

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

 APPLICATION NOTE

REJ06B0232-0101/Rev.1.01 June 2007 Page 1 of 50

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Slave

Introduction
LIN (Local Interconnect Network) Application Note: Slave provides specification and setting examples that use the
on-chip peripheral functions of the H8/300H Tiny Series microcomputer to enable communication based on the LIN
communication protocol. This application note provides reference information for those users who are involved in
software and hardware design.

Target Device
H8/300H Tiny Series H8/3664F/3694F/36014F

Contents

1. LIN Communication System Overview ... 2

2. Library Software Specifications... 6

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Slave

REJ06B0232-0101/Rev.1.01 June 2007 Page 2 of 50

1. LIN Communication System Overview
This section describes LIN communication for a system that incorporates the sample LIN communication software
library (hereinafter referred to as the library) described in this application note.

1.1 Connection to the LIN Bus
When a system is connected to a network through the LIN bus (Figure 1) and via a LIN bus interface circuit (or an LIN
transceiver), LIN communication including header frame transmission as the slave node, as well as the transmission
and reception of response frames, is performed.

1.1.1 System Configuration
Figure 1 shows a sample LIN bus network system configuration.

Master node

LIN bus I/F circuit

LIN bus I/F circuit

Slave node-1 Slave node-2

Slave node-n
H8/300HTiny

SCI3
IRQ

timer W

LIN bus I/F circuit LIN bus I/F circuit

LIN bus

Figure 1 Block Diagram of a System Connected Through the LIN Bus

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Slave

REJ06B0232-0101/Rev.1.01 June 2007 Page 3 of 50

1.1.2 LIN Bus (Single-Wire Bus) Interface
Figure 2 shows a sample circuit for interfacing the LIN bus to the input/output pins of the on-chip functions of the
H8/300H Tiny Series microcomputer (hereinafter referred to as the microcomputer).

H8/300HTiny

FTIOA
RxD

5.0 V

5.0 V 5.0 V

Vbatt (12.0 V)

33 kΩ

47 kΩ

4.7 kΩ

470 pF

470 pF

1 kΩ (master)
33 kΩ (slave)100 Ω

470 pF47 kΩ

47 kΩ
TxD

IRQ0

LIN bus

Figure 2 Sample LIN Bus Interface Circuit

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Slave

REJ06B0232-0101/Rev.1.01 June 2007 Page 4 of 50

1.2 Overview of LIN Communication
This section describes the message frames that are transmitted and received using the LIN communication protocol.

1.2.1 Message Frame Structure
Figure 3 shows the structure of a message frame. Each message frame consists of a header frame transmitted from the
master node and a response frame transmitted from the master node or a slave node.

Message frame

Header frame

Response frame

LIN bus

Header frame (master)

Header frame (master)

13-bit or longer I/O port output SCI transmission 8-bit data

SCI transmission 8-bit data SCI transmission 8-bit data SCI transmission 8-bit data SCI transmission 8-bit data

SCI transmission data (55h)

Response frame (master or slave)

Response frame (master or slave)

Sync break
field

Sync break field

Sync
field

Sync field

ID
field

ID field

Checksum
field

Checksum field

Data 1 Data n
(n = 2, 4, 8)

Sync break delimiter

Sync break delimiter

Inter-frame spaceInter-frame
response space

Data field

Data field

Inter-frame
space

Inter-frame
response space

Inter-frame
response

space

Inter-frame
space

Figure 3 Message Frame Structure

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Slave

REJ06B0232-0101/Rev.1.01 June 2007 Page 5 of 50

1.2.2 Transmission and Reception of Message Frames
Figure 4 illustrates message frame transmission and reception in the master node and slave nodes.

• The master node transmits a header frame.
• Each slave node determines an ID from the received header frame and, when the ID is of the local node, the node

transmits a response.
(The master node determines the ID at transmission.)

Rx

Tx

Rx

Tx

Rx

Tx

Tx

Rx

Message frame - 1
Response transmission

request ID issued to slave
node 1

Message frame - 2
Response transmission

request ID issued to slave
node n

Message frame - 3
Response transmission

request ID issued to master
node

Master node

Slave node 1

Slave node 2

Slave node n

Header Header Header Response

ResponseResponseResponse

ResponseResponseResponse

ResponseResponse

Response

Response

ResponseResponseResponse

Response

Header Header Header

Header Header Header

Header Header Header

Header Header Header

Figure 4 Transmission and Reception of Message Frames

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Slave

REJ06B0232-0101/Rev.1.01 June 2007 Page 6 of 50

2. Library Software Specifications
By including the library in a user application program, the user application program can use on-chip functions to
perform LIN communication as a slave node.

2.1 Operating Environment
Device used: H8/300H Tiny Series microcomputer (H8/3664F/3694F/36014F)

Operating frequency range (system clock (φ osc)): Range equivalent to device operating frequencies. It is necessary to
define φ osc in LINID.h by considering the LIN communication speed and processing conditions of the user application
program. (See Section 2.4.2, "LINID.h File Setting Example".)

Functions used: Table 1 lists the on-chip peripheral functions to be used with the library, together with their uses.

Table 1 Use of On-Chip Peripheral Functions

Function

Pin
function
(pin No.) Use Description

Transmission TXD
(46pin)

Transmission of response frame
Transmission of wake-up signal

Reception of response frame

Asynchronous mode
Data length: 8 bits
No parity bit
1 stop bit (with start bit
added)
LSB first

SCI3
(channel-0)

Reception RXD
(45pin)

Communication error detection Error detection function in
module

Timer W FTIOA
(37pin)

Measurement of sync break field
dominant period
Measurement of sync field period
Measurement of wait period
(internal function of library)
Timeout detection

Counting is performed at
cycles of φ osc/8, and each
period is measured.

IRQ /IRQ0
(51pin)

Wake-up signal detection In the standby state, the
LIN bus is monitored to
detect a falling-edge.

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Slave

REJ06B0232-0101/Rev.1.01 June 2007 Page 7 of 50

2.2 File Organization
• LINslvW.c (Ver.1.40)

C source file used for (slave) microcomputer function setting and communication control for LIN communication in
the H8/300HTiny Series (versions with built-in timer W).

• LINID.h (Ver.1.40)
Include file used to include user-defined items such as the communication transfer rate and ID settings at
LINslvW.c (Ver.1.40) compilation. This file also contains user application interface functions and variable
definitions. These must also be included at the time of user application program compilation.

• H8_3664.h (Ver.1.00)
Internal I/O register definition file for the H8/3664F/3694F

• H8_36014.h (Ver.1.00)
Internal I/O register definition file for the H8/36014F

2.3 Required ROM/RAM Capacity
(When H8S or H8/300 Series C compiler CH38.exe Ver.2.0C is used)

The ROM/RAM size used varies depending on the number of IDs that are set and so on.

• ROM size: 2.0 Kbytes approximately
• RAM size: 40 bytes approximately

2.4 Functional Specifications
2.4.1 LIN Communication Specifications
• Node: Slave node supported
• ID: User-defined ID

A. Response transmission ID
Zero to 61 IDs (00h to 3bh, 3dh) can be set in LINID.h.
(If nodes having the same ID are set on the same LIN bus, normal operation is impossible.)

B. LIN protocol definition ID
a. Master request frame ID 3ch (ID field data: 3Ch)

A response frame (8-byte data) is transmitted from the master node. If the first byte of the data field is 00h,
the reception of a sleep command is assumed, and a status flag (see Table 4) is set.

b. Slave response frame ID 3dh (ID field data: 7Dh)
A slave node having this ID transmits a response frame (8-byte data).

c. Extended frame ID 3eh, 3fh (ID field data: FEh, BFh)
Not supported by this library (Ver.1.40).
(Upon receiving these IDs, the node waits for the next message frame (sync break field detection).)

C. ID setting method
In LINID.h, delete the definition statements (#define __IDm 0xnn (m = 00h to 3bh, 3dh)) of IDs other than
those to be set as response transmission IDs, or set them as comment statements so that only the IDs to be set are
defined, and then compile LINslvW.c.

• Response data length: The DLC (data length control) bits in the reception ID field are determined.
• Communication transfer rate: The communication transfer rate used is defined in LINID.h.

From the system clock (φ osc) definition value and communication transfer rate definition value, the constants used
in the library and the SCI3 module setting value are calculated automatically. (Note: The communication transfer
rate may be restricted by φ osc. For details, refer to "SCI3 Module: BRR Setting Example (Asynchronous Mode)
for the Bit Rate" in the hardware manual.)

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Slave

REJ06B0232-0101/Rev.1.01 June 2007 Page 8 of 50

• Wake-up signal transmission and reception: Wake-up signal transmission and reception functions can be included.
Including the wake-up signal transmission function

A definition statement (#define __T_WAKEUP __ON) in LINID.h includes the wake-up transmission function
the user application program calls the function (LIN_transmit_wake_up). These enable the wake-up signal to be
transmitted on the LIN bus.

Including the wake-up signal reception function
A definition statement (#define __R_WAKEUP __ON) in LINK.h includes the wake-up reception function.
Even when the microcomputer is in the standby state, the wake-up signal on the LIN bus is detected (falling-
edge detection) through IRQ0 (external interrupt input).

