Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

H8/300H Tiny Series

LIN (Local Interconnect Network) Application Note: Slave

Introduction

LIN (Local Interconnect Network) Application Note: Slave provides specification and setting examples that use the on-chip peripheral functions of the H8/300H Tiny Series microcomputer to enable communication based on the LIN communication protocol. This application note provides reference information for those users who are involved in software and hardware design.

Target Device

H8/300H Tiny Series H8/3664F/3694F/36014F

Contents

1.	LIN Communication System Overview	. 2
2.	Library Software Specifications	. 6

1. LIN Communication System Overview

This section describes LIN communication for a system that incorporates the sample LIN communication software library (hereinafter referred to as the library) described in this application note.

1.1 Connection to the LIN Bus

When a system is connected to a network through the LIN bus (Figure 1) and via a LIN bus interface circuit (or an LIN transceiver), LIN communication including header frame transmission as the slave node, as well as the transmission and reception of response frames, is performed.

1.1.1 System Configuration

Figure 1 shows a sample LIN bus network system configuration.

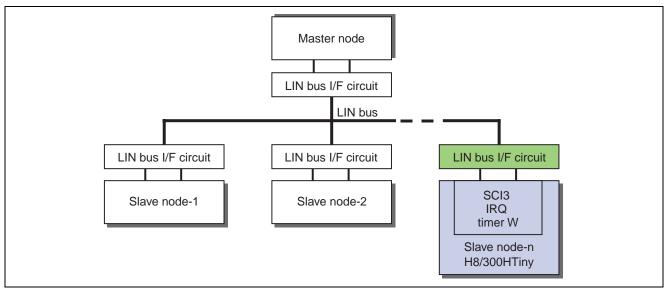


Figure 1 Block Diagram of a System Connected Through the LIN Bus

1.1.2 LIN Bus (Single-Wire Bus) Interface

Figure 2 shows a sample circuit for interfacing the LIN bus to the input/output pins of the on-chip functions of the H8/300H Tiny Series microcomputer (hereinafter referred to as the microcomputer).

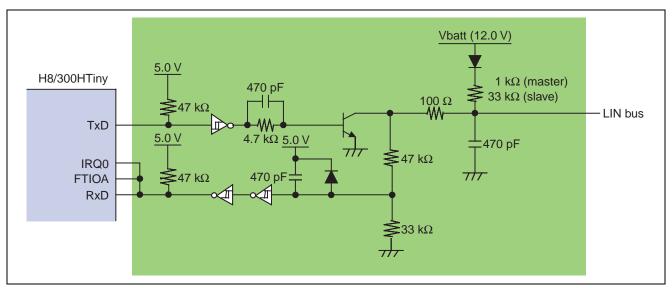


Figure 2 Sample LIN Bus Interface Circuit

1.2 Overview of LIN Communication

This section describes the message frames that are transmitted and received using the LIN communication protocol.

1.2.1 Message Frame Structure

Figure 3 shows the structure of a message frame. Each message frame consists of a header frame transmitted from the master node and a response frame transmitted from the master node or a slave node.

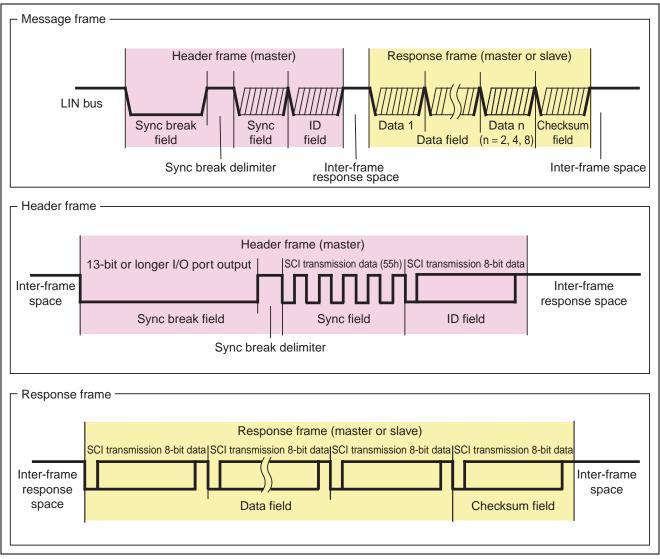


Figure 3 Message Frame Structure

1.2.2 Transmission and Reception of Message Frames

Figure 4 illustrates message frame transmission and reception in the master node and slave nodes.

