	Write_data_EEPROM	Write data to EEPROM
	Write_data_End_EEPROM	Write last data to EEPROM
	Set_adrs_EEPROM	Specify EEPROM address
	Recv_datan_EEPROM	Receive n-byte data using IIC

4.2 Description of arguments

Arguments for respective functions are described below.

• Read_n_EEPROM function

Argument	Function	Data length
adrs	Specify read address	2 bytes
*rd_ptr	Read data storage address	1 byte
no	Read data length	2 bytes

• Write_n_EEPROM function

Argument	Function	Data length
adrs	Specifies write address	2 bytes
*wr_ptr	Write data storage address	1 byte
no	Write data length	2 bytes

• Write_data_EEPROM function

Argument	Function	Data length
wr_data	Write data	1 byte

• Write_data_End_EEPROM function

Argument	Function	Data length
wr_data	Write data	1 byte

• Set_adrs_EEPROM function

Argument	Function	Data length
adrs	Write/read address	2 bytes

Recv_datan_EEPROM function

Argument	Function	Data length
*rd_ptr	Read data storage address	1 byte
no	Read byte length 1 to 64	2 bytes

4.3 Description of Internal Registers Used

Internal registers used in this sample task are indicated below.

Bit	Bit name	Setting	Function
7	LVDE	1	LVD enable
			LVDE = 0: Low-voltage detection circuit is not used (standby state)
			LVDE = 1: Low-voltage detection circuit is used
3	LVDSEL	0	LVDR detection level selection
			LVDSEL = 0: Sets reset detection voltage to 2.3 V
			LVDSEL = 1: Sets reset detection voltage to 3.6 V
2	LVDRE	1	LVDR enable
			LVDRE = 0: Disables reset by LVDR
			LVDRE = 1: Enables reset by LVDR
1	LVDDE	1	LVDR enable
			LVDDE = 0: Disables interrupt requests when voltage falls
			LVDDE = 1: Enables interrupt requests when voltage falls
0	LVDUE	1	LVDR enable
			LVDUE = 0: Disables interrupt requests when voltage rises
			LVDUE = 1: Enables interrupt requests when voltage rises
	VDSR Low-vol Bit name	Setting	status register Address: 0xF731 Function
• L'	VDSK LOW-VOI	lage delection s	
		-	-
Bit		-	Function LVD power supply voltage drop flag
Bit	Bit name	Setting	Function LVD power supply voltage drop flag LVDDF = 0: Cleared to 0 state
Bit 1	Bit name LVDDF	Setting 0	FunctionLVD power supply voltage drop flagLVDDF = 0: Cleared to 0 stateLVDDF = 1: Power supply voltage has fallen to 3.7 V or below
Bit 1	Bit name	Setting	Function LVD power supply voltage drop flag LVDDF = 0: Cleared to 0 state LVDDF = 1: Power supply voltage has fallen to 3.7 V or below LVD power supply voltage rise flag
Bit 1	Bit name LVDDF	Setting 0	Function LVD power supply voltage drop flag LVDDF = 0: Cleared to 0 state LVDDF = 1: Power supply voltage has fallen to 3.7 V or below LVD power supply voltage rise flag LVDUF = 0: Cleared to 0 state
Bit 1	Bit name LVDDF	Setting 0	Function LVD power supply voltage drop flag LVDDF = 0: Cleared to 0 state LVDDF = 1: Power supply voltage has fallen to 3.7 V or below LVD power supply voltage rise flag LVDUF = 0: Cleared to 0 state LVDUF = 1: While the LVDUE flag of LVDCR is set to 1, the power supply
Bit 1	Bit name LVDDF	Setting 0	Function LVD power supply voltage drop flag LVDDF = 0: Cleared to 0 state LVDDF = 1: Power supply voltage has fallen to 3.7 V or below LVD power supply voltage rise flag LVDUF = 0: Cleared to 0 state LVDUF = 1: While the LVDUE flag of LVDCR is set to 1, the power supply voltage has fallen to 3.7 V or below, and risen again to 4.0 V or
Bit 1	Bit name LVDDF	Setting 0	Function LVD power supply voltage drop flag LVDDF = 0: Cleared to 0 state LVDDF = 1: Power supply voltage has fallen to 3.7 V or below LVD power supply voltage rise flag
Bit 1 0	Bit name LVDDF LVDUF	Setting 0 0	Function LVD power supply voltage drop flag LVDDF = 0: Cleared to 0 state LVDDF = 1: Power supply voltage has fallen to 3.7 V or below LVD power supply voltage rise flag LVDUF = 0: Cleared to 0 state LVDUF = 0: Cleared to 0 state LVDUF = 1: While the LVDUE flag of LVDCR is set to 1, the power supply voltage has fallen to 3.7 V or below, and risen again to 4.0 V or above before falling to Vreset (2.3 V) or below
Bit 1 0 ● PI	Bit name LVDDF LVDUF	Setting 0 0	Function LVD power supply voltage drop flag LVDDF = 0: Cleared to 0 state LVDDF = 1: Power supply voltage has fallen to 3.7 V or below LVD power supply voltage rise flag LVDUF = 0: Cleared to 0 state LVDUF = 0: Cleared to 0 state LVDUF = 1: While the LVDUE flag of LVDCR is set to 1, the power supply voltage has fallen to 3.7 V or below, and risen again to 4.0 V or above before falling to Vreset (2.3 V) or below Address: 0xFFDA
Bit 1 0 • PI Bit	Bit name LVDDF LVDUF DR7 Port data Bit name	Setting 0 0 a register 7 Setting	Function LVD power supply voltage drop flag LVDDF = 0: Cleared to 0 state LVDDF = 1: Power supply voltage has fallen to 3.7 V or below LVD power supply voltage rise flag LVDUF = 0: Cleared to 0 state LVDUF = 1: While the LVDUE flag of LVDCR is set to 1, the power supply voltage has fallen to 3.7 V or below, and risen again to 4.0 V or above before falling to Vreset (2.3 V) or below Address: 0xFFDA Function
Bit 1 0 ● PI Bit	Bit name LVDDF LVDUF	Setting 0 0	Function LVD power supply voltage drop flag LVDDF = 0: Cleared to 0 state LVDDF = 1: Power supply voltage has fallen to 3.7 V or below LVD power supply voltage rise flag LVDUF = 0: Cleared to 0 state LVDUF = 0: Cleared to 0 state LVDUF = 1: While the LVDUE flag of LVDCR is set to 1, the power supply voltage has fallen to 3.7 V or below, and risen again to 4.0 V or above before falling to Vreset (2.3 V) or below Address: 0xFFDA Function Port data register 74
Bit 1 0 ● PI Bit	Bit name LVDDF LVDUF DR7 Port data Bit name	Setting 0 0 a register 7 Setting	Function LVD power supply voltage drop flag LVDDF = 0: Cleared to 0 state LVDDF = 1: Power supply voltage has fallen to 3.7 V or below LVD power supply voltage rise flag LVDUF = 0: Cleared to 0 state LVDUF = 0: Cleared to 0 state LVDUF = 1: While the LVDUE flag of LVDCR is set to 1, the power supply voltage has fallen to 3.7 V or below, and risen again to 4.0 V or above before falling to Vreset (2.3 V) or below Address: 0xFFDA Function Port data register 74 P74 = 0: Pin P74 output level Low
 Bit 1 0 0 	Bit name LVDDF LVDUF DR7 Port data Bit name	Setting 0 0 a register 7 Setting	Function LVD power supply voltage drop flag LVDDF = 0: Cleared to 0 state LVDDF = 1: Power supply voltage has fallen to 3.7 V or below LVD power supply voltage rise flag LVDUF = 0: Cleared to 0 state LVDUF = 0: Cleared to 0 state LVDUF = 1: While the LVDUE flag of LVDCR is set to 1, the power supply voltage has fallen to 3.7 V or below, and risen again to 4.0 V or above before falling to Vreset (2.3 V) or below Address: 0xFFDA Function Port data register 74
Bit 1 0 • PI Bit 4	Bit name LVDDF LVDUF DR7 Port data Bit name P74	Setting 0 0 a register 7 Setting	Function LVD power supply voltage drop flag LVDDF = 0: Cleared to 0 state LVDDF = 1: Power supply voltage has fallen to 3.7 V or below LVD power supply voltage rise flag LVDUF = 0: Cleared to 0 state LVDUF = 1: While the LVDUE flag of LVDCR is set to 1, the power supply voltage has fallen to 3.7 V or below, and risen again to 4.0 V or above before falling to Vreset (2.3 V) or below Address: 0xFFDA Function Port data register 74 P74 = 0: Pin P74 output level Low
Bit 0 • PI Bit 4 • PN	Bit name LVDDF LVDUF DR7 Port data Bit name P74	Setting 0 0 0 a register 7 Setting 0 de register 1	Function LVD power supply voltage drop flag LVDDF = 0: Cleared to 0 state LVDDF = 1: Power supply voltage has fallen to 3.7 V or below LVD power supply voltage rise flag LVDUF = 0: Cleared to 0 state LVDUF = 1: While the LVDUE flag of LVDCR is set to 1, the power supply voltage has fallen to 3.7 V or below, and risen again to 4.0 V or above before falling to Vreset (2.3 V) or below Address: 0xFFDA Function Port data register 74 P74 = 0: Pin P74 output level Low P74 = 1: Pin P74 output level High
Bit 1 0 ● PI Bit 4	Bit name LVDDF LVDUF DR7 Port data Bit name P74 MR1 Port mod Bit name	Setting 0 0 0 a register 7 Setting 0	Function LVD power supply voltage drop flag LVDDF = 0: Cleared to 0 state LVDDF = 1: Power supply voltage has fallen to 3.7 V or below LVD power supply voltage rise flag LVDUF = 0: Cleared to 0 state LVDUF = 1: While the LVDUE flag of LVDCR is set to 1, the power supply voltage has fallen to 3.7 V or below, and risen again to 4.0 V or above before falling to Vreset (2.3 V) or below Address: 0xFFDA Function Port data register 74 P74 = 0: Pin P74 output level Low P74 = 1: Pin P74 output level High Address: 0xFFE0 Function
Bit 0 • PI Bit 4 • PN Bit	Bit name LVDDF LVDUF DR7 Port data Bit name P74	Setting 0 0 0 a register 7 Setting 0 de register 1 Setting	Function LVD power supply voltage drop flag LVDDF = 0: Cleared to 0 state LVDDF = 1: Power supply voltage has fallen to 3.7 V or below LVD power supply voltage rise flag LVDUF = 0: Cleared to 0 state LVDUF = 1: While the LVDUE flag of LVDCR is set to 1, the power supply voltage has fallen to 3.7 V or below, and risen again to 4.0 V or above before falling to Vreset (2.3 V) or below Address: 0xFFDA Function Port data register 74 P74 = 0: Pin P74 output level Low P74 = 1: Pin P74 output level High Address: 0xFFE0