2.4.2 LINID.h File Setting Example
An example of setting LINID.h is shown below.

1. The microcomputer used is the H8/3664F.
2. The node transmits a wake-up signal.
3. Wake-up signal detection (falling-edge detection) through IRQ0 (external interrupt) is not performed. (No wake-up

signal is transmitted from other nodes).
4. Response frames are transmitted to the following four IDs:

ID (ID bit + DLC bits) (including parity bits)
02h (42h)
13h (D3h)
24h (64h)
35h (F5h)

5. The system clock (φ osc) is 16 [MHz].
6. The LIN communication transfer rate is 19200 [bit/sec].
7. Correction of the LIN communication transfer rate by sync field measurement is not performed.

An example of the settings made based on the specifications described in 1. to 7., above, is given below.

(Definition statements other than the statements indicated in boldface must be deleted or set as comment lines.)

/**/

/* */

/* LINID.h Ver.1.40 */

/* */

/**/

#define __ON 1 /* This line must not be changed or deleted. */

#define __OFF 0 /* This line must not be changed or deleted. */

#define __H8_3694F 1 /* This line must not be changed or deleted. */

#define __H8_36014F 0 /* This line must not be changed or deleted. */

/**/

/* CPU selection */

/*--*/

#define __CPU __H8_3694F /* Define this line for the H8/3664F and 3694F series. */

/*#define __CPU __H8_36014F /* Define this line for the H8/36014F series. */

/**/

/* Setting of wake-up signal transmission function */

/*--*/

#define __T_WAKEUP __ON /* When transmitting a wake-up signal, define this line. */

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Slave

REJ06B0232-0101/Rev.1.01 June 2007 Page 9 of 50

/*#define __T_WAKEUP __OFF /* When not transmitting wake-up signal, define this line. */

/**/

/* Setting of wake-up signal detection function */

/*--*/

/*#define __R_WAKEUP __ON /* When detecting a wake-up signal (falling-edge detection),

define this line. */

#define __R_WAKEUP __OFF /* When not detecting wake-up signal, define this line. */

/**/

/* Setting of response transmission IDs */

/*--*/

/* 2-byte data */

/*--*/

#define __Res2byte_ID __ON /* When using a 2-byte response data transmission ID, define

this line. */

/*#define __Res2byte_ID __OFF /* When not using a 2-byte response data transmission ID,

define this line. */

#if __Res2byte_ID == __ON

/*#define __ID00 0x80 /* */

/*#define __ID01 0xC1 /* */

#define __ID02 0x42 /* Transmit response to ID field 42h. */

/*#define __ID03 0x03 /* */

/*#define __ID04 0xC4 /* */

/*#define __ID05 0x85 /* */

/*#define __ID06 0x06 /* */

/*#define __ID07 0x47 /* */

/*#define __ID08 0x08 /* */

/*#define __ID09 0x49 /* */

/*#define __ID0a 0xCA /* */

/*#define __ID0b 0x8B /* */

/*#define __ID0c 0x4C /* */

/*#define __ID0d 0x0D /* */

/*#define __ID0e 0x8E /* */

/*#define __ID0f 0xCF /* */

/*#define __ID10 0x50 /* */

/*#define __ID11 0x11 /* */

/*#define __ID12 0x92 /* */

#define __ID13 0xD3 /* Transmit response to ID field D3h. */

/*#define __ID14 0x14 /* */

/*#define __ID15 0x55 /* */

/*#define __ID16 0xD6 /* */

/*#define __ID17 0x97 /* */

/*#define __ID18 0xD8 /* */

/*#define __ID19 0x99 /* */

/*#define __ID1a 0x1A /* */

/*#define __ID1b 0x5B /* */

/*#define __ID1c 0x9C /* */

/*#define __ID1d 0xDD /* */

/*#define __ID1e 0x5E /* */

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Slave

REJ06B0232-0101/Rev.1.01 June 2007 Page 10 of 50

/*#define __ID1f 0x1F /* */

#endif

---/

/* 4-byte data */

/*--*/

#define __Res4byte_ID __ON /* When using a 4-byte response data transmission ID, define

this line. */

/*#define __Res4byte_ID __OFF /* When not using a 4-byte response data transmission ID,

define this line. */

#if __Res4byte_ID == __ON

/*#define __ID20 0x20 /* */

/*#define __ID21 0x61 /* */

/*#define __ID22 0xE2 /* */

/*#define __ID23 0xA3 /* */

#define __ID24 0x64 /* Transmit response to ID field 64h. */

/*#define __ID25 0x25 /* */

/*#define __ID26 0xA6 /* */

/*#define __ID27 0xE7 /* */

/*#define __ID28 0xA8 /* */

/*#define __ID29 0xE9 /* */

/*#define __ID2a 0x6A /* */

/*#define __ID2b 0x2B /* */

/*#define __ID2c 0xEC /* */

/*#define __ID2d 0xAD /* */

/*#define __ID2e 0x2E /* */

/*#define __ID2f 0x6F /* */

#endif

/*--*/

/* 8-byte data */

/*--*/

#define __Res8byte_ID __ON /* When using an 8-byte response data transmission ID, define

this line. */

/*#define __Res8byte_ID __OFF /* When not using an 8-byte response data transmission ID,

define this line. */

#if __Res8byte_ID == __ON

/*#define __ID30 0xF0 /* */

/*#define __ID31 0xB1 /* */

/*#define __ID32 0x32 /* */

/*#define __ID33 0x73 /* */

/*#define __ID34 0xB4 /* */

#define __ID35 0xF /* Transmit response to ID field D3h. */

/*#define __ID36 0x76 /* */

/*#define __ID37 0x37 /* */

/*#define __ID38 0x78 /* */

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Slave

REJ06B0232-0101/Rev.1.01 June 2007 Page 11 of 50

/*#define __ID39 0x39 /* */

/*#define __ID3a 0xBA /* */

/*#define __ID3b 0xFB /* */

/*#define __ID3d 0x7D /* */

#endif

/**/

/* System clock (φosc) definition section */
/*--*/

/*#define OSC_Hz 20000000 /* φ osc=20.000MHz → 20000000 */

#define OSC_Hz 16000000 /* φ osc=16.000MHz → 16000000 */

/*#define OSC_Hz 10486000 /* φ osc=10.486MHz → 10486000 */

/*#define OSC_Hz 10000000 /* φ osc=10MHz → 10000000 */

/*#define OSC_Hz 9830400 /* φ osc=9.8304MHz → 9830400 */

/*#define OSC_Hz 800000 /* φ osc=8MHz → 8000000 */

/*#define OSC_Hz 7372800 /* φ osc=7.3728MHz → 7372800 */

/*#define OSC_Hz 4915200 /* φ osc=4.9152MHz → 4915200 */

/*#define OSC_Hz 2457600 /* φ osc=2.4576MHz → 2457600 */

/**/

/* Baud rate definition section */

/*--*/

/*#define B_rate 2400 /* 2400bps → 2400 */

/*#define B_rate 4800 /* 4800bps → 4800 */

/*#define B_rate 9600 /* 9600bps → 9600 */

/*#define B_rate 10000 /* 10000bps → 10000 */

/*#define B_rate 14400 /* 14400bps → 14400 */

/*#define B_rate 15000 /* 15000bps → 15000 */

#define B_rate 19200 /* 19200bps → 19200 */

/*#define B_rate 20000 /* 20000bps → 20000 */

/**/

/* Setting of baud rate correction function */

/*--*/

/*#define __Corrects_baud_rate __ON /* To correct the baud rate by the sync field

measurement, define this line. */

#define __Corrects_baud_rate __OFF /* When not correcting the baud rate by the sync field

measurement, define this line. */

/**/

/* Library constant calculation section The following must not be changed or deleted. */

/*--*/

#define t_1_data ((((OSC_Hz) / (B_rate)) + 0x04) >>3)

#define t_11_data ((((11 * ((OSC_Hz) >>2)) / (B_rate)) + 0x01) >>1)

#define t_128_data (((((OSC_Hz) <<5) / (B_rate)) + 0x01) >>1)

#define t_15k_data (((0xEA6 * ((OSC_Hz) / (B_rate))) + 0x01) >>1)

#define t_15k_data (((0x186A * ((OSC_Hz) / (B_rate))) + 0x01) >>1)

#define t_2byte_data ((((91 * ((OSC_Hz) >>2)) / (B_rate)) + 0x01) >>1)

#define t_4byte_data ((((119 * ((OSC_Hz) >>2)) / (B_rate)) + 0x01) >>1)

#define t_8byte_data ((((175 * ((OSC_Hz) >>2)) / (B_rate)) + 0x01) >>1)

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Slave

REJ06B0232-0101/Rev.1.01 June 2007 Page 12 of 50

#define baudrate_data ((((((OSC_Hz) >>4) / (B_rate)) + 0x01) >>1) - 1)

/***/

/* Function and variable definition section The following must not be changed or

deleted. */

/*--*/

#if ((__Res2byte_ID) || (__Res4byte_ID) || (__Res8byte_ID))

#define __RESPONSE __ON

#else

#define __RESPONSE __OFF

#endif

#ifndef __LIN_LIB

extern void LIN_initialize(void);

extern void LIN_end(void);

extern void LIN_sleep(void);

extern void LIN_error(void);

extern void LIN_data_set(void);

extern void LIN_start(void);

extern void LIN_stop(void);

#if __RESPONSE == __ON

extern void LIN_data_set(void);

#endif

#if __T_WAKEUP == __ON

extern void LIN_transmit_wake_up(void);

#endif

#if __R_WAKEUP == __ON

extern void LIN_wake_up(void);

extern void LIN_wake_up_PR(void);

#endif

#if __RESPONSE == __ON

extern volatile unsigned char LIN_tx_data[8];

#endif

extern volatile unsigned char LIN_rx_id;

extern volatile unsigned char LIN_rx_data[8];

extern volatile union {

 unsigned char BYTE;

 struct {

 unsigned char NBA :1;

 unsigned char CSE :1;

 unsigned char ISFE :1;

 unsigned char TOA3B :1;

 unsigned char SNRE :1;

 unsigned char SCI :1;

 unsigned char SUC :1;

 unsigned char SLEEP :1;

 } BIT;

} LIN_status;

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Slave

REJ06B0232-0101/Rev.1.01 June 2007 Page 13 of 50

extern volatile union {

 unsigned char BYTE;

 struct {

 unsigned char CBR :1;

 unsigned char wk6 :1;

 unsigned char WU :1;

 unsigned char wk4 :5;

 } BIT;

} LIN_control;

#endif

2.4.3 User Application Interface
This section describes the specifications of the interface between this library and a user application program.