- The master node transmits a header frame.
- Each slave node determines an ID from the received header frame and, when the ID is of the local node, the node transmits a response.

(The master node determines the ID at transmission.)

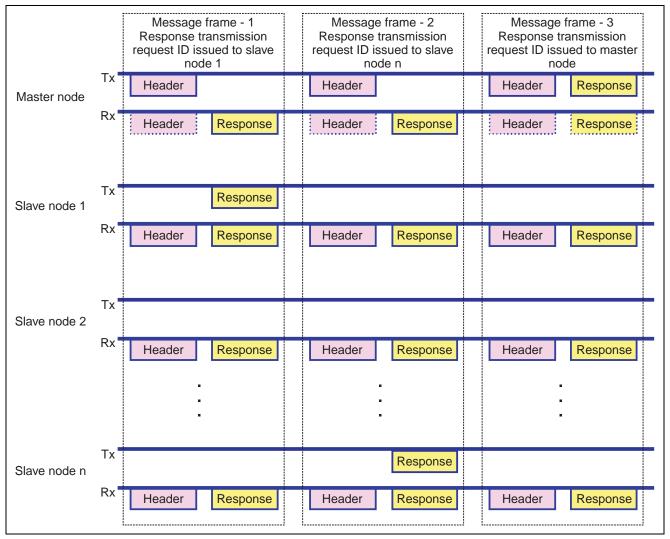


Figure 4 Transmission and Reception of Message Frames

2. Library Software Specifications

By including the library in a user application program, the user application program can use on-chip functions to perform LIN communication as a slave node.

2.1 **Operating Environment**

Device used: H8/300H Tiny Series microcomputer (H8/3664F/3694F/36014F)

Operating frequency range (system clock (ϕ osc)): Range equivalent to device operating frequencies. It is necessary to define ϕ osc in LINID.h by considering the LIN communication speed and processing conditions of the user application program. (See Section 2.4.2, "LINID.h File Setting Example".)

Functions used: Table 1 lists the on-chip peripheral functions to be used with the library, together with their uses.

Function		Pin function (pin No.)	Use	Description
SCI3	Transmission	TXD	Transmission of response frame	Asynchronous mode
(channel-0)		(46pin)	Transmission of wake-up signal	Data length: 8 bits No parity bit
	Reception	RXD (45pin)	Reception of response frame	 1 stop bit (with start bit added) LSB first
			Communication error detection	Error detection function in module
Timer W		FTIOA (37pin)	Measurement of sync break field dominant period Measurement of sync field period Measurement of wait period (internal function of library) Timeout detection	Counting is performed at cycles of ϕ osc/8, and each period is measured.
IRQ		/IRQ0 (51pin)	Wake-up signal detection	In the standby state, the LIN bus is monitored to detect a falling-edge.

Table 1 Use of On-Chip Peripheral Functions

2.2 File Organization

(ENESAS

LINslvW.c (Ver.1.40)
 C source file used for (slave) microcomputer function setting and communication control for LIN communication in the H8/300HTiny Series (versions with built-in timer W).

- LINID.h (Ver.1.40) Include file used to include user-defined items such as the communication transfer rate and ID settings at LINslvW.c (Ver.1.40) compilation. This file also contains user application interface functions and variable definitions. These must also be included at the time of user application program compilation.
- H8_3664.h (Ver.1.00) Internal I/O register definition file for the H8/3664F/3694F
- H8_36014.h (Ver.1.00) Internal I/O register definition file for the H8/36014F

2.3 Required ROM/RAM Capacity

(When H8S or H8/300 Series C compiler CH38.exe Ver.2.0C is used)

The ROM/RAM size used varies depending on the number of IDs that are set and so on.

- ROM size: 2.0 Kbytes approximately
- RAM size: 40 bytes approximately

2.4 Functional Specifications

2.4.1 LIN Communication Specifications

- Node: Slave node supported
- ID: User-defined ID
 - A. Response transmission ID

Zero to 61 IDs (00h to 3bh, 3dh) can be set in LINID.h.

(If nodes having the same ID are set on the same LIN bus, normal operation is impossible.)

- B. LIN protocol definition ID
 - a. Master request frame ID 3ch (ID field data: 3Ch)

A response frame (8-byte data) is transmitted from the master node. If the first byte of the data field is 00h, the reception of a sleep command is assumed, and a status flag (see Table 4) is set.