H8/300H Tiny Series EEPROM Back-Up Processing upon Detecting Low

• PC	CR7 Port cont	rol register 7	Address: 0xFFEA
Bit	Bit name	Setting	Function
4	PCR74	0	Port control register 74
			PCR74 = 0: Sets pin P74 to P74 input pin function
			PCR74 = 1: Sets pin P74 to P74 output pin function
• 67	VSCD1 System of	ontrol register 1	Address: 0xFFF0
	SCR1 System co	-	
Bit	Bit name	Setting	Function
7	SSBY	1	Software standby
			DTON = 0, SSBY = 1: After executing SLEEP instruction in active mode,
6	676 2	STS2 = 1	makes transition to standby mode
6	STS2		Standby timer select 2 to 0
5	STS1	STS1 = 0	When $STS2 = 1$, $STS1 = 0$ and $STS0 = 0$, the number of wait states is set to 121.072 states
4	STS0	STS0 = 0	131,072 states
• SY	SCR2 System co	ontrol register 2	Address: 0xFFF1
Bit	Bit name	Setting	Function
5	DTON	0	Direct transfer on flag
			DTON = 0, SSBY = 1: After executing SLEEP instruction in active mode,
			makes transition to standby mode
4	MA2	MA2 = 0	Active mode clock select 2 to 0
3	MA1	MA1 = x	MA2 = 0, MA1 = x, MA0 = x:
2	MAO	MA0 = x	Sets active mode/sleep mode operating clock to osc
-		$\mathbf{W} = \mathbf{X}$	(x: don't care)
• IE	GR1 Interrupt	edge select registe	er 1 Address: 0xFFF2
Bit	Bit name	Setting	Function
0	IEG1	1	IRQ1 edge select
			IEG1 = 0: Selects falling edge as IRQ1 pin input detection edge
			IEG1 = 1: Selects rising edge as IRQ1 pin input detection edge
• IE	NR1 Interrupt	enable register 1	Address: 0xFFF4
Bit	Bit name	Setting	Function
1		1	IRQ1 interrupt request enable
1	IEN1		
	IEN1	•	
	IEN1		IEN1 = 0: Disables interrupt requests at pin IRQ1
· 	IEN1	·	
		flag register 1	IEN1 = 0: Disables interrupt requests at pin IRQ1
		·	IEN1 = 0: Disables interrupt requests at pin IRQ1 IEN1 = 1: Enables interrupt requests at pin IRQ1
• IR	R1 Interrupt	flag register 1	IEN1 = 0: Disables interrupt requests at pin IRQ1 IEN1 = 1: Enables interrupt requests at pin IRQ1 Address: 0xFFF6
• IR Bit	R1 Interrupt Bit name	flag register 1 Setting	IEN1 = 0: Disables interrupt requests at pin IRQ1 IEN1 = 1: Enables interrupt requests at pin IRQ1 Address: 0xFFF6 Function IRQ1 interrupt request flag
• IR Bit	R1 Interrupt Bit name	flag register 1 Setting	IEN1 = 0: Disables interrupt requests at pin IRQ1 IEN1 = 1: Enables interrupt requests at pin IRQ1 Address: 0xFFF6 Function IRQ1 interrupt request flag IRR1 = 0: IRQ1 pin interrupt not requested
• IR Bit 1	R1 Interrupt Bit name IRRI1	flag register 1 Setting 0	IEN1 = 0: Disables interrupt requests at pin IRQ1 IEN1 = 1: Enables interrupt requests at pin IRQ1 Address: 0xFFF6 Function IRQ1 interrupt request flag IRR1 = 0: IRQ1 pin interrupt not requested IRR1 = 1: IRQ1 pin interrupt requested
• IR Bit	R1 Interrupt Bit name	flag register 1 Setting	IEN1 = 0: Disables interrupt requests at pin IRQ1 IEN1 = 1: Enables interrupt requests at pin IRQ1 Address: 0xFFF6 Function IRQ1 interrupt request flag IRR1 = 0: IRQ1 pin interrupt not requested IRR1 = 1: IRQ1 pin interrupt requested IRQ0 interrupt request flag
• IR Bit 1	R1 Interrupt Bit name IRRI1	flag register 1 Setting 0	IEN1 = 0: Disables interrupt requests at pin IRQ1 IEN1 = 1: Enables interrupt requests at pin IRQ1 Address: 0xFFF6 Function IRQ1 interrupt request flag IRR1 = 0: IRQ1 pin interrupt not requested IRR1 = 1: IRQ1 pin interrupt requested