• Interface by function (module) call

The user application program calls functions in the library to initialize the on-chip peripheral functions that are required
for LIN communication control, stop and restart LIN communication control, control wake-up signal transmission, and
prepare to receive wake-up signals.

Table 2 Functions in the Library That are Called by the User Application Program

Function name Description
LIN_initialize Initializes the required on-chip peripheral functions for LIN communication control

and starts communication control.
The LIN_start function need not be called.

LIN_stop Stops LIN communication control.
LIN_start Restarts LIN communication control. (When turning on the power, call the

LIN_initialize function.)
LIN_transmit_wake_up Transmits a wake-up signal.
LIN_wake_up_PR Makes preparations needed to receive a wake-up signal.

If functions called by the library are prepared within the user application program, processing is performed at certain
event timings (upon the completion of transmission and reception, upon the detection of a communication error, and so
forth) during LIN communication.

Table 3 User Application Control Functions Called by the Library

Function name Description
LIN_wake_up Function for user application control when a wake-up signal is detected
LIN_sleep Function for user application control when a sleep command is received
LIN_data_set Function for user application control before response frame transmission
LIN_end Function for user application control after the completion of message frame

transmission or reception
LIN_error Function for user application control when a LIN communication error is detected

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Slave

REJ06B0232-0101/Rev.1.01 June 2007 Page 14 of 50

• Operation overview
Figure 5 and Figure 6 show the operations.

LIN_data_set

SCI3_int

LIN_end,LIN_sleep

SCI3_intLIN_initialize LIN_stop LIN_start

LIN bus

Library

User application program

Header frame
Sync break delimiter

Inter-frame
response space

Sync break
field

ID field

Function call

Data fieldSync
field

Checksum
field

Inter-frame
space

Data 1 Data n

Response frame

Figure 5 Operation Overview at Message Frame Transmission/Reception

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Slave

REJ06B0232-0101/Rev.1.01 June 2007 Page 15 of 50

LIN_wake_up

IRQ0_int

LIN_error

TW_int, SCI3_intLIN_wake_up_PR

LIN_transmit_wake_up

LIN bus

Library

Library

User application program

User application program

When transmitting a wake-up signal

Wake-up
delimiter

When receiving
a wake-up signal

When detecting
an error

Wake-up
field

Sync break
field

Sync
field

Sync break
delimiter

ID field

Function call

Function call

Figure 6 Operation Overview at Error Detection and Wake-up Signal Transmission and Reception

• Interface using global variables (data stored in the RAM area)

The user application program and the library interface with each other by sharing data.

Table 4 Data (Global Variables) Shared by the User Application and Library

Label name
(variable name) Data type Description
LIN_tx_data[0] to [7] unsigned char

(array)
Sets the transmission data when transmitting a response
frame.

LIN_rx_id unsigned char Holds a received ID.
LIN_rx_data[0] to [7] unsigned char

(array)
Holds received response data.

LIN_status (Structure)
LIN_status.BYTE Byte access

unsigned char
 Bit access

Communication status

LIN_status.BIT.NBA Bit 7 No bus active error
Set condition : The LIN bus remains inactive for a

certain time.
LIN_status.BIT.CSE Bit 6 Checksum error flag

Set condition : A checksum error is detected when a
response is received.

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Slave

REJ06B0232-0101/Rev.1.01 June 2007 Page 16 of 50

Label name
(variable name) Data type Description
LIN_status.BIT.ISFE Bit 5 Sync field error

Set condition : The received sync field data (data
received by the SCI3 module) is other
than 55h.

LIN_status.BIT.TOA3B Bit 4 Wake-up timeout
Set condition : A header frame, transmitted from the

master within a certain period after
the wake-up retry signal is transmitted
(three times, including the first
transmission), is not detected.

LIN_status.BIT.SNRE Bit 3 Slave not responding error
Set condition : Reception of a response frame from a

slave is not completed within a certain
period during message frame
transmission/reception.

LIN_status.BIT.SCI Bit 2 SCI error
Set condition : An error in the SCI3 module (overrun

error or framing error) is detected.
LIN_status.BIT.SUC Bit 1 Message frame normal reception completion flag

Set condition : A response frame has been received
normally.

Condition to clear : An ID frame has been received.
LIN_status.BIT.SLEEP Bit 0 Sleep command reception flag

Set condition : A sleep command has been received.
LIN_control (Structure)
LIN_control.BYTE Byte access

unsigned char
 Bit access

Communication control

LIN_control.BIT.CBR Bit 7 Control of the communication transfer rate correction
function
(See Section 2.5.1.2, "Reception of a Sync Field".)

LIN_control.BIT.wk6 Bit 6 Reserved bit
LIN_control.BIT.WU Bit 5 (Wake-up control bit)

(See Section 2.5.3, "Transmission and Reception of a
Wake-up Signal".)

LIN_control.BIT.wk4 Bits 4 to 0 Reserved bits

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Slave

REJ06B0232-0101/Rev.1.01 June 2007 Page 17 of 50

2.5 Operation
This section explains the transmission and reception operations performed with the library.

2.5.1 Reception of a Header Frame
1. Detection of a Sync Break Field

The timer W input capture function measures the sync break field dominant period.

TSYNBRK

Sync break field Sync field

TSYNDEL

Sync break
delimiter

Pin function : FTIOA input (receiving side)

Function used : Timer W input capture A
(falling-edge detection interrupt)

Internal software processing of the library
• Set timer W input capture A to enable rising

edge detection.
• Save the captured value (timer W counter

value).
• Clear the timeout counter (timer W overflow

counter).

Pin function : FTIOA input (receiving side)

Function used : Timer W input capture A (rising
edge detection interrupt)

Internal software processing by the library
• Set timer W input capture A to enable falling-edge

detection.
• Calculate TSYNBRK from the captured value (timer

W counter value) for falling/rising edges.
If TSYNBRK ≥ 11 bit

If LIN_control.BIT.CBR = 0
Set RxD as the pin function.
(SCI3 reception, error interrupt enabled)
(Timer W input capture A interrupt
disabled)

If LIN_contrl.BIT.CBR = 1
Set the edge counter for communication
transfer rate measurement.

Figure 7 Detection of a Sync Break Field

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Slave

REJ06B0232-0101/Rev.1.01 June 2007 Page 18 of 50

2. Reception of a Sync Field
The sync field reception control method is determined according to the setting of the CBR bit in LIN_control, as
follows:

CBR = 0: The SCI3 reception function determines the sync field reception data (55h).

(Figure 8 Reception and Determination of a Sync Field by the SCI3 Reception Function)
CBR = 1: The timer W input capture function measures the bit width of a sync field and corrects the

communication transfer rate (by setting BRR in the SCI3 module, and so on).
(Figure 9 Correction of the Communication Transfer Rate by the Timer W Input Capture Function)

0 1 2 3 4 5 6 7

Sync field

Data: 55h

Start
bit

Stop
bit

Pin function : RxD input (receiving side)

Function used : SCI3 reception (interrupt)

Internal software processing by the library
If reception data = 55h
• Save sync field data (reception data).
If reception data ≠ 55h
• Set the sync field error flag (ISFE).
• Initialization (Wait for sync break field detection)

(Initialization of internal status flags
of the library)

• Call the LIN_error function (user application
program).

Figure 8 Reception and Determination of a Sync Field by the SCI3 Reception Function

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Slave

REJ06B0232-0101/Rev.1.01 June 2007 Page 19 of 50

0 1 2 3 4 5 6 7

Sync field
Data: 55h

Start
bit

Stop
bit

8 bits

Pin function:
FTIOA input (receiving side)

Function used:
Timer W input capture A
(falling-edge detection
interrupt)

Internal software processing by
the library
• Save the captured value

(timer W counter value).
• Start counting the number

of bits.

Pin function:
FTIOA input (receiving side)

Function used:
Timer W input capture A
(falling-edge detection
interrupt)

IInternal software processing
by the library
• Count the number of bits.

Pin function:
FTIOA input (receiving side)

Function used:
Timer W input capture A
(falling-edge detection interrupt)

Internal software processing by the
library
• Calculate the communication

transfer rate from the captured
value (timer W counter value).

• Set the SCI3 transfer rate (SMR,
BRR).

• Set RxD as the pin function
(SCI3 reception, error interrupt
enabled)
(Timer W input capture A interrupt
disabled)

• Set the sync field reception flag.
• Data operation for determining the

sync break period.
• Data operation for determining the

timeout period.