- b. Slave response frame ID 3dh (ID field data: 7Dh)
 A slave node having this ID transmits a response frame (8-byte data).
- c. Extended frame ID 3eh, 3fh (ID field data: FEh, BFh) Not supported by this library (Ver.1.40).

(Upon receiving these IDs, the node waits for the next message frame (sync break field detection).)

C. ID setting method

In LINID.h, delete the definition statements (#define __IDm 0xnn (m = 00h to 3bh, 3dh)) of IDs other than those to be set as response transmission IDs, or set them as comment statements so that only the IDs to be set are defined, and then compile LINslvW.c.

- Response data length: The DLC (data length control) bits in the reception ID field are determined.
- Communication transfer rate: The communication transfer rate used is defined in LINID.h.
 From the system clock (φ osc) definition value and communication transfer rate definition value, the constants used in the library and the SCI3 module setting value are calculated automatically. (Note: The communication transfer rate may be restricted by φ osc. For details, refer to "SCI3 Module: BRR Setting Example (Asynchronous Mode) for the Bit Rate" in the hardware manual.)

H8/300H Tiny SeriesLIN (Local Interconnect Network) Application Note: Slave

• Wake-up signal transmission and reception: Wake-up signal transmission and reception functions can be included. Including the wake-up signal transmission function

A definition statement (#define __T_WAKEUP __ON) in LINID.h includes the wake-up transmission function the user application program calls the function (LIN_transmit_wake_up). These enable the wake-up signal to be transmitted on the LIN bus.

Including the wake-up signal reception function

A definition statement (#define ____R_WAKEUP ___ON) in LINK.h includes the wake-up reception function. Even when the microcomputer is in the standby state, the wake-up signal on the LIN bus is detected (falling-edge detection) through IRQ0 (external interrupt input).

2.4.2 LINID.h File Setting Example

An example of setting LINID.h is shown below.

- 1. The microcomputer used is the H8/3664F.
- 2. The node transmits a wake-up signal.
- 3. Wake-up signal detection (falling-edge detection) through IRQ0 (external interrupt) is not performed. (No wake-up signal is transmitted from other nodes).
- 4. Response frames are transmitted to the following four IDs:

ID (ID bit + DLC bits)	(including parity bits)
02h	(42h)
13h	(D3h)
24h	(64h)
35h	(F5h)

5. The system clock (ϕ osc) is 16 [MHz].

6. The LIN communication transfer rate is 19200 [bit/sec].

7. Correction of the LIN communication transfer rate by sync field measurement is not performed.

An example of the settings made based on the specifications described in 1. to 7., above, is given below.

(Definition statements other than the statements indicated in boldface must be deleted or set as comment lines.)

/* */ LINID.h Ver.1.40 * / /* * / 1 #define __ON /* This line must not be changed or deleted. */ #define 0 /* This line must not be changed or deleted. */ __OFF #define __H8_3694F 1 /* This line must not be changed or deleted. */ 0 #define H8 36014F /* This line must not be changed or deleted. */ * / CPU selection /*_____*/ __CPU __H8_3694F /* Define this line for the H8/3664F and 3694F series. #define */ /*#define ___CPU ___H8_36014F /* Define this line for the H8/36014F series. * / Setting of wake-up signal transmission function */ /*-----*/ /* When transmitting a wake-up signal, define this line. #define ___T_WAKEUP ___ON */

H8/300H Tiny Series LIN (Local Interconnect Network) Application Note: Slave

/*#define __T_WAKEUP __OFF /* When not transmitting wake-up signal, define this line. */

/*****	**********
/* Setting of wake-up signal detection function	* /
/*	*/
/*#defineR_WAKEUPON /* When detecting a wake-up signal (falling-edge d	letection),
define this line.	*/
#define R WAKEUP OFF /* When not detecting wake-up signal, define this line.	*/

/*****	* * * * * * * * * * * * * * * * * * * *	**/
/*	Setting of response transmission IDs	*/
/*		-*/
/*	2-byte data	*/
/*		-*/

#define	Res2byte_ID	ON	/*	When using a 2-byte response data transmission ID, de	efine
this line.					* /
/*#define	Res2byte_ID	OFF	/*	When not using a 2-byte response data transmission II	D,
define this	s line.				*/