• ICC	CR1 IIC bus	control register 1	
Bit	Bit name	Setting	Function
7	ICE	1	IIC bus interface enable
			ICE = 0: IIC2 module enters function stop status (SCL/SDA pin functions as a port)
			ICE = 1: IIC2 module enters transfer enabled status (SCL/SDA pin functions as a bus drive pin)
6	RCVD	0	Receive disable
			RCVD = 0: Enables subsequent reception operation
			RCVD = 1: Disables subsequent reception operation
5	MST	0	Master/slave select
			MST = 0: Selects slave
			MST = 1: Selects master
4	TRS	0	Transmission/reception select
	-	-	TRS = 0: Reception mode
			TRS = 1: Transmission mode
3	CKS3	CKS3 = 0	Transfer clock select 3 to 0
2	CKS2	CKS2 = 0	CKS3 = 0, $CKS2 = 0$, $CKS1 = 0$, $CKS0 = 1$: Set transfer rate to 400 kHz
			when $\phi = 16$
	CKS1	UNST = 0	
1 0	CKS1 CKS0	CKS1 = 0 CKS0 = 1	·
1 0	CKS0		Address: 0xF749
1 0 • ICC	CKS0 CR2 IIC bus o	CKS0 = 1 control register 2	Address: 0xF749
1 0 • ICC Bit	CKS0 CR2 IIC bus o Bit name	CKS0 = 1 control register 2 Setting	Address: 0xF749 Function
1 0 • ICC Bit	CKS0 CR2 IIC bus o Bit name	CKS0 = 1 control register 2 Setting	Address: 0xF749 Function Bus busy
1 0 • ICC Bit	CKS0 CR2 IIC bus o Bit name	CKS0 = 1 control register 2 Setting	Address: 0xF749 Function Bus busy BBSY = 0: IIC bus is being used
1 0 • ICC <u>Bit</u> 7	CKS0 CR2 IIC bus o Bit name BBSY	CKS0 = 1 control register 2 Setting 1	Address: 0xF749 Function Bus busy BBSY = 0: IIC bus is being used BBSY = 1: IIC bus is not used
1 0 • ICC Bit 7	CKS0 CR2 IIC bus o Bit name BBSY	CKS0 = 1 control register 2 Setting 1	Address: 0xF749 Function Bus busy BBSY = 0: IIC bus is being used BBSY = 1: IIC bus is not used Start/stop condition issue prohibited
1 0 • ICC Bit 7	CKS0 CR2 IIC bus o Bit name BBSY	CKS0 = 1 control register 2 Setting 1	Address: 0xF749 Function Bus busy BBSY = 0: IIC bus is being used BBSY = 1: IIC bus is not used Start/stop condition issue prohibited RCVD = 0: Permits issuance
1 0 • ICC <u>Bit</u> 7	CKS0 CR2 IIC bus of Bit name BBSY SCP	CKS0 = 1 control register 2 Setting 1	Address: 0xF749 Function Bus busy BBSY = 0: IIC bus is being used BBSY = 1: IIC bus is not used Start/stop condition issue prohibited RCVD = 0: Permits issuance RCVD = 1: Prohibits issuance
1 0 • ICC <u>Bit</u> 7	CKS0 CR2 IIC bus of Bit name BBSY SCP	CKS0 = 1 control register 2 Setting 1	Address: 0xF749 Function Bus busy BBSY = 0: IIC bus is being used BBSY = 1: IIC bus is not used Start/stop condition issue prohibited RCVD = 0: Permits issuance RCVD = 1: Prohibits issuance SDA output value control
1 0 • ICC <u>Bit</u> 7	CKS0 CR2 IIC bus of Bit name BBSY SCP	CKS0 = 1 control register 2 Setting 1	Address: 0xF749 Function Bus busy BBSY = 0: IIC bus is being used BBSY = 1: IIC bus is not used Start/stop condition issue prohibited RCVD = 0: Permits issuance RCVD = 1: Prohibits issuance SDA output value control SDAO = 0: Low level
1 0 • ICC Bit 7 6 5	CKS0 CR2 IIC bus of Bit name BBSY SCP SDAO	CKS0 = 1 control register 2 Setting 1 0 1	Address: 0xF749 Function Bus busy BBSY = 0: IIC bus is being used BBSY = 1: IIC bus is not used Start/stop condition issue prohibited RCVD = 0: Permits issuance RCVD = 1: Prohibits issuance SDA output value control SDAO = 0: Low level SDAO = 1: High level
1 0 • ICC Bit 7 6 5	CKS0 CR2 IIC bus of Bit name BBSY SCP SDAO	CKS0 = 1 control register 2 Setting 1 0 1	Address: 0xF749 Function Bus busy BBSY = 0: IIC bus is being used BBSY = 1: IIC bus is not used Start/stop condition issue prohibited RCVD = 0: Permits issuance RCVD = 1: Prohibits issuance SDA output value control SDAO = 0: Low level SDAO = 1: High level SDAO write protection
1 0 • ICC Bit 7 6 5	CKS0 CR2 IIC bus of Bit name BBSY SCP SDAO	CKS0 = 1 control register 2 Setting 1 0 1	Address: 0xF749 Function Bus busy BBSY = 0: IIC bus is being used BBSY = 1: IIC bus is not used Start/stop condition issue prohibited RCVD = 0: Permits issuance RCVD = 1: Prohibits issuance SDA output value control SDAO = 0: Low level SDAO = 1: High level SDAO write protection SDAOP = 0: Writing enabled
1 0 Bit 7 6 5	CKS0 CR2 IIC bus of Bit name BBSY SCP SDAO SDAOP	CKS0 = 1 control register 2 Setting 1 0 1 1 1	Address: 0xF749 Function Bus busy BBSY = 0: IIC bus is being used BBSY = 1: IIC bus is not used Start/stop condition issue prohibited RCVD = 0: Permits issuance RCVD = 1: Prohibits issuance SDA output value control SDAO = 0: Low level SDAO = 1: High level SDAOP = 0: Writing enabled SDAOP = 1: Writing disabled
1 0 Bit 7 6 5	CKS0 CR2 IIC bus of Bit name BBSY SCP SDAO SDAOP	CKS0 = 1 control register 2 Setting 1 0 1 1 1	Address: 0xF749 Function Bus busy BBSY = 0: IIC bus is being used BBSY = 1: IIC bus is not used Start/stop condition issue prohibited RCVD = 0: Permits issuance RCVD = 1: Prohibits issuance SDA output value control SDAO = 0: Low level SDAO = 1: High level SDAO = 0: Writing enabled SDAOP = 0: Writing disabled SCL output level monitor
1 0 Bit 7 6 5	CKS0 CR2 IIC bus of Bit name BBSY SCP SDAO SDAOP	CKS0 = 1 control register 2 Setting 1 0 1 1 1	Address: 0xF749 Function Bus busy BBSY = 0: IIC bus is being used BBSY = 1: IIC bus is not used Start/stop condition issue prohibited RCVD = 0: Permits issuance RCVD = 1: Prohibits issuance SDA output value control SDAO = 0: Low level SDAO = 1: High level SDAO = 1: High level SDAOP = 0: Writing enabled SDAOP = 1: Writing disabled SCL output level monitor SCLO = 0: SCL outputs low level signal
1 0 Bit 7 6 5 4 3	CKS0 CR2 IIC bus of Bit name BBSY SCP SDAO SDAOP SCLO	CKS0 = 1 control register 2 Setting 1 0 1 1 1 1 1	Address: 0xF749 Function Bus busy BBSY = 0: IIC bus is being used BBSY = 1: IIC bus is not used Start/stop condition issue prohibited RCVD = 0: Permits issuance RCVD = 1: Prohibits issuance SDA output value control SDAO = 0: Low level SDAO = 1: High level SDAO write protection SDAOP = 0: Writing enabled SDAOP = 1: Writing disabled SCL output level monitor SCLO = 0: SCL outputs low level signal SCLO = 1: SCL outputs high level signal