Figure 9 Correction of the Communication Transfer Rate by the Timer W Input Capture Function

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Slave

REJ06B0232-0101/Rev.1.01 June 2007 Page 20 of 50

3. Reception of an ID Field
The SCI3 reception function determines the ID (including the DLC and parity bits) in the ID field reception data.
If the ID is a response transmission request ID intended for the local node, transmission of a response frame starts.

ID0 ID1 ID2 ID3 ID4 ID5 P0 P1

ID field

Start
bit

Stop
bit

Data length
control bits

(DLC)

ID bits Parity bits

Pin function : RxD input (receiving side), or TxD output
(transmitting side at response transmission)

Function used : SCI3 reception (interrupt), transmission
(at response transmission)

Internal software processing by the library
• Clear the message frame normal reception completion flag

(SUC).
• Save the ID data (reception data) (LIN_rx_id).
• Determine the ID.

If the ID is a response transmission ID
−− Set the transmission/reception data counter (data length

of the data field (in bytes)).
−− Start response timeout measurement.
−− Call the LIN_data_set function (user application program).
−− Start transmitting the 1st byte of a data frame.
−− Transmission checksum operation
If the ID is not a response transmission ID
−− Set the transmission/reception data counter (counting for

reception only) (determination by DLC)
−− Start response timeout measurement.

Figure 10 ID Field Reception and Determination

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Slave

REJ06B0232-0101/Rev.1.01 June 2007 Page 21 of 50

2.5.2 Transmission and Reception of a Response Frame
1. Transmission and Reception of a Data Field (Transmission of a Checksum Field)

The SCI3 reception function saves received data and performs a reception checksum data operation.
When a response is transmitted, the subsequent data is transmitted, and a transmission checksum data operation is
performed. (Within a reception interrupt)

D0 D1 D2 D3 D4 D5 D6 D7

LSB MSB

Data field

Start
bit

Stop
bit

Pin function : RxD input (receiving side)

Function used : SCI3 reception (interrupt)

Internal software processing by the library
• Determine the number of received data

bytes.
• Save received data (LIN_rx_data[n]).
• Reception checksum data operation
• Count received data.
At response transmission
• Transmit the next data (including checksum

data).
• Transmission checksum data operation

Figure 11 Transmission/Reception of a Data Field and Transmission of Checksum Data

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Slave

REJ06B0232-0101/Rev.1.01 June 2007 Page 22 of 50

2. Reception of a Checksum Field
The SCI3 reception function makes a determination from the received checksum field and reception checksum data
obtained by an operation from the data field.

C0 C1 C2 C3 C4 C5 C6 C7

LSB MSB

Checksum field

Checksum bits
Start
bit

Stop
bit

Pin function : RxD input (receiving side)

Function used : SCI3 reception (interrupt)

Internal software processing by the library
• Determine the number of received data bytes.
• Determine the checksum.
• Initialization (wait for sync break field detection)

If the determination is acceptable
−− Set the message frame normal reception completion

flag (SUC).
−− Determine a sleep command.

If a sleep command is determined
• Set the sleep flag (SLEEP).
• Call the LIN_sleep function (user application

program).
If a sleep command is not determined
(normal message frame)
• Call the LIN_end function (user application

program).
If the determination is not acceptable
−− Set the checksum error flag (CSE).
−− Call the LIN_error function (user application

program).

Figure 12 Checksum Field Reception and Determination

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Slave

REJ06B0232-0101/Rev.1.01 June 2007 Page 23 of 50

2.5.3 Transmission and Reception of a Wake-up Signal
The SCI3 transmission function transmits a wake-up signal (transmission data: 80h).

The IRQ0 falling-edge detection function detects a wake-up signal from another node.

1. Transmission of a Wake-up Signal

A definition statement in LINID.h (#define __T_WAKEUP __ON) includes the wake-up signal transmission
function when compilation is performed, allowing the SCI3 transmission function to transmit a wake-up signal
when the user application program calls the LIN_transmit_wake_up function. This library does not perform wake-
up delimiter output control.

TWUSIG

Wake-up field

Data: 80h

Sync break field

TWUDEL

Wake-up
delimiter

Pin function : TxD

Function used : Timer W compare match C
(wait for internal setting of the
library)

Software processing
• Clear the WU flag.
• Initialize the SCI3 module.
• Enable the timer W compare match C

interrupt (wait for SCI module initialization).
• Enable the timer W input capture A interrupt

(for sync break field detection)

Pin function : TxD

Function used : SCI transmission

Software processing
• Enable SCI transmission.
• Transmit wake-up field data (80h).
• Set the timer W compare match C interrupt

(for 128-bit timeout retransmission and for
15000-bit timeout).

Figure 13 Transmission of a Wake-up Signal

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Slave

REJ06B0232-0101/Rev.1.01 June 2007 Page 24 of 50

2. Reception of a Wake-up Signal
A definition statement in LINID.h (#define __R_WAKEUP __ON) includes the wake-up signal reception function
when compilation is performed, allowing the IRQ falling-edge detection function to wait for a wake-up signal from
another node when the user application program calls the LIN_wake_up_PR function.
This library detects only falling-edges, without verifying the wake-up field data.

TWUSIG

Wake-up field transmitted from another node

TWUDEL

Wake-up
delimiter

Pin function : IRQ0

Function used : IRQ0
(falling-edge detection
interrupt)

Software processing
• Enable IRQ0 falling-edge

detection interrupt.

When the SCI3 transmission
function is included
Pin function : −

Function used : −

Software processing
• Enable SCI3 transmission

(TE)
• Disable timer W compare

match C interrupt.

Pin function : −

Function used : Timer W compare
match C (wait for
internal setting of the
library)

Software processing
• Disable the IRQ0 falling-edge

detection interrupt.
• Initialize the SCI3 module.
When the transmission function is
included
• Enable timer W compare match C

interrupt (wait for SCI3 module
initialization).

• Call the LIN_WAKE_up function
(user application program).

Figure 14 Reception of a Wake-up Signal

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Slave

REJ06B0232-0101/Rev.1.01 June 2007 Page 25 of 50

2.5.4 Reception of a Sleep Command
After the normal reception of a message frame, if the received ID field data is 3Ch and the first byte of the response
data is 00h, the reception of a sleep command is recognized. Then, the sleep flag (SLEEP) is set, and the LIN_sleep
function (user application program) is called. (In this case, the LIN_end function is not called in the message frame.)

2.6 Software Description
This section explains the library software.

2.6.1 Including Header Files
Includes the standard library (machine.h), the LIN library definition file (LINID.h), and the on-chip peripheral register
definition files (H8_3664f.h and H8_36014f.h).

#include <machine.h>

#define __LIN_LIB

#include "LINID.h"

#if __CPU == __H8_3694F

#include "H8_3664f.h"

#elif __CPU == __H8_36014F

#include "H8_36014f.h"

#endif

2.6.2 Defining Functions
Functions (modules) in the library must be defined.

The inclusion of the LIN_data_set function is selected by defining __Res2byte_ID, __Res4byte_ID, or __Res8byte_ID
in LINID.h.

The inclusion of the LIN_transmit_wake_up function is selected by the __T_WAKEUP definition.

The inclusion of the LIN_intc_init function, LIN_wake_up function, and LIN_wake_up_PR function is selected by the
__R_WAKEUP definition.

void LIN_initialize(void);

void LIN_system_init(void);

void LIN_port_init(void);

void LIN_sci_init(void);

void LIN_timerW_init(void);

void LIN_Sflag_init(void);

void LIN_end(void);

void LIN_sleep(void);

void LIN_error(void);

void LIN_break_reception_PR(void);

void LIN_start(void);

void LIN_stop(void);

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Slave

REJ06B0232-0101/Rev.1.01 June 2007 Page 26 of 50

#if __RESPONSE == __ON

void LIN_data_set(void);

#endif

#if __T_WAKEUP == __ON

void LIN_transmit_wake_up(void);

#endif

#if __R_WAKEUP == __ON

void LIN_intc_init(void);

void LIN_wake_up(void);

void LIN_wake_up_PR(void);

#endif

2.6.3 Defining Library Internal Constants and Variables
This section defines the constants and variables that are used in the library.

Table 5 Definition of Library Internal Constants and Variables

Label name
(variable name) Data type Description
t_1 unsigned short 1-bit counter value (for waiting at SCI3 initialization)
t_11 unsigned long 11-bit counter value (for sync break field detection)
t_128 (Structure)
t_128.LONG unsigned long
t_128.WORD.h
t_128.WORD.l

unsigned short
unsigned short

128-bit counter value (for sync break field detection
timeout at wake-up transmission)

t_15k unsigned long 15000-bit counter value (for timeout after wake-up retry
transmission (3 times))
(LIN_status.BIT.TOA3B)

t_25k unsigned long 25000-bit counter value (for no bus active detection)
(LIN_status.BIT.NBA)

flame_max_2 (Structure)
flame_max_2.LONG unsigned long
flame_max_2.WORD.h
flame_max_2.WORD.l

unsigned short
unsigned short

flame_max_4 (Structure)
flame_max_4.LONG unsigned long
flame_max_4.WORD.h
flame_max_4.WORD.l

unsigned short
unsigned short

flame_max_8 (Structure)
flame_max_8.LONG unsigned long
flame_max_8.WORD.h
flame_max_8.WORD.l

unsigned short
unsigned short

Maximum response timeout value
(LIN_status.BIT.SNRE)

baudrate (Structure)
baudrate.WORD unsigned short
baudrate.BYTE.smr
baudrate.BYTE.brr

unsigned char
unsigned char

Baud rate setting for SCI3 module

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Slave

REJ06B0232-0101/Rev.1.01 June 2007 Page 27 of 50

Label name
(variable name) Data type Description
ex_counter (Structure)
ex_counter.LONG unsigned long
ex_counter.WORD.h
ex_counter.WORD.l

unsigned short
unsigned short

Time W extended counter

flame_max unsigned short Response timeout setting (timer W overflow count value)
counter unsigned char Transmission/reception data counter
t_checksum (Structure)
t_checksum.WORD unsigned short
t_checksum.BYTE.carry
t_checksum.BYTE.data

unsigned char
unsigned char

Transmission data checksum operation value

r_checksum (Structure)
r_checksum.WORD unsigned short
r_checksum.BYTE.carry
r_checksum.BYTE.data

unsigned char
unsigned char

Reception data checksum operation value

in_status (Structure)
in_status.BYTE unsigned char

Internal status of library

in_status.BIT.wk7 Bit 7 Reserved bit
in_status.BIT.sync_field Bit 6 Sync field reception flag
in_status.BIT.wk5 Bit 5 Reserved bit
in_status.BIT.r_id Bit 4 Response ID determination flag