#if	Res2byte_ID	==	ON	

/*#define	ID00	0x80		/*	* /
/*#define	ID01	0xC1		/*	* /
#define	ID02	0x42	/*	Transmit response to ID field 42h.	*/
/*#define	ID03	0x03		/*	*/
/*#define	ID04	0xC4		/*	*/
/*#define	ID05	0x85		/*	*/
/*#define	ID06	0x06		/*	*/
/*#define	ID07	0x47		/*	*/
/*#define	ID08	0x08		/*	*/
/*#define	ID09	0x49		/*	*/
/*#define	ID0a	0xCA		/*	*/
/*#define	ID0b	0x8B		/*	* /
/*#define	ID0c	0x4C		/*	*/
/*#define	ID0d	0x0D		/*	*/
/*#define	ID0e	0x8E		/*	*/
/*#define	ID0f	0xCF		/*	*/
/*#define	ID10	0x50		/*	*/
/*#define	ID11	0x11		/*	*/
/*#define	ID12	0x92		/*	*/
#define	ID13	0xD3	/*	Transmit response to ID field D3h.	*/
/*#define	ID14	0x14		/*	*/
/*#define	ID15	0x55		/*	*/
/*#define	ID16	0xD6		/*	*/
/*#define	ID17	0x97		/*	*/
/*#define	ID18	0xD8		/*	*/
/*#define	ID19	0x99		/*	*/
/*#define	ID1a	0x1A		/*	*/
/*#define	ID1b	0x5B		/*	* /
/*#define	ID1c	0x9C		/*	*/
/*#define	ID1d	0xDD		/*	*/
/*#define	ID1e	0x5E		/*	*/

/*#defineID1f 0x1F	/*	* /
#endif		
*		*/
/* 4-byte data		*/
/*		*/
#defineRes4byte_IDON	/* When using a 4-byte response data transmission ID $$, define
this line.		* /
/*#defineRes4byte_IDOFF	/* When not using a 4-byte response data transmission	n ID,
define this line.		* /
<pre>#ifRes4byte_ID ==ON</pre>		

/*#define	ID20	0x20	/*	* /
/*#define	ID21	0x61	/*	* /
/*#define	ID22	0xE2	/*	* /
/*#define	ID23	0xA3	/*	* /
#define	ID24	0x64	/* Transmit response to ID field 64h.	* /
/*#define	ID25	0x25	/*	* /
/*#define	ID26	0xA6	/*	* /
/*#define	ID27	0xE7	/*	* /
/*#define	ID28	0xA8	/*	* /
/*#define	ID29	0xE9	/*	* /
/*#define	ID2a	0x6A	/*	* /
/*#define	ID2b	0x2B	/*	* /
/*#define	ID2c	0xEC	/*	* /
/*#define	ID2d	0xAD	/*	* /
/*#define	ID2e	0x2E	/*	* /
/*#define	ID2f	0x6F	/*	* /

#endif

/*_		*/
/*	8-byte data	, */
/*_		*/

#define	Res8byte_ID	ON	/*	When using an 8-byte response data transmission ID, o	define
this line.					*/
/*#define	Res8byte_ID	OFF	/*	When not using an 8-byte response data transmission 3	ID,
define this	s line.				* /

#if	Res8bvte	ID	==	ON

/*#defineID3) 0xF0	/*	* /
/*#defineID3	l 0xB1	/*	* /
/*#defineID3	2 0x32	/*	* /
/*#defineID3	3 0x73	/*	* /
/*#defineID3	4 0xB4	/*	* /
#defineID3	5 0xF /	* Transmit response to ID field D3h	1. */
/*#defineID3	5 0x76	/*	* /
/*#defineID3	7 0x37	/*	* /
/*#defineID3	3 0x78	/*	* /

/*#defineID3	9 0x39	/*	*/
/*#defineID3	a OxBA	/*	*/
/*#defineID3	o OxFB	/*	*/
/*#defineID3	d 0x7D	/*	*/