• ICIE	R IIC bus i	nterrupt enable	register Address: 0xF74B
Bit	Bit name	Setting	Function
1	ACKBR	—	Receive acknowledgment
			ACKBR = 0: Receive acknowledgment = 0
_			ACKBR = 1: Receive acknowledgment = 1
0	ACKBT	0	Transmit acknowledgement
			ACKBT = 0: Transmit acknowledgment = 0
			ACKBT = 1: Transmit acknowledgment = 1

• ICSR	IIC bus s	tatus register	Address: 0xF74C
Bit	Bit name	Setting	Function
7	TDRE	—	Transmit data empty
			TDRE = 0: Cleared to 0
			TDRE = 1: data is transferred from ICDRT to ICDRS
6	TEND	—	Transmit end
			TEND = 0: Cleared to 0
			TEND = 1: Ninth SCL clock rises when TDRE is 1 in the IIC bus format
5	RDRF	—	Receive data register full
			RDRF = 0: Cleared to 0
			RDRF = 1: Received data is transferred from ICDRS to ICDRR
3	STOP	0	Stop condition detection flag
			STOP = 0: Cleared to 0
			STOP = 1: Stop condition is detected upon completion of frame transfer

• ICDRT IIC bus transmit data register Address: 0xF74E Function: Stores transmitted data. When detecting a fact that ICDRS is available, transfers data from ICDRT to ICDRS to start data transmission.

Setting:

- ICDRR IIC bus receive data register Address: 0xF74F •
- Function: Stores received data. When 1-byte data reception is completed, transfers data from ICDRS to ICDRR to allow subsequent data reception.

Setting:

4.4 **Description of RAM Used**

The RAM used in this sample task is described in table 4.2.

Table 4.2	Description of RAM used
-----------	-------------------------

Label name	Function	Size	Used in
lpcnt	Flag to discriminate low-voltage detection states	1 byte	Main routine
	Lpcnt = 0: Returned to normal mode		Low-voltage
	Lpcnt = 1: At low power voltage, backs up data in RAM to		detection interrupt
	EEPROM, and transits to module standby		Switch on
	Lpcnt = 2: IRQ1 interrupt, low-voltage detection circuit disabled		

4.5 Module Hierarchical Diagram

The module hierarchical diagram of this sample task is shown in figure 4.1.

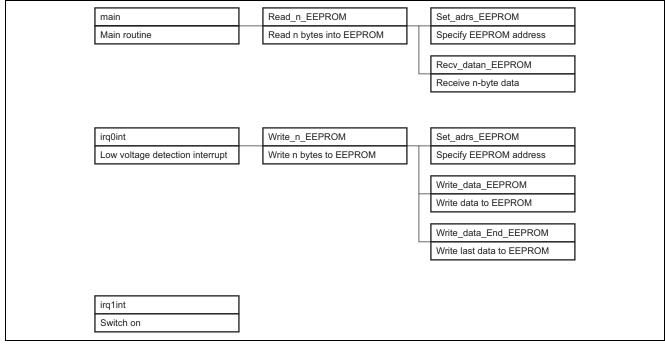
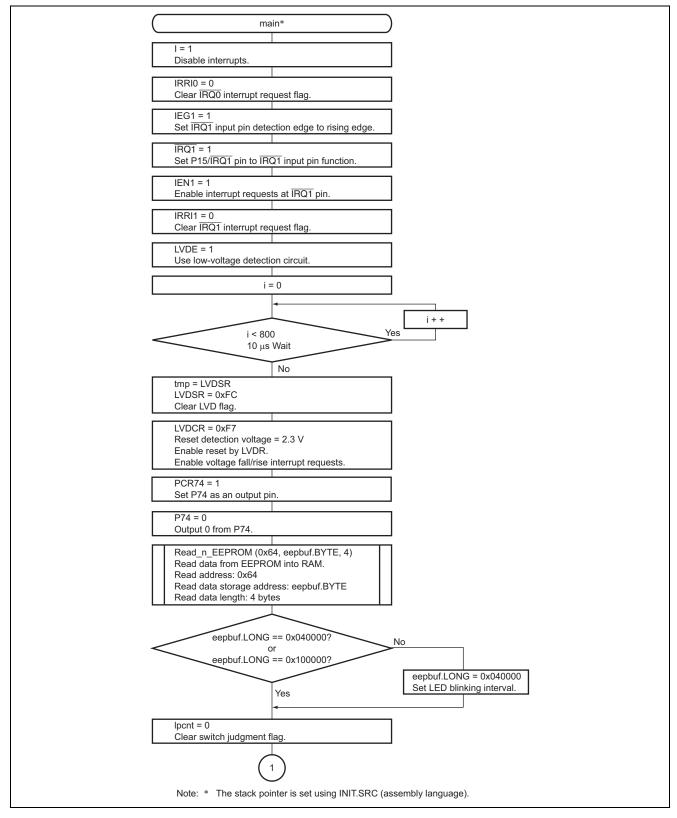
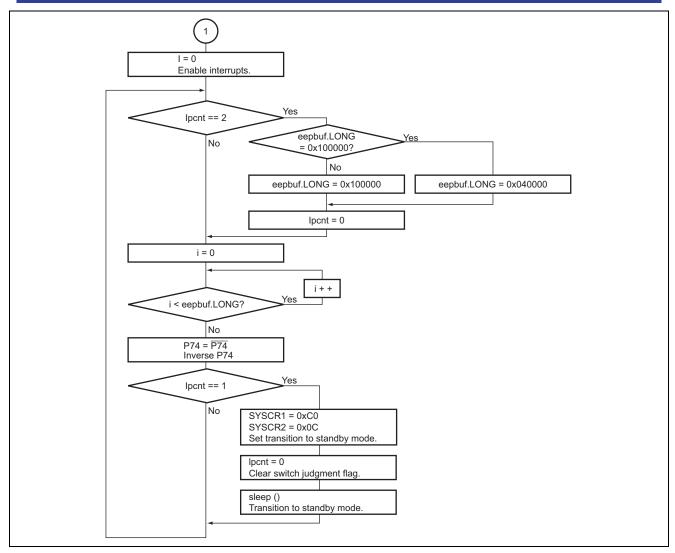
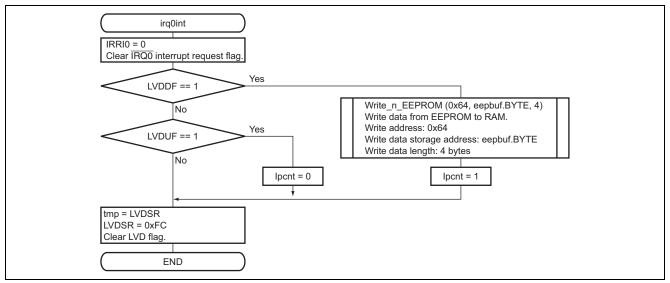