At response data transmission: 1
At reception: 0

in_status.BIT.sci Bit 3 SCI3 module initialization flag
in_status.BIT.brr Bit 2 Baud rate correction flag
in_status.BIT.wu Bits 1 to 0 Wake-up signal transmission flag (transmission counter

for internal setting)

#if __Corrects_baud_rate == __ON

static unsigned short t_1;

static unsigned long t_11;

static union{

 unsigned short WORD;

 struct{

 unsigned char smr;

 unsigned char brr;

 } BYTE;

} baudrate;

#elif __Corrects_baud_rate == __OFF

const unsigned short t_1 = t_1_data;

const unsigned long t_11 = t_11_data;

const union{

 unsigned short WORD;

 struct{

 unsigned char smr;

 unsigned char brr;

 } BYTE;

} baudrate = baudrate_data;

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Slave

REJ06B0232-0101/Rev.1.01 June 2007 Page 28 of 50

#endif

const unsigned long t_25k = t_25k_data;

const union{

 unsigned long LONG;

 struct {

 unsigned short h;

 unsigned short l;

 } WORD;

} flame_max_2 = t_2byte_data;

const union {

 unsigned long LONG;

 struct {

 unsigned short h;

 unsigned short l;

 } WORD;

} flame_max_4 = t_4byte_data;

const union {

 unsigned long LONG;

 struct {

 unsigned short h;

 unsigned short l;

 } WORD;

} flame_max_8 = t_8byte_data;

static union {

 unsigned long LONG;

 struct {

 unsigned short h;

 unsigned short l;

 } WORD;

} ex_counter;

static unsigned short flame_max;

static unsigned char counter;

#if __T_WAKEUP == __ON

const union {

 unsigned long LONG;

 struct {

 unsigned short h;

 unsigned short l;

 } WORD;

} t_128 = t_128_data;

const unsigned long t_15k = t_15k_data;

#endif

#if __RESPONSE == __ON

static union {

 unsigned short WORD;

 struct {

 unsigned char carry;

 unsigned char data;

 } BYTE;

} t_checksum;

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Slave

REJ06B0232-0101/Rev.1.01 June 2007 Page 29 of 50

#endif

static union {

 unsigned short WORD;

 struct {

 unsigned char carry;

 unsigned char data;

 } BYTE;

} r_checksum;

static union {

 unsigned char BYTE;

 struct {

 unsigned char wk7 :1;

 unsigned char sync_field :1;

 unsigned char wk5 :1;

 unsigned char r_id :1;

 unsigned char sci :1;

 unsigned char brr :1;

 unsigned char wu :2;

 } BIT;

} in_status;

2.6.4 Defining Global Variables
The variables that are shared between the user application program and library must be defined.

(See Table 4.)

#if __RESPONSE == __ON

volatile unsigned char LIN_tx_data[8];

#endif

volatile unsigned char LIN_rx_id;

volatile unsigned char LIN_rx_data[8];

volatile union {

 unsigned char BYTE;

 struct {

 unsigned char NBA :1;

 unsigned char CSE :1;

 unsigned char ISFE :1;

 unsigned char TOA3B :1;

 unsigned char SNRE :1;

 unsigned char SCI :1;

 unsigned char SUC :1;

 unsigned char SLEEP :1;

 } BIT;

} LIN_status;

volatile union {

 unsigned char BYTE;

 struct {

 unsigned char CBR :1;

 unsigned char wk6 :1;

 unsigned char WU :1;

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Slave

REJ06B0232-0101/Rev.1.01 June 2007 Page 30 of 50

 unsigned char wk4 :5;

 } BIT;

} LIN_control;

2.6.5 Initialization Function
This function initializes the H8/3664/3694/36014 on-chip peripheral functions used for LIN communication control and
the software flags, as well as other settings used in the library.

Note: Pins P14 (IRQ0), P21 (RxD), P22 (TxD), and P81 (FTIOA) are used for LIN communication. When a user

application uses other pins (P10 to P12, P15 to P17, P20, P23, P24, P80, and P82 to P87) with ports 1, 2, and 8,
the pin settings may be changed by the setting statements of PCR2 and PCR8 in the LIN_port_init function and
PCR1 in the LIN_intc_init function in the source file shown below. When using the above-mentioned pins, set
each PCR within the user application program, then delete the setting statements of PCR1, PCR2, and PCR8 in
the source file below or set them as comments.

LIN_initialize

RTS

Module control initialization
LIN_system_init

I/O port initialization
LIN_port_init

Timer W initialization
LIN_timerW_init

SCI3 initialization
LIN_sci_init

Initialization of internal variables
of library

LIN_Sflag_init

Interrupt controller initialization
(when wake-up reception

function is included)
LIN_intc_init

Clear status flags

Initialize variables

Clear control flags

Figure 15 Initialization Function Flowchart

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Slave

REJ06B0232-0101/Rev.1.01 June 2007 Page 31 of 50

void LIN_initialize(void){

 LIN_status.BYTE = 0;

 LIN_system_init();

 LIN_port_init();

#if __Corrects_baud_rate == __ON

 t_1 = t_1_data;

 t_11 = t_11_data;

 baudrate.WORD = baudrate_data;

#endif

 LIN_timerW_init();

 LIN_Sflag_init();

 LIN_sci_init();

#if __R_WAKEUP == __ON

 LIN_intc_init();

#endif

 ex_counter.WORD.h = 0;

 LIN_control.BYTE = 0;

}

void LIN_system_init(void){

 MSTCR1.BYTE &= 0x5B;

}

void LIN_port_init(void){

#if __R_WAKEUP == __ON

 IO.PMR1.BYTE |= 0x12;

#elif __R_WAKEUP == __OFF

 IO.PMR1.BYTE |= 0x02;

#endif

 IO.PDR2.BIT.B2 = 1;

/* IO.PCR2 = 0; /* Note: When using ports 2 and 8 in a user application, set */

/* IO.PCR8 = 0; /* the bits for setting the pins used in LIN to 0(input */

 /* pins) in the user application and then delete these */

 /* setting statements to ensure system protection */

}

void LIN_sci_init(void){

 SCI3.SCR3.BYTE = 0;

 SCI3.SMR.BYTE = baudrate.BYTE.smr;

 SCI3.BRR = baudrate.BYTE.brr;

#if ((__RESPONSE == __ON) || (__T_WAKEUP == __ON))

 TW.GRC = TW.TCNT + t_1;

 TW.TSRW.BIT.IMFC = 0;

 TW.TIERW.BIT.IMIEC = 1;

 in_status.BIT.sci = 1;

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Slave

REJ06B0232-0101/Rev.1.01 June 2007 Page 32 of 50

#endif

}

void LIN_timerW_init(void){

 TW.TMRW.BYTE = 0x48;

 TW.TCRW.BYTE = 0x30;

 TW.TIOR0.BYTE = 0x8D;

 TW.TIOR1.BYTE = 0xF8;

 TW.TSRW.BYTE &= 0x70;

 TW.TIERW.BYTE = 0x81;

 TW.TMRW.BIT.CTS = 1;

}

#if __R_WAKEUP == __ON

void LIN_intc_init(void){

/* IO.PCR1 = 0; /* Note: When using port 1 in a user application, set the bits */

 /* for setting the pins used in LIN to 0 (input pins) in */

 /* the user application and then delete this setting */

 /* statement to ensure system protection. */

 IEGR1.BIT.IEG0 = 0;

 IRR1.BIT.IRRI0 = 0;

 IENR1.BIT.IEN0 = 0;

}

#endif

#if __R_WAKEUP == __ON

void LIN_wake_up_PR(void){

 IRR1.BIT.IRRI0 = 0;

 IENR1.BIT.IEN0 = 1;

}

#endif

void LIN_Sflag_init(void){

 counter = 0;

 in_status.BYTE = 0;

}

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Slave

REJ06B0232-0101/Rev.1.01 June 2007 Page 33 of 50

2.6.6 LIN Communication Control Stop Function
This function stops LIN communication control so that it no longer communicates over the LIN bus.

LIN_stop

RTS

Disable interrupt by on-chip
peripheral functions (modules)
for LIN communication control

Figure 16 Flowchart of the LIN Communication Control Stop Function

void LIN_stop(void){

 SCI3.SSR.BYTE &= 0x84;

 SCI3.SCR3.BYTE = 0x00;

 TW.TIERW.BYTE &= 0x70;

#if __R_WAKEUP == __ON

 IENR1.BIT.IEN0 = 0;

#endif

}

2.6.7 Function for LIN Communication Restart Preparation
This function restarts LIN communication control (that has previously been placed in the stopped state by the LIN
communication control stop function described in Section 2.6.6 or some other reason), and then LIN communication
control waits for the reception of a sync break field.