#endif

System clock (ϕ osc) definition section * / /*_____*/ /*#define OSC_Hz 20000000 /* ϕ osc=20.000MHz \rightarrow 20000000 */ 16000000 /* ϕ osc=16.000MHz \rightarrow 16000000 #define OSC_Hz */ /* ϕ osc=10.486MHz \rightarrow 10486000 */ /*#define OSC_Hz 10486000 /* ϕ osc=10MHz \rightarrow 10000000 */ /*#define OSC_Hz 10000000 /* ϕ osc=9.8304MHz \rightarrow 9830400 */ /*#define OSC_Hz 9830400 /*#define OSC_Hz 800000 $/* \phi \text{ osc=8MHz} \rightarrow 800000 */$ /*#define OSC Hz 7372800 /* \$\phi\$ osc=7.3728MHz → 7372800 */ /*#define OSC_Hz 4915200 /* ϕ osc=4.9152MHz \rightarrow 4915200 */ /*#define OSC_Hz /* ϕ osc=2.4576MHz \rightarrow 2457600 */ 2457600 Baud rate definition section */ /*-----*/ /*#define B_rate 2400 /* 2400bps \rightarrow 2400 */ /*#define B_rate 4800 /* 4800bps \rightarrow 4800 * / /*#define B_rate 9600 /* 9600bps → 9600 */ /*#define B_rate 10000 /* 10000bps \rightarrow 10000 */ /*#define B rate 14400 /* 14400bps \rightarrow 14400 */ 15000 /*#define B_rate /* 15000bps \rightarrow 15000 * / #define B_rate 19200 /* 19200bps \rightarrow 19200 * / /*#define B_rate 20000 /* 20000bps \rightarrow 20000 */ * / Setting of baud rate correction function /*-----*/ /*#define __Corrects_baud_rate __ON /* To correct the baud rate by the sync field measurement, define this line. * / #define __Corrects_baud_rate __OFF /* When not correcting the baud rate by the sync field measurement, define this line. * / Library constant calculation section The following must not be changed or deleted. */ /*-----*/ #define t_1_data ((((OSC_Hz) / (B_rate)) + 0x04) >>3) t_11_data #define ((((11 * ((OSC_Hz) >>2)) / (B_rate)) + 0x01) >>1) t_128_data ((((((OSC_Hz) <<5) / (B_rate)) + 0x01) >>1) #define #define t_15k_data (((0xEA6 * ((OSC_Hz) / (B_rate))) + 0x01) >>1) #define t_15k_data (((0x186A * ((OSC_Hz) / (B_rate))) + 0x01) >>1) #define t_2byte_data (((((91 * ((OSC_Hz) >>2)) / (B_rate)) + 0x01) >>1) #define t_4byte_data (((((119 * ((OSC_Hz) >>2)) / (B_rate)) + 0x01) >>1) #define t_8byte_data (((((175 * ((OSC_Hz) >>2)) / (B_rate)) + 0x01) >>1)

#define baudrate_data ((((((OSC_Hz) >>4) / (B_rate)) + 0x01) >>1) - 1) /* Function and variable definition section The following must not be changed or deleted. * / /*-----*/ #if ((__Res2byte_ID) || (__Res4byte_ID) || (__Res8byte_ID)) ___RESPONSE #define __ON #else ___RESPONSE __OFF #define #endif #ifndef __LIN_LIB extern void LIN_initialize(void); extern void LIN_end(void); extern void LIN_sleep(void); void LIN_error(void); extern extern void LIN_data_set(void); extern void LIN_start(void); extern void LIN_stop(void); #if __RESPONSE == __ON extern void LIN_data_set(void); #endif ___T_WAKEUP #if == __ON extern void LIN_transmit_wake_up(void); #endif #if ___R_WAKEUP == __ON void LIN_wake_up(void); extern void LIN_wake_up_PR(void); extern #endif #if ___RESPONSE == ____ON extern volatile unsigned char LIN_tx_data[8]; #endif volatile unsigned char LIN_rx_id; extern volatile unsigned char LIN_rx_data[8]; extern extern volatile union { unsigned char BYTE; struct { unsigned char NBA :1; unsigned char CSE :1; unsigned char ISFE :1; unsigned char TOA3B :1; unsigned char SNRE :1; unsigned char SCI :1; unsigned char SUC :1; unsigned char SLEEP :1; BIT; } } LIN_status;

extern volatile u	nion {		
unsign	ed char BYTE;		
sti	ruct {		
	unsigned char	CBR	:1;
	unsigned char	wk6	:1;
	unsigned char	WU	:1;
	unsigned char	wk4	:5;
}	BIT;		
<pre>} LIN_control;</pre>			
#endif			

2.4.3 User Application Interface

This section describes the specifications of the interface between this library and a user application program.

• Interface by function (module) call

The user application program calls functions in the library to initialize the on-chip peripheral functions that are required for LIN communication control, stop and restart LIN communication control, control wake-up signal transmission, and prepare to receive wake-up signals.