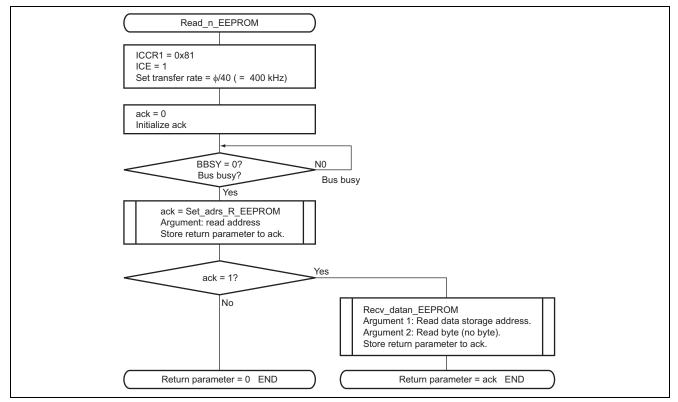
Figure 4.1 Module Hierarchical Diagram

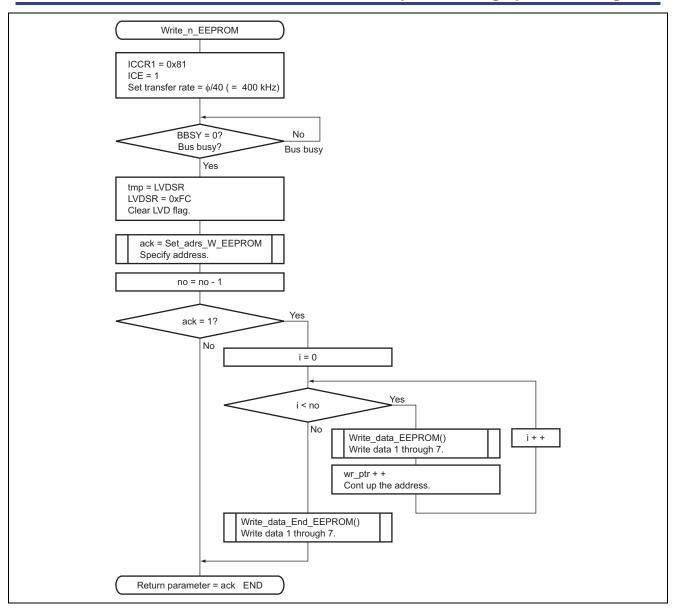


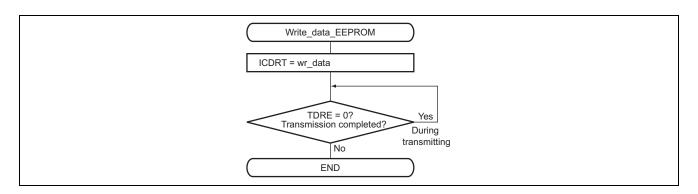
5. Flowcharts


1. Main routine

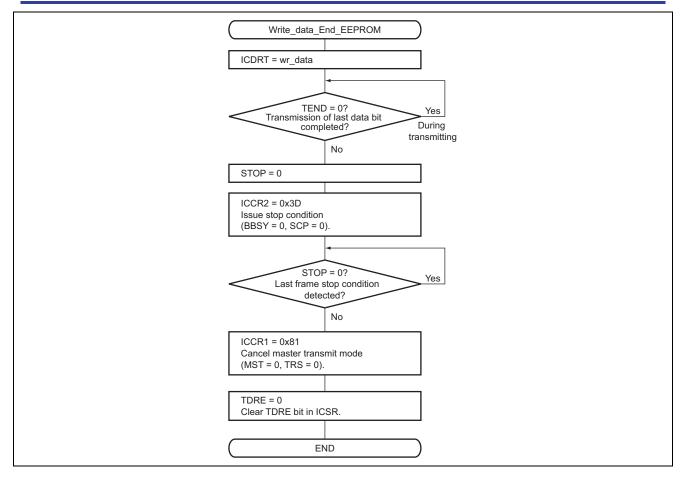
2. Low-voltage Detection Interrupts

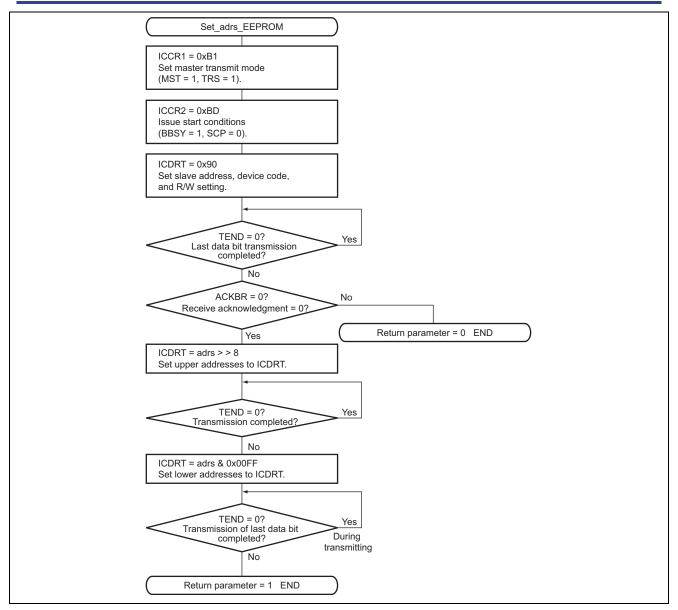


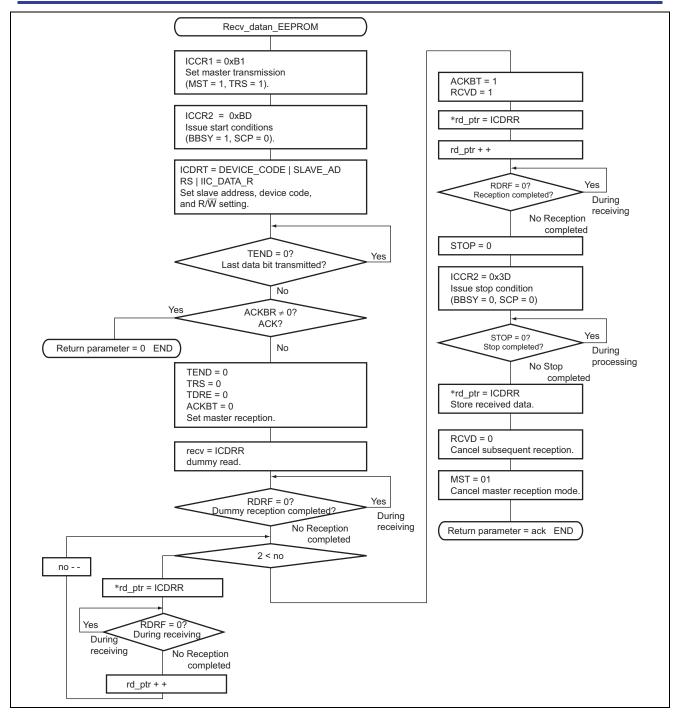

3. Switch-on


(irq1int	ıt
[IRRI1 = 0 Clear IRQ1 interrupt r	t request flag.
[lpcnt = 2	
(END	

4. EEPROM Access Routine







6. Program Listing

/			****	. ,
/*		(0.50.0.0.		*/
	HN Series -H8	/3687G-		*/
	ation Note			*/
/*				۲/
/* 'Memor	y Backup to E	EPROM by LVDI'		۲/
/*				۲/
/* Functi	on		*	۲/
/* : LVD	(Interrupt by	lowvoltage detect)	*	۲/
/* : IIC	Bus Interface	2 (EEPROM Access)	*	۲/
/*			*	۲/
/* Extern	al Clock : 16	MHz	*	۲/
/* Intern	al Clock : 16	MHz	*	۲/
/* Sub Cl	ock : 32	.768kHz	*	۲/
/*			*	۲/
/*******	*******	*****	***************************************	۲/
#include	<machine.h></machine.h>			
/*******	* * * * * * * * * * * * *	*****	****	۲,
/* Symbol	Definition		*	۲/
/*******	*****	*****	****	۲/
struct BIT	{			
unsign	ed char b7:	1; /* bit7 */		
	ed char b6:	1; /* bit6 */		
	ed char b5:	1; /* bit5 */		
unsign	ed char b4:			
	ed char b3:			
	ed char b2:			
-	ed char bl:			
	ed char b1: ed char b0:			
	eu char Du.	1, /" DICU "/		
};				
# 3 -51	TIDOD	*(]-+:]:	0xF730 /* Low-voltage-detection control Register *	۴/
#define	LVDCR	*(volatile unsigned char *		
#define	LVDCR_BIT	(*(struct BIT *)0xF730)		*/
	LVDE	LVDCR_BIT.b7		*/
	LVDSEL	LVDCR_BIT.b3		*/
	LVDRE	LVDCR_BIT.b2		•/
#define	LVDSR	*(volatile unsigned char *		•/
#define	LVDSR_BIT	(*(struct BIT *)0xF731)		*/
#define	LVDDF	LVDSR_BIT.b1		۲/
#define	LVDUF	LVDSR_BIT.b0		۲/
#define	PDR7_BIT	(*(struct BIT *)0xFFD		۲/
#define	P74	PDR7_BIT.b4		۲/
#define	PMR1_BIT	(*(struct BIT *)0xFFE		۲/
#define	IRQ1	PMR1_BIT.b5	/* P15/IRQ1 Pin Function Switch *	۲/
#define	IRQ0	PMR1_BIT.b4	/* P14/IRQ0 Pin Function Switch *	۲/
#define	PCR7_BIT	(*(struct BIT *)0xFFE		۲/
#define	PCR74	PCR7_BIT.b4		۲/
#define	SYSCR1	*(volatile unsigned char *	0xFFF0 /* System Control Register 1 *	۲/
#define	SYSCR2	*(volatile unsigned char *	0xFFF1 /* System Control Register 2 *	۲/
#define	IEGR1_BIT	(*(struct BIT *)0xFFF2)	/* Interrupt Edge Select Register 1 *	۲/
#define	IEG1	IEGR1_BIT.b1	/* IRQ0 Edge Select *	۲/
#define	IEGO	IEGR1_BIT.b0	/* IRQ0 Edge Select *	۲/
#define	IENR1_BIT	(*(struct BIT *)0xFFF4)	/* Interrupt Enable Register 1 *	۲/
#define	IEN1	IENR1_BIT.b1	/* IRQ0 Interrupt Enable *	۲/

H8/300H Tiny Series EEPROM Back-Up Processing upon Detecting Low

		IENR1_BIT.b0		/
	R1_BIT	(*(struct BIT *)0xFFF6)		/
		IRR1_BIT.b1		/