LIN_start

RTS

SCI3 initialization
LIN_sci_init

Set sync break field detection

Clear overflow counter
(Initialize timeout counter)

Figure 17 Flowchart of the LIN Communication Control Restart Preparation Functions

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Slave

REJ06B0232-0101/Rev.1.01 June 2007 Page 34 of 50

void LIN_start(void){

 LIN_sci_init();

 ex_counter.WORD.h = 0;

 TW.TSRW.BYTE &= 0x70;

 TW.TIERW.BYTE |= 0x81;

}

2.6.8 Wake-up Signal Transmission Function
This function transmits a wake-up signal. If a sync break field is not detected within the 128-bit period after the
transmission of the wake-up signal, the function retries transmission up to three times, including the first transmission
(transmission is controlled within the timer W interrupt function). If a sync break field is not detected within the
15000-bit period after the signal has been transmitted three times, the function sets the timeout flag
(LIN_status.BIT.TOA3B) and calls the LIN_error function (user application program).

LIN_transmit_wake_up

RTS

(Clear wake-up signal transmission flag)
(LIN_control.BIT.WU)

Set restart of LIN
communication control

LIN_start

Disable wake-up signal detection
(IRQ0 falling-edge detection function)
(when wake-up reception function is

included)

Set internal wake-up signal
transmission flag

(for internal determination of compare
match interrupt)

Figure 18 Flowchart of the Wake-up Signal Transmission Function

#if __T_WAKEUP == __ON

void LIN_transmit_wake_up(void){

 LIN_control.BIT.WU = 0;

 in_status.BIT.wu = 1;

#if __R_WAKEUP == __ON

 IENR1.BIT.IEN0 = 0;

#endif

 LIN_start();

}

#endif

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Slave

REJ06B0232-0101/Rev.1.01 June 2007 Page 35 of 50

2.6.9 Function for Preparing for Wake-up Signal Reception
This function prepares for receiving a wake-up signal from another node.

LIN_wake_up_PR

RTS

Enable wake-up signal detection
(IRQ0 falling-edge detection function)
(when wake-up reception function is

included)

Figure 19 Flowchart of the Wake-up Signal Reception Preparation Function

#if __R_WAKEUP == __ON

void LIN_wake_up_PR(void){

 IRR1.BIT.IRRI0 = 0;

 IENR1.BIT.IEN0 = 1;

}

#endif

2.6.10 Function for Preparing to Detect a Sync Break Field in the Library
When message frame transmission or reception is completed, when an extended frame ID is received, or when an error
is detected, this function makes the preparations needed to receive the next message frame (preparation for sync break
field detection) in the library.

LIN_break_reception_PR

RTE

Disable SCI3 interrupt

Set sync break field detection

Clear overflow counter
(Initialize timeout counter)

Figure 20 Function for Preparing for Sync Break Field Detection and Reception

void LIN_break_reception_PR(void){

 SCI3.SSR.BYTE &= 0x84;

#if ((__RESPONSE == __ON) || (__T_WAKEUP == __ON))

 SCI3.SCR3.BYTE = 0x20;

#else

 SCI3.SCR3.BYTE = 0x00;

#endif

 ex_counter.WORD.h = 0;

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Slave

REJ06B0232-0101/Rev.1.01 June 2007 Page 36 of 50

 TW.TSRW.BYTE &= 0x70;

 TW.TIERW.BYTE = 0x81;

}

2.6.11 IRQ Interrupt Function
This function processes the IRQ0 falling-edge detection interrupt. After the settings have been made by the wake-up
signal reception preparation function, as described in Section 2.6.9, this function detects a falling-edge on the LIN bus
and makes the preparations required for LIN communication control.

IRQ0_int

RTE

Disable wake-up signal detection
(IRQ0 falling-edge detection function)
(when wake-up reception function is

included)

Initialize variables

LIN communication
control restart setting

LIN_start

User application program
LIN_wake_up

Figure 21 Flowchart of the IRQ Interrupt Function

#if __R_WAKEUP == __ON

#pragma interrupt(IRQ0_int)

void IRQ0_int(void){

 LIN_status.BIT.SLEEP = 0;

 IRR1.BIT.IRRI0 = 0;

 IENR1.BIT.IEN0 = 0;

#if __Corrects_baud_rate == __ON

 t_1 = t_1_data;

 t_11 = t_11_data;

 baudrate.WORD = baudrate_data;

#endif

 LIN_start();

 LIN_wake_up();

}

#endif

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Slave

REJ06B0232-0101/Rev.1.01 June 2007 Page 37 of 50

2.6.12 Timer W Interrupt Function
This function processes the timer W input capture A interrupt (I/C-A), compare match B interrupt (O/C-B), compare
match C interrupt (O/C-C), and overflow interrupt (OVF).

RTE

Y

N

N

N

N

Y

Y

Y

N

Y

Y

N

TmW_int

Y

N

Y

N

Y

N

Y

N
N

Y

Y

N

Y

Y

N

N

N

Y

Measurement
completed in an 8-bit

period?

IC-A interrupt?

O/C-C interrupt?
O/C-B interrupt?

OVF interrupt?

Timeout?

Timeout?

SCI3
initialization?

Wake-up signal
transmitted?

Wake-up signal
retransmitted?

Baud rate corrected?
Baud rate corrected?

Baud rate corrected?

Falling-edge?

(Dominant ≥ 11 bits)?

Count bit

Set falling-edge
detection

Set bit
counter

Save captured
value

Set rising
edge detection

Set SCI3 baud rate
(Enable O/C-C

interrupt, and disable
I/C-A interrupt)

Clear wake-up signal
transmission counter

(Disable O/C-C interrupt)

Enable SCI3
transmission/reception
(Disable I/C-A interrupt)

Clear status flags
(IMFA)

Clear status flags (IMFC)

Clear status
flags (IMFB)

Clear status
flags (OVF)

Set error flag
(NBA,TOA3B)

Enable SCI3
transmission

Set timeout

Disable O/C-C
interrupt

Set timeout

Set error flag
(SNRE)

Initialization of
internal variables

of library
LIN_Sflag_init

Preparation for sync break
field detection

LIN_break_reception_PR

User application program
LIN_error

Count overflow
Enable SCI3

transmission/reception
(Disable O/C-C interrupt)

Transmit wake-up signal
(Increment transmission

counter)

Transmit wake-up signal
(Increment transmission

counter)

Figure 22 Flowchart of the Timer W Interrupt Function

#pragma interrupt(TmW_int)

void TmW_int(void){

 unsigned long i;

 unsigned short N,w;

 if((TW.TSRW.BIT.IMFA) && (TW.TIERW.BIT.IMIEA)){

 TW.TSRW.BIT.IMFA = 0;

#if __Corrects_baud_rate == __ON

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Slave

REJ06B0232-0101/Rev.1.01 June 2007 Page 38 of 50

 if(in_status.BIT.brr == 0){

#endif

 if(TW.TIOR0.BIT.IOA0){

 TW.TIOR0.BIT.IOA0 = 0;

 ex_counter.LONG = (unsigned long)TW.GRA;

 TW.GRB = TW.GRA;

 if((TW.TSRW.BIT.OVF) && (ex_counter.WORD.l < 0x00FF)){

 TW.TSRW.BIT.OVF = 0;

 }

 }else{

 w = ex_counter.WORD.l;

 ex_counter.WORD.l = TW.GRA;

 if((TW.TSRW.BIT.OVF) && (ex_counter.WORD.l < 0x00FF)){

 ex_counter.WORD.h += 1;

 TW.TSRW.BIT.OVF = 0;

 }

 ex_counter.LONG -= w;

 if(ex_counter.LONG >= t_11){

#if __Corrects_baud_rate == __ON

 if(LIN_control.BIT.CBR){

 in_status.BIT.brr = 1;

 LIN_control.BIT.CBR = 0;

 counter = 4;

 }else{

#endif

 SCI3.SSR.BYTE &= 0x84;

#if __RESPONSE == __ON

 SCI3.SCR3.BYTE = 0x70;

#elif __RESPONSE == __OFF

 SCI3.SCR3.BYTE = 0x50;

#endif

 TW.TIERW.BIT.IMIEA = 0;

#if __Corrects_baud_rate == __ON

 }

#endif

#if __T_WAKEUP == __ON

 in_status.BIT.wu = 0;

 TW.TIERW.BIT.IMIEC = 0;

#endif

 }

 TW.TIOR0.BIT.IOA0 = 1;

 }

#if __Corrects_baud_rate == __ON

 }else{

 if(counter){

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Slave

REJ06B0232-0101/Rev.1.01 June 2007 Page 39 of 50

 if(counter == 4){

 ex_counter.LONG = (unsigned long)TW.GRA;

 SCI3.SCR3.BYTE = 0;

 SCI3.SMR.BYTE = 0;

 if((TW.TSRW.BIT.OVF) && (ex_counter.WORD.l < 0x00FF)){

 TW.TSRW.BIT.OVF = 0;

 }

 }

 counter -= 1;

 }else{

 TW.TIERW.BYTE = 0xF4;

 w = ex_counter.WORD.l;

 ex_counter.WORD.l = TW.GRA;

 if((TW.TSRW.BIT.OVF) && (ex_counter.WORD.l < 0x00FF)){

 ex_counter.WORD.h += 1;