Function name	Description			
LIN_initialize	Initializes the required on-chip peripheral functions for LIN communication control and starts communication control.			
	The LIN_start function need not be called.			
LIN_stop	Stops LIN communication control.			
LIN_start	Restarts LIN communication control. (When turning on the power, call the LIN_initialize function.)			
LIN_transmit_wake_up	Transmits a wake-up signal.			
LIN_wake_up_PR	Makes preparations needed to receive a wake-up signal.			

Table 2 Functions in the Library That are Called by the User Application Program

If functions called by the library are prepared within the user application program, processing is performed at certain event timings (upon the completion of transmission and reception, upon the detection of a communication error, and so forth) during LIN communication.

Table 3	User Application Control Functions Called by the Library
---------	--

Function name	Description
LIN_wake_up	Function for user application control when a wake-up signal is detected
LIN_sleep	Function for user application control when a sleep command is received
LIN_data_set	Function for user application control before response frame transmission
LIN_end	Function for user application control after the completion of message frame transmission or reception
LIN_error	Function for user application control when a LIN communication error is detected

• Operation overview

Figure 5 and Figure 6 show the operations.

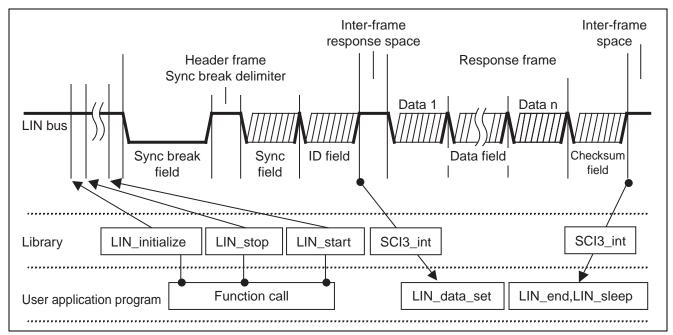


Figure 5 Operation Overview at Message Frame Transmission/Reception

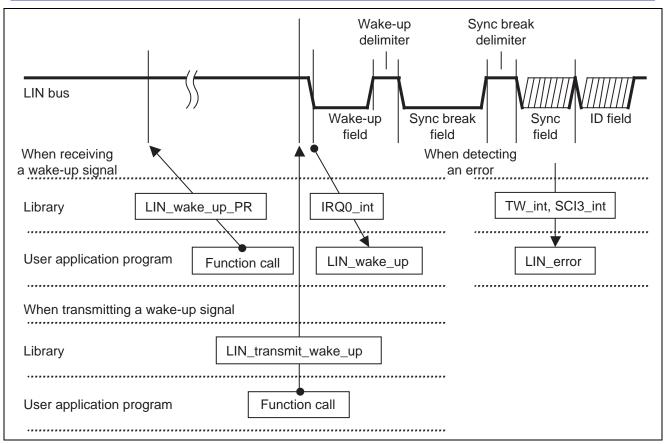


Figure 6 Operation Overview at Error Detection and Wake-up Signal Transmission and Reception

• Interface using global variables (data stored in the RAM area) The user application program and the library interface with each other by sharing data.

Table 4	Data (Global V	ariables) Shared by	the User	Application and Library
---------	----------------	---------------------	----------	-------------------------

Label name (variable name)	Data type	Description
LIN_tx_data[0] to [7]	unsigned char	Sets the transmission data when transmitting a response
	(array)	frame.
LIN_rx_id	unsigned char	Holds a received ID.
LIN_rx_data[0] to [7]	unsigned char	Holds received response data.
	(array)	
LIN_status	(Structure)	Communication status
LIN_status.BYTE	Byte access	
	unsigned char	
	Bit access	
LIN_status.BIT.NBA	Bit 7	No bus active error
		Set condition : The LIN bus remains inactive for a certain time.
LIN_status.BIT.CSE	Bit 6	Checksum error flag
		Set condition : A checksum error is detected when a
		response is received.