#define IR	RIO	IRR1_BIT.b0	/* IRQO Interrupt Request Flag *	/
		2		
#pragma interr				
#pragma interr			*****	
,		***************************************		<i>'</i>
/* Function		****	***************************************	/
extern void IN			/* SP Set *	<i>'</i>
extern unsigne			, 51 500 ····	/
		nsigned char wr_data);		
-		_byte_EEPROM (unsigned short adrs);		
void main (vo				
void irq0int (
void irqlint (
void sleep (v				
/*********	*****	****	****	/
/* RAM defin	ie		*	/
/*********	*******	****	*****	/
volatile unsig	ned char lp	cnt;		
union addt{				
unsigned	long LO	NG;		
unsigned	char BY	TE[4];		
}eepbuf;				
/*********	*******	*****	***************************************	<i>'</i>
/* Vector Ad				/
/**********	******	***************************************	***************************************	<i>'</i>
#pragma sectio				/
void (*const V	YEC_TBL1[])(void) = {		/
INIT			/* 00 Reset *	/
};				
#pragma sectio			/* VECTOR SECTOIN SET *	/
void (*const V	/EC_TBL2[])(vold) = {	//	
irq0int			/* 1C IRQ0 Interrupt *	/
};			(1 manon on an	
#pragma sectio			/* VECTOR SECTOIN SET *	/
void (*const V	/EC_TBL3[])(vola) = {		
irqlint			/* 1E IRQ1 Interrupt *	/
};				
#pragma sectio			/* P *	/
#pragma sectio	111		/* ₽	/

/**************************************	***************************************	*******/
/* Main Program		*/
/**************************************	***************************************	*******/
void main (void)		
{		
unsigned long i;		
unsigned char tmp;		
<pre>set_imask_ccr(1);</pre>	/* Interrupt Disable	*/
IRRIO = 0;	/* Clear IRRIO	*/
IRGI = 0	/* Rising Edge of IRQ1 Input	*/
IRQ1 = 1;	/* Initialize IRQ1 Terminal Input	*/
IENI = 1;	/* IRQ1 Interruput Enable	*/
IRRI1 = 0;	/* Clear IRRI1	*/
	, order marri	,
LVDE = 1;	/* LVD Enable	*/
for(i=0; i<800; i++);	/* 50us Wait	*/
tmp = LVDSR;		
LVDSR = 0xFC;	/* Clear LVDDF,LVDUF	*/
LVDCR = 0xF7;	/* Set LVDRE,LVDDE,LVDUE	*/
PCR74 = 1;	/* P74 Output Pin	*/
P74 = 0;	/* P74 is Low	*/
<pre>Read_n_EEPROM(0x64, eepbuf.BYTE, 4);</pre>	/* Read EEPROM DATA -> eepbuf	*/
if(!((eepbuf.LONG==0x040000) (eepbuf.LONG==0x100000)))		
eepbuf.LONG = 0x040000;	/* Set eepbuf	*/
lpcnt = 0;	/* Clear lpcnt	*/
<pre>set_imask_ccr(0);</pre>	/* Interrupt Enable	*/
while(1){		
if(lpcnt == 2){	/* IRQ1 SW On?	*/
if(eepbuf.LONG == 0x100000)	/* Change eepbuf data	*/
eepbuf.LONG = 0x040000;		
else		
eepbuf.LONG = 0x100000;		
lpcnt = 0;	/* Clear lpcnt	*/
}		
<pre>for(i=0; i<eepbuf.long; i++);<="" pre=""></eepbuf.long;></pre>	/* Wait Loop	*/
₽74 = ~₽74;		
if(lpcnt == 1){	/* Lowvoltage detect ?	*/
SYSCR1 = 0xC0;		
SYSCR2 = 0x0C;		
lpcnt = 0;	/* Clear lpcnt	*/
<pre>sleep();</pre>	/* Transition to Standby Mode	*/
}		
}		
}		