 TW.TSRW.BIT.OVF = 0;

 }

 t_1 = (ex_counter.LONG - w) >> 3;

 for(N = ((t_1 + 2) >> 2); N > 0x0100; N >>= 2){

 SCI3.SMR.BIT.CKS += 1;

 }

 SCI3.BRR = N - 1;

 TW.GRC = (TW.TCNT + t_1);

 TW.TSRW.BYTE &= 0xF0;

 ex_counter.WORD.h = 0;

 in_status.BIT.sync_field = 1;

 t_11 = t_1 * 11;

 }

 }

#endif

 }else if((TW.TSRW.BIT.IMFC) && (TW.TIERW.BIT.IMIEC)){

 TW.TSRW.BIT.IMFC = 0;

 if(in_status.BIT.sci){

 SCI3.SSR.BYTE &= 0x84;

 SCI3.SCR3.BIT.TE = 1;

#if __T_WAKEUP == __ON

 if(in_status.BIT.wu == 1){

 TW.GRC = TW.TCNT + t_128.WORD.l;

 SCI3.TDR = 0x80;

 in_status.BIT.wu += 1;

 }else{

#endif

 TW.TIERW.BIT.IMIEC = 0;

#if __T_WAKEUP == __ON

 }

#endif

 in_status.BIT.sci = 0;

#if __Corrects_baud_rate == __ON

 }else if(in_status.BIT.brr){

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Slave

REJ06B0232-0101/Rev.1.01 June 2007 Page 40 of 50

 SCI3.SSR.BYTE &= 0x84;

#if ((__RESPONSE == __ON) || (__T_WAKEUP == __ON))

 SCI3.SCR3.BYTE = 0x70;

#else

 SCI3.SCR3.BYTE = 0x50;

#endif

 TW.TIERW.BIT.IMIEC = 0;

#endif

#if __T_WAKEUP == __ON

 }else if((in_status.BIT.wu == 2) && (ex_counter.WORD.h >= t_128.WORD.h)){

 SCI3.TDR = 0x80;

 ex_counter.WORD.h = 0;

 TW.GRC = TW.TCNT + t_128.WORD.l;

 in_status.BIT.wu += 1;

 }else if((in_status.BIT.wu == 3) && (ex_counter.WORD.h >= t_128.WORD.h)){

 SCI3.TDR = 0x80;

 ex_counter.WORD.h = 0;

 TW.TIERW.BIT.IMIEC = 0;

#endif

 }

 }else if((TW.TSRW.BIT.IMFB) && (TW.TIERW.BIT.IMIEB)){

 TW.TSRW.BIT.IMFB = 0;

 if(ex_counter.WORD.h >= flame_max){

 LIN_status.BIT.SNRE = 1;

 LIN_Sflag_init();

 LIN_break_reception_PR();

 LIN_error();

 }

 }else if((TW.TSRW.BIT.OVF) && (TW.TIERW.BIT.OVIE)){

 TW.TSRW.BIT.OVF = 0;

 ex_counter.WORD.h += 1;

 if((ex_counter.LONG > t_25k)){

 LIN_status.BIT.NBA = 1;

 LIN_Sflag_init();

 LIN_break_reception_PR();

 LIN_error();

#if __T_WAKEUP == __ON

 }else if((ex_counter.LONG >= t_15k) && (in_status.BIT.wu == 3)){

 in_status.BIT.wu = 0;

 LIN_status.BIT.TOA3B = 1;

 LIN_error();

#endif

 }

 }

}

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Slave

REJ06B0232-0101/Rev.1.01 June 2007 Page 41 of 50

2.6.13 SCI3 Interrupt Function
This function processes the SCI3 error detection and reception interrupts.

RTE

SCI3_int

Y

N

N

N

Y

Y

Y

N

Y

Y

Y

N

N

N

OK

NG

Y

N

Y

N

Error interrupt?

ID field received?

Count received
data

Reception checksum
operation

Checksum
determination?

Determination of
number of received data bytes

and checksum field
reception?

Set error flag (SCI)

Clear status flag (SUC)

Sleep
command?

Set status flag (CSE)

Set status flag (SLEEP)

Set status flag (SUC)

Transmission
checksum operation

Set timeout
(Enable O/C-B

interrupt)

Set timeout
(Enable O/C-B

interrupt)

Set transmission/reception
data counter

Response
transmission determined

by ID?

Save received ID (LIN_rx_id)
Initialization of

internal variables
of library

LIN_Sflag_init

Initialization of
internal variables

of library
LIN_Sflag_init

Initialization of
internal variables

of library
LIN_Sflag_init

Preparation for sync break
field detection

LIN_break_reception_PR

Preparation for sync break
field detection

LIN_break_reception_PR

Preparation for sync break
field detection

LIN_break_reception_PR

User application program
LIN_error

User application
program

LIN_data_set

User application
program
LIN_error

User application
program

LIN_sleep

User application
program
LIN_end

Transmit 1st byte
of response data
(LIN_tx_data[0])

Set error flag
(ISFE)

Set sync field
reception flag

Set reception data
counter

Extended frame ID?
(ID = FEh,BFh)

Save reception
data

Save received data
(LIN_rx_data[n])

Reception interrupt?

Sync field
received?

Received
data = 55h?

Figure 23 Flowchart of the SCI3 Interrupt Function

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Slave

REJ06B0232-0101/Rev.1.01 June 2007 Page 42 of 50

#pragma interrupt(SCI3_int)

void SCI3_int(void){

 unsigned char buff,nmbr,nm,id,dlc;

 if(SCI3.SSR.BYTE & 0x38){

 LIN_status.BIT.SCI = 1;

 LIN_Sflag_init();

 LIN_break_reception_PR();

 LIN_error();

 }else if(SCI3.SSR.BIT.RDRF){

 buff = SCI3.RDR;

 if(in_status.BIT.sync_field){

 if(counter){

 nm = counter & 0x0F;

 nmbr = (counter >> 4) - nm;

 if(nm){

 LIN_rx_data[nmbr] = buff;

 r_checksum.WORD += (unsigned short)LIN_rx_data[nmbr];

 r_checksum.BYTE.data += r_checksum.BYTE.carry;

 r_checksum.BYTE.carry = 0;

 counter -= 1;

#if __RESPONSE == __ON

 if(in_status.BIT.r_id){

 if(nm - 1){

 buff = LIN_tx_data[(nmbr + 1)];

 SCI3.TDR = buff;

 t_checksum.WORD += buff;

 t_checksum.BYTE.data += t_checksum.BYTE.carry;

 t_checksum.BYTE.carry = 0;

 }else{

 t_checksum.BYTE.data = ~(t_checksum.BYTE.data);

 SCI3.TDR = t_checksum.BYTE.data;

 in_status.BIT.r_id = 0;

 }

 }

#endif

 }else{

 LIN_Sflag_init();

 LIN_break_reception_PR();

 if((r_checksum.BYTE.data ^ buff) != 0xFF){

 LIN_status.BIT.CSE = 1;

 LIN_error();

 }else{

 if((LIN_rx_id == 0x3C) && (LIN_rx_data[0] == 0)){

 LIN_status.BIT.SLEEP = 1;

 LIN_sleep();

 }else{

 LIN_status.BIT.SUC = 1;

 LIN_end();

 }

 }

 }

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Slave

REJ06B0232-0101/Rev.1.01 June 2007 Page 43 of 50

 }else{

 in_status.BYTE &= 0x40;

 LIN_status.BIT.SUC = 0;

 LIN_rx_id = buff;

 switch(LIN_rx_id){

#if __Res2byte_ID == __ON

#ifdef __ID00

 case __ID00:

#endif

#ifdef __ID01

 case __ID01:

#endif

#ifdef __ID02

 case __ID02:

#endif

#ifdef __ID03

 case __ID03:

#endif

#ifdef __ID04

 case __ID04:

#endif

#ifdef __ID05

 case __ID05:

#endif

#ifdef __ID06

 case __ID06:

#endif

#ifdef __ID07

 case __ID07:

#endif

#ifdef __ID08

 case __ID08:

#endif

#ifdef __ID09

 case __ID09:

#endif

#ifdef __ID0a

 case __ID0a:

#endif

#ifdef __ID0b

 case __ID0b:

#endif

#ifdef __ID0c

 case __ID0c:

#endif

#ifdef __ID0d

 case __ID0d:

#endif

#ifdef __ID0e

 case __ID0e:

#endif

#ifdef __ID0f

 case __ID0f:

#endif

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Slave

REJ06B0232-0101/Rev.1.01 June 2007 Page 44 of 50

#ifdef __ID10

 case __ID10:

#endif

#ifdef __ID11

 case __ID11:

#endif

#ifdef __ID12

 case __ID12:

#endif

#ifdef __ID13

 case __ID13:

#endif

#ifdef __ID14

 case __ID14:

#endif

#ifdef __ID15

 case __ID15:

#endif

#ifdef __ID16

 case __ID16:

#endif

#ifdef __ID17

 case __ID17:

#endif

#ifdef __ID18

 case __ID18:

#endif

#ifdef __ID19

 case __ID19:

#endif

#ifdef __ID1a

 case __ID1a:

#endif

#ifdef __ID1b

 case __ID1b:

#endif

#ifdef __ID1c

 case __ID1c:

#endif

#ifdef __ID1d

 case __ID1d:

#endif

#ifdef __ID1e

 case __ID1e:

#endif

#ifdef __ID1f

 case __ID1f:

#endif

 counter = 0x22;

 in_status.BIT.r_id = 1;

 r_checksum.WORD = 0;

 LIN_data_set();

 buff = LIN_tx_data[0];

 t_checksum.WORD = (unsigned short)buff;

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Slave

REJ06B0232-0101/Rev.1.01 June 2007 Page 45 of 50

 TW.GRB += flame_max_2.WORD.l;

 flame_max = flame_max_2.WORD.h;

 TW.TSRW.BIT.IMFB = 0;

 TW.TIERW.BIT.IMIEB = 1;

 SCI3.TDR = buff;

 break;

#endif

#if __Res4byte_ID == __ON

#ifdef __ID20

 case __ID20:

#endif

#ifdef __ID21

 case __ID21:

#endif

#ifdef __ID22

 case __ID22:

#endif

#ifdef __ID23

 case __ID23:

#endif

#ifdef __ID24

 case __ID24:

#endif

#ifdef __ID25

 case __ID25:

#endif

#ifdef __ID26

 case __ID26:

#endif

#ifdef __ID27

 case __ID27:

#endif

#ifdef __ID28

 case __ID28:

#endif

#ifdef __ID29

 case __ID29:

#endif

#ifdef __ID2a

 case __ID2a:

#endif

#ifdef __ID2b

 case __ID2b:

#endif

#ifdef __ID2c

 case __ID2c:

#endif

#ifdef __ID2d

 case __ID2d:

#endif

#ifdef __ID2e

 case __ID2e:

#endif

#ifdef __ID2f

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Slave

REJ06B0232-0101/Rev.1.01 June 2007 Page 46 of 50

 case __ID2f:

#endif

 counter = 0x44;

 in_status.BIT.r_id = 1;

 r_checksum.WORD = 0;

 LIN_data_set();

 buff = LIN_tx_data[0];

 t_checksum.WORD = (unsigned short)buff;

 TW.GRB += flame_max_4.WORD.l;

 flame_max = flame_max_4.WORD.h;

 TW.TSRW.BIT.IMFB = 0;

 TW.TIERW.BIT.IMIEB = 1;

 SCI3.TDR = buff;

 break;

#endif

#if __Res8byte_ID == __ON

#ifdef __ID30

 case __ID30:

#endif

#ifdef __ID31

 case __ID31:

#endif

#ifdef __ID32

 case __ID32:

#endif

#ifdef __ID33

 case __ID33:

#endif

#ifdef __ID34

 case __ID34:

#endif

#ifdef __ID35

 case __ID35:

#endif

#ifdef __ID36

 case __ID36:

#endif

#ifdef __ID37

 case __ID37:

#endif

#ifdef __ID38

 case __ID38:

#endif

#ifdef __ID39

 case __ID39:

#endif

#ifdef __ID3a

 case __ID3a:

#endif

#ifdef __ID3b

 case __ID3b:

#endif

#ifdef __ID3d

 case __ID3d:

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Slave

REJ06B0232-0101/Rev.1.01 June 2007 Page 47 of 50

#endif

 counter = 0x88;

 in_status.BIT.r_id = 1;

 r_checksum.WORD = 0;

 LIN_data_set();

 buff = LIN_tx_data[0];

 t_checksum.WORD = (unsigned short)buff;

 TW.GRB += flame_max_8.WORD.l;

 flame_max = flame_max_8.WORD.h;

 TW.TSRW.BIT.IMFB = 0;

 TW.TIERW.BIT.IMIEB = 1;

 SCI3.TDR = buff;

 break;

#endif

/* case 0x3C:

 counter = 0x88;

 r_checksum.WORD = 0;

 TW.GRB += flame_max_8.WORD.l;

 flame_max = flame_max_8.WORD.h;

 TW.TSRW.BIT.IMFB = 0;

 TW.TIERW.BIT.IMIEB = 1;

 break;

*/

 case 0xFE:

 case 0xBF:

 LIN_Sflag_init();

 LIN_break_reception_PR();

 break;

 default :

 dlc = buff & 0x30;

 if(dlc == 0x20){

 counter = 0x44;

 TW.GRB += flame_max_4.WORD.l;

 flame_max = flame_max_4.WORD.h;

 }else if(dlc == 0x30){

 counter = 0x88;

 TW.GRB += flame_max_8.WORD.l;

 flame_max = flame_max_8.WORD.h;

 }else{

 counter = 0x22;

 TW.GRB += flame_max_2.WORD.l;

 flame_max = flame_max_2.WORD.h;

 }

 r_checksum.WORD = 0;

 TW.TSRW.BIT.IMFB = 0;

 TW.TIERW.BIT.IMIEB = 1;

 break;

 }

 }

 }else if(SCI3.RDR == 0x55){

 in_status.BIT.sync_field = 1;

 }else{

 LIN_status.BIT.ISFE = 1;

 LIN_Sflag_init();

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Slave

REJ06B0232-0101/Rev.1.01 June 2007 Page 48 of 50

 LIN_break_reception_PR();

 LIN_error();

 }

 }

}

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Slave

REJ06B0232-0101/Rev.1.01 June 2007 Page 49 of 50

Website and Support
Renesas Technology Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/inquiry
csc@renesas.com

Revision Record
Description

Rev.

Date Page Summary

1.00 Dec.20.03 — First edition issued
1.01 Jun.15.07 Pages 1,

3, 6, 7,15,
49 and 50

Content correction

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Slave

REJ06B0232-0101/Rev.1.01 June 2007 Page 50 of 50

1. This document is provided for reference purposes only so that Renesas customers may select the appropriate
Renesas products for their use. Renesas neither makes warranties or representations with respect to the
accuracy or completeness of the information contained in this document nor grants any license to any intellectual
property rights or any other rights of Renesas or any third party with respect to the information in this document.

2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out
of the use of any information in this document, including, but not limited to, product data, diagrams, charts,
programs, algorithms, and application circuit examples.

3. You should not use the products or the technology described in this document for the purpose of military
applications such as the development of weapons of mass destruction or for the purpose of any other military
use. When exporting the products or technology described herein, you should follow the applicable export
control laws and regulations, and procedures required by such laws and regulations.

4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and
application circuit examples, is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas products listed in this
document, please confirm the latest product information with a Renesas sales office. Also, please pay regular
and careful attention to additional and different information to be disclosed by Renesas such as that disclosed
through our website. (http://www.renesas.com)

5. Renesas has used reasonable care in compiling the information included in this document, but Renesas
assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information
included in this document.

6. When using or otherwise relying on the information in this document, you should evaluate the information in light
of the total system before deciding about the applicability of such information to the intended application.
Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any
particular application and specifically disclaims any liability arising out of the application and use of the
information in this document or Renesas products.

7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products
are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of
which may cause a direct threat to human life or create a risk of human injury or which require especially high
quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare,
combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. If you
are considering the use of our products for such purposes, please contact a Renesas sales office beforehand.
Renesas shall have no liability for damages arising out of the uses set forth above.

8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:
 (1) artificial life support devices or systems
 (2) surgical implantations
 (3) healthcare intervention (e.g., excision, administration of medication, etc.)
 (4) any other purposes that pose a direct threat to human life
 Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who

elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas
Technology Corp., its affiliated companies and their officers, directors, and employees against any and all
damages arising out of such applications.

9. You should use the products described herein within the range specified by Renesas, especially with respect to
the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or
damages arising out of the use of Renesas products beyond such specified ranges.

10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific
characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions.
Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or
damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and
software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment
for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer
software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

11. In case Renesas products listed in this document are detached from the products to which the Renesas products
are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You
should implement safety measures so that Renesas products may not be easily detached from your products.
Renesas shall have no liability for damages arising out of such detachment.

12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written
approval from Renesas.

13. Please contact a Renesas sales office if you have any questions regarding the information contained in this
document, Renesas semiconductor products, or if you have any other inquiries.

Notes regarding these materials

 2007. Renesas Technology Corp., All rights reserved.

	Cover
	1. LIN Communication System Overview
	1.1 Connection to the LIN Bus
	1.1.1 System Configuration
	1.1.2 LIN Bus (Single-Wire Bus) Interface

	1.2 Overview of LIN Communication
	1.2.1 Message Frame Structure
	1.2.2 Transmission and Reception of Message Frames

	2. Library Software Specifications
	2.1 Operating Environment
	2.2 File Organization
	2.3 Required ROM/RAM Capacity
	2.4 Functional Specifications
	2.4.1 LIN Communication Specifications
	2.4.2 LINID.h File Setting Example
	2.4.3 User Application Interface

	2.5 Operation
	2.5.1 Reception of a Header Frame
	2.5.2 Transmission and Reception of a Response Frame
	2.5.3 Transmission and Reception of a Wake-up Signal

	2.6 Software Description
	2.6.1 Including Header Files
	2.6.2 Defining Functions
	2.6.3 Defining Library Internal Constants and Variables
	2.6.4 Defining Global Variables
	2.6.5 Initialization Function
	2.6.6 LIN Communication Control Stop Function
	2.6.7 Function for LIN Communication Restart Preparation
	2.6.8 Wake-up Signal Transmission Function
	2.6.9 Function for Preparing for Wake-up Signal Reception
	2.6.10 Function for Preparing to Detect a Sync Break Field in the Library
	2.6.11 IRQ Interrupt Function
	2.6.12 Timer W Interrupt Function
	2.6.13 SCI3 Interrupt Function

	Website and Support
	Revision Record
	Notes regarding these materials