/******	******	*****	********/
/* IRQ0	0 Interrupt		*/
/******	***************************************	*****	********/
void irq(Oint (void)		
{			
unsi	igned char tmp;		
	IO = 0;	/* Clear IRRIO	*/
if(I	LVDDF == 1) {	<pre>/* LVD Power-Supply Voltage Fall?</pre>	*/
	<pre>Write_n_EEPROM(0x64, eepbuf.BYTE, 4);</pre>	/* Memory Backup to EEPROM	*/
	<pre>lpcnt = 1;</pre>	/* Set Standby Mode flag	*/
}			
else	e if(LVDUF == 1)	/* LVD Power-Supply Voltage Rise?	*/
	<pre>lpcnt = 0;</pre>	/* IRQ0 Interrupt / Active Mode	*/
	= LVDSR;	()	
	SR = 0xFC;	/* Clear LVDDF,LVDUF	*/
}			
/+++++++		*****	*********
-	1 Interrupt		*/
		*****	********
,	lint (void)		/
{			
	I1 = 0;	/* Clear IRRI1	* /
	nt = 2i	/* Set lpcnt	*/
}		, bee ipene	,
1			
/******	*******	*****	********
/*			*/
	2 EEPROM read/write		*/
/*	H8/3687,H8/3694 EEPROM Function		*/
/*			*/
/******	***********	*****	********
#include	<machine.h></machine.h>		
#include			
/******	******	****	********/
/* Symb	bol Definition		*/
/******	***************************************	*******	********/
#define	DEVICE_CODE 0xA0	/* EEPROM DEVICE CODE:1010	*/
#define	SLAVE_ADRS 0x00	/* SLAVE ADRS:0	*/
#define	IIC_DATA_W 0x00	/* WRITE_DATA	*/
#define	IIC_DATA_R 0x01	/* READ_DATA	*/
/******	*****	****	*******/
/* Fund	ction define		*/
/******	***************************************	*****	********/
unsigned	char Set_adrs_EEPROM (unsigned short adrs);		
void Writ	te_data_EEPROM (unsigned char wr_data);		
void Writ	te_data_End_EEPROM (unsigned char wr_data);		
unsigned	char Recv_datan_EEPROM (unsigned char *rd_ptr , uns:	igned short no);	


```
/* Main Program
                                                                                            * /
/* Read_n_EEPROM (n:2-512 byte)
                                                                                            */
/*
     argument1:read address(unsigned short)
                                                                                            * /
/*
      argument2:read data address(unsigned char *)
                                                                                            * /
/*
      argument3:read data number(unsigned short)
                                                                                            * /
/*
      return: 1:OK/0:NG EEPROM NOACK (unsigned char)
                                                                                            */
unsigned char Read_n_EEPROM ( unsigned short adrs , unsigned char *rd_ptr , unsigned short no )
{
   unsigned char ack;
   IIC2.ICCR1.BYTE = 0x81;
                                                            /* Initialize (ICE=1,CKS=0001)
                                                                                            */
   ack = 0;
   while(IIC2.ICCR2.BIT.BBSY != 0);
                                                            /* Bus busy?
                                                                                            * /
   ack = Set_adrs_EEPROM(adrs);
                                                            /* Set address (dummy write)
                                                                                            * /
   if(ack == 1)
       ack = Recv_datan_EEPROM(rd_ptr,no);
                                                            /* Data read n byte
                                                                                            */
   return(ack);
}
Write_page_EEPROM (8byte)
                                                                                            */
/*
/*
     argument1:write address(unsigned short)
                                                                                            */
     argument2:write data address(unsigned char *)
/*
                                                                                            * /
/*
                                                                                            */
      argument3:write data number(unsigned short)
/*
                                                                                            * /
      return: 1:OK/0:NG EEPROM NOACK (unsigned char)
unsigned char Write_n_EEPROM( unsigned short adrs , unsigned char *wr_ptr , unsigned short no )
{
   unsigned short i;
   unsigned char ack;
   IIC2.ICCR1.BYTE = 0x81;
                                                            /* Initialize (ICE=1,CKS=0001)
                                                                                            */
   while(IIC2.ICCR2.BIT.BBSY != 0);
                                                            /* Bus busy?
                                                                                            */
                                                                                            */
   ack = Set adrs EEPROM(adrs);
                                                            /* Set address (dummy write)
   no = no-1;
   if(ack == 1){
       for(i = 0; i < no; i++){
          Write_data_EEPROM(*wr_ptr);
                                                            /* Data write1-7
                                                                                            */
          wr_ptr++;
       }
       Write_data_End_EEPROM(*wr_ptr);
                                                            /* Data write8 (last data)
                                                                                            * /
   }
   return(ack);
```

}

/***	***************************************	******	********/
/*	Write_data_EEPROM		*/
/*	argument1:write data(unsigned char)		*/
/*	return: none		*/
/***	***************************************	***************************************	********/
void	d Write_data_EEPROM(unsigned char wr_data)		
{			
	<pre>IIC2.ICDRT = wr_data;</pre>	/* < >Data set	*/
	<pre>while(IIC2.ICSR.BIT.TDRE == 0);</pre>	/* < >Finish Send?	*/
}			
/***	******	***************************************	********/
/*	Write_data_End_EEPROM		*/
/* /*	argument1:write data(unsigned char)		*/
'	return: none		
,			
	d Write_data_End_EEPROM(unsigned char wr_data)		
{	IICO ICODE - um data:	/* <3>Set low address	*/
	<pre>HIC2.ICDRT = wr_data; wbile(HIC2_ICCP_PIT_TEND0);</pre>	/* <3>set low address /* <3>send end?	*/
	<pre>while(IIC2.ICSR.BIT.TEND == 0);</pre>	/* <3>sena ena?	~/
	<pre>IIC2.ICSR.BIT.STOP = 0;</pre>	/* (STOP=0)	*/
			*/
	<pre>IIC2.ICCR2.BYTE = 0x3D;</pre>	/* (BSY=0,SCP=0)	^/
		/* STOP end?	*/
	<pre>while(IIC2.ICSR.BIT.STOP == 0);</pre>	/* STOP end?	~/
	<pre>IIC2.ICCR1.BYTE = 0x81;</pre>	<pre>/* End Master send(MST=0,TRS=0)</pre>	*/
	IIC2.ICSR.BIT.TDRE = 0;	/* TDRE = 0	*/
1	IICZ.ICSR.BII.IDRE - 07	/* IDRE = 0	- /
}			
/***	***************************************	****	********
/*			,
/*	Set_adrs_EEPROM		*/
/*	argument1:write/read address (unsigned short)		*/
'	return: 1:0K/0:NG EEPROM NOACK (unsigned char)		'
/***	*****		*********
/*	(ADDRESS SET ACTION / DUMMY WRITE ACTION)		*/
/*	(ADDRESS SET ACTION / DOMMI WRITE ACTION) <1> <2> <3>		*/
/*	123456789 123456789 123456789		*/
/*	123430789 123430789 123430789		*/
/*			*/
/***	slave WA addressHI A addressLO A	****	· / · · · /
,	gned char Set_adrs_EEPROM(unsigned short adrs)		/
ſ	gned that set_adis_berkom(unsigned short adis)		
ı	<pre>IIC2.ICCR1.BYTE = 0xB1;</pre>	<pre>/* Set Master send(MST=1,TRS=1)</pre>	*/
	IIC2.ICCR2.BYTE = 0xBD;		*/
	TICZ.ICCKZ.BITE - UKBD/	/* (BSY=1,SCP=0)	/
		/* <1>	*/
	<pre>IIC2.ICDRT = (unsigned char)(DEVICE_CODE SLAVE_ADRS IIC_DATA_W);</pre>	/* <1>Set slave address	*/
	IIC2.ICDRI = (unsigned char)(DEVICE_CODE SLAVE_ADRS IIC_DAIA_W);	/* <1>Set slave address	~/
	<pre>while(IIC2.ICSR.BIT.TEND == 0);</pre>	/* <1>send end?	*/
	WHITE(IIC2.ICSR.BII.IEND == 0)/	/* Crysend end?	
		(+ 2002)	*/
	if(IIC2.ICIER.BIT.ACKBR != 0)	/* ACK?	*/
	return(0);	(*	
		/* <2>	*/
	<pre>IIC2.ICDRT = (unsigned char)(adrs >> 8); while(IIC2.ICDR DIF TOPP 0);</pre>	/* <2>Set high address	*/
	<pre>while(IIC2.ICSR.BIT.TDRE == 0);</pre>	/* <2>send end?	*/
		/* <3>	*/
	<pre>IIC2.ICDRT = (unsigned char)(adrs & 0x00FF); </pre>	/* <3>Set low address	*/
	<pre>while(IIC2.ICSR.BIT.TEND == 0);</pre>	/* <3>send end?	*/
	return(1);		

```
}
```


******	******	**********
Recv_datan_EEPROM		*,
argument1:read data address(unsigned char *)		*,
argument2:read byte lto64(unsigned char)		* /
return: 1:0K/0:NG EEPROM NOACK (unsigned char)		*,
*****	*****	*********
*****	******	*********
(CURRENT ADDRESS READ ACTION)		*,
<1> <2> <3> <n></n>		*,
123456789 123456789 123456789 123456789		*,
101000010 00000000 00000000 00000000		*,
slave RA readdataA readdataA readdataA		*
******	******	* * * * * * * * * * *
signed char Recv_datan_EEPROM(unsigned char *rd_ptr , unsigned short no)		
unsigned char recv;		
<pre>IIC2.ICCR1.BYTE = 0xB1;</pre>	/* (ICE=1,TRS=1)	*
IIC2.ICCR2.BYTE = 0xBD;	/* (BSY=1,SCP=0)	*
101.100AL.BITE - VADU	/ (201-1,305-0)	
	/* <1>	*
<pre>IIC2.ICDRT = (unsigned char)(DEVICE_CODE SLAVE_ADRS IIC_DATA_R);</pre>	/* <1>Set slave address	*
<pre>while(IIC2.ICSR.BIT.TEND == 0);</pre>	/* <1>send end?	*
if(IIC2.ICIER.BIT.ACKBR != 0)	/* ACK?	*
return(0);		
	/* Set Master recv	*,
<pre>IIC2.ICSR.BIT.TEND = 0;</pre>	/* TEND = 0	*,
<pre>IIC2.ICCR1.BIT.TRS = 0;</pre>	<pre>/* Set Master recv(TRS = 0)</pre>	*,
<pre>IIC2.ICSR.BIT.TDRE = 0;</pre>	/* TDRE = 0	*,
<pre>IIC2.ICIER.BIT.ACKBT = 0;</pre>	/* (ACKBT = 0)	*,
<pre>recv = IIC2.ICDRR;</pre>	/* dummy read	*,
<pre>while(IIC2.ICSR.BIT.RDRF == 0);</pre>	/* dummy recv end?	*,
		*
<pre>while(2 < no){</pre>		
<pre>*rd_ptr = IIC2.ICDRR;</pre>	/* <>read	*.
<pre>while(IIC2.ICSR.BIT.RDRF == 0);</pre>	/* <>recv end?	*
rd_ptr++;	/* address increment	*
no;		
}		
	<pre>/* (ACKBT = 1)</pre>	*.
<pre>IIC2.ICIER.BIT.ACKBT = 1;</pre>		
<pre>IIC2.ICIER.BIT.ACKBT = 1; IIC2.ICCR1.BIT.RCVD = 1;</pre>	/* (RCVD = 1)	*,
<pre>IIC2.ICCR1.BIT.RCVD = 1;</pre>	/* (RCVD = 1)	
<pre>IIC2.ICCR1.BIT.RCVD = 1; *rd_ptr = IIC2.ICDRR;</pre>	/* (RCVD = 1) /* <no-1>read</no-1>	*,
<pre>IIC2.ICCR1.BIT.RCVD = 1; *rd_ptr = IIC2.ICDRR; rd_ptr++;</pre>	<pre>/* (RCVD = 1) /* <no-1>read /* address increment</no-1></pre>	*;
<pre>IIC2.ICCR1.BIT.RCVD = 1; *rd_ptr = IIC2.ICDRR; rd_ptr++; while(IIC2.ICSR.BIT.RDRF == 0);</pre>	<pre>/* (RCVD = 1) /* <no-1>read /* address increment /* <no-1>recv end?</no-1></no-1></pre>	*.
<pre>IIC2.ICCR1.BIT.RCVD = 1; *rd_ptr = IIC2.ICDRR; rd_ptr++;</pre>	<pre>/* (RCVD = 1) /* <no-1>read /* address increment /* <no-1>recv end?</no-1></no-1></pre>	*. * **
<pre>IIC2.ICCR1.BIT.RCVD = 1; *rd_ptr = IIC2.ICDRR; rd_ptr++; while(IIC2.ICSR.BIT.RDRF == 0);</pre>	<pre>/* (RCVD = 1) /* <no-1>read /* address increment /* <no-1>recv end?</no-1></no-1></pre>	*. * **
<pre>IIC2.ICCR1.BIT.RCVD = 1; *rd_ptr = IIC2.ICDRR; rd_ptr++; while(IIC2.ICSR.BIT.RDRF == 0);</pre>	<pre>/* (RCVD = 1) /* <no-l>read /* address increment /* <no-l>recv end?</no-l></no-l></pre>	* * * *
<pre>IIC2.ICCR1.BIT.RCVD = 1; *rd_ptr = IIC2.ICDRR; rd_ptr++; while(IIC2.ICSR.BIT.RDRF == 0); IIC2.ICSR.BIT.STOP = 0;</pre>	<pre>/* (RCVD = 1) /* <no-l>read /* address increment /* <no-l>recv end? /* (STOP=0)</no-l></no-l></pre>	* * * *
<pre>IIC2.ICCR1.BIT.RCVD = 1; *rd_ptr = IIC2.ICDRR; rd_ptr++; while(IIC2.ICSR.BIT.RDRF == 0); IIC2.ICSR.BIT.STOP = 0; IIC2.ICCR2.BYTE = 0x3D; while(IIC2.ICSR.BIT.STOP == 0);</pre>	<pre>/* (RCVD = 1) /* <no-l>read /* address increment /* <no-l>recv end? /* (STOP=0) /* (STOP=0) /* (BSY=0,SCP=0) /* STOP end?</no-l></no-l></pre>	* * * * * *
<pre>IIC2.ICCR1.BIT.RCVD = 1; *rd_ptr = IIC2.ICDRR; rd_ptr++; while(IIC2.ICSR.BIT.RDRF == 0); IIC2.ICSR.BIT.STOP = 0; IIC2.ICCR2.BYTE = 0x3D; while(IIC2.ICSR.BIT.STOP == 0); *rd_ptr = IIC2.ICDRR;</pre>	<pre>/* (RCVD = 1) /* <no-l>read /* address increment /* <no-l>recv end? /* (STOP=0) /* (BSY=0,SCP=0) /* STOP end? /* <no>read</no></no-l></no-l></pre>	* * * * * * *
<pre>IIC2.ICCR1.BIT.RCVD = 1; *rd_ptr = IIC2.ICDRR; rd_ptr++; while(IIC2.ICSR.BIT.RDRF == 0); IIC2.ICSR.BIT.STOP = 0; IIC2.ICCR2.BYTE = 0x3D; while(IIC2.ICSR.BIT.STOP == 0); *rd_ptr = IIC2.ICDRR; IIC2.ICCR1.BIT.RCVD = 0;</pre>	<pre>/* (RCVD = 1) /* <no-l>read /* address increment /* <no-l>recv end? /* (STOP=0) /* (STOP=0) /* (BSY=0,SCP=0) /* STOP end? /* <no>read /* (RCVD = 0)</no></no-l></no-l></pre>	*, *, *, *, *, *, *, *, *, *,
<pre>IIC2.ICCR1.BIT.RCVD = 1; *rd_ptr = IIC2.ICDRR; rd_ptr++; while(IIC2.ICSR.BIT.RDRF == 0); IIC2.ICSR.BIT.STOP = 0; IIC2.ICCR2.BYTE = 0x3D; while(IIC2.ICSR.BIT.STOP == 0); *rd_ptr = IIC2.ICDRR;</pre>	<pre>/* (RCVD = 1) /* <no-l>read /* address increment /* <no-l>recv end? /* (STOP=0) /* (BSY=0,SCP=0) /* STOP end? /* <no>read</no></no-l></no-l></pre>	(* ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;

```
}
```


Link address specifications

Section Name	Address
CV1	0x0000
CV2	0x001C
CV3	0x001E
Р	0x0100
В	0xFB80

Revision Record

Rev.	Date	Description		
		Page	Summary	
1.00	Sep.29.03	_	First edition issued	
2.00	May.07.04	_	Clerical error correction	
	-			

Keep safety first in your circuit designs!

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.

Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
- 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any thirdparty's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).

- 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- 5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.
- 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.

Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.

8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.