Label name		
(variable name)	Data type	Description
LIN_status.BIT.ISFE	Bit 5	Sync field errorSet condition: The received sync field data (data received by the SCI3 module) is other than 55h.
LIN_status.BIT.TOA3B	Bit 4	Wake-up timeout
		Set condition : A header frame, transmitted from the master within a certain period after the wake-up retry signal is transmitted (three times, including the first transmission), is not detected.
LIN_status.BIT.SNRE	Bit 3	Slave not responding error
		Set condition : Reception of a response frame from a slave is not completed within a certain period during message frame transmission/reception.
LIN_status.BIT.SCI	Bit 2	SCI error
		Set condition : An error in the SCI3 module (overrun error or framing error) is detected.
LIN_status.BIT.SUC	Bit 1	Message frame normal reception completion flag Set condition : A response frame has been received normally.
		Condition to clear : An ID frame has been received.
LIN_status.BIT.SLEEP	Bit 0	Sleep command reception flag
		Set condition : A sleep command has been received.
LIN_control	(Structure)	Communication control
LIN_control.BYTE	Byte access	
	unsigned char	
	Bit access	
LIN_control.BIT.CBR	Bit 7	Control of the communication transfer rate correction function (See Section 2.5.1.2, "Reception of a Sync Field".)
LIN_control.BIT.wk6	Bit 6	Reserved bit
LIN control.BIT.WU	Bit 5	(Wake-up control bit)
		(See Section 2.5.3, "Transmission and Reception of a Wake-up Signal".)
LIN_control.BIT.wk4		

2.5 Operation

This section explains the transmission and reception operations performed with the library.

2.5.1 Reception of a Header Frame

1. Detection of a Sync Break Field

The timer W input capture function measures the sync break field dominant period.

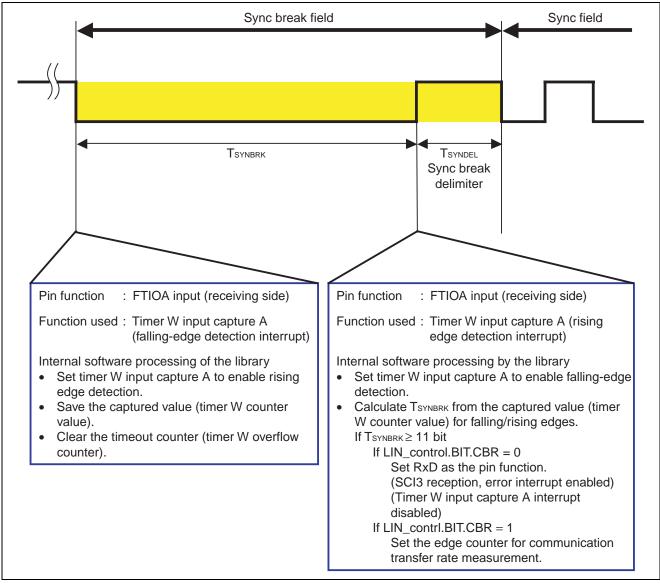


Figure 7 Detection of a Sync Break Field

2. Reception of a Sync Field

The sync field reception control method is determined according to the setting of the CBR bit in LIN_control, as follows:

CBR = 0: The SCI3 reception function determines the sync field reception data (55h).

(Figure 8 Reception and Determination of a Sync Field by the SCI3 Reception Function)

CBR = 1: The timer W input capture function measures the bit width of a sync field and corrects the communication transfer rate (by setting BRR in the SCI3 module, and so on).(Figure 9 Correction of the Communication Transfer Rate by the Timer W Input Capture Function)

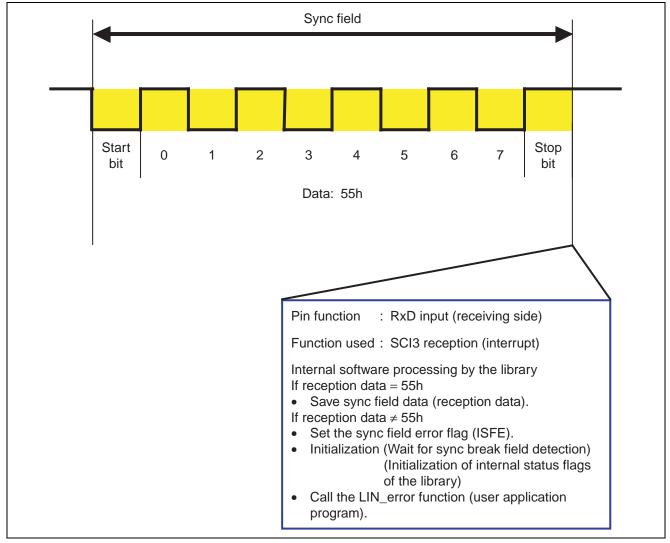


Figure 8 Reception and Determination of a Sync Field by the SCI3 Reception Function

RENESAS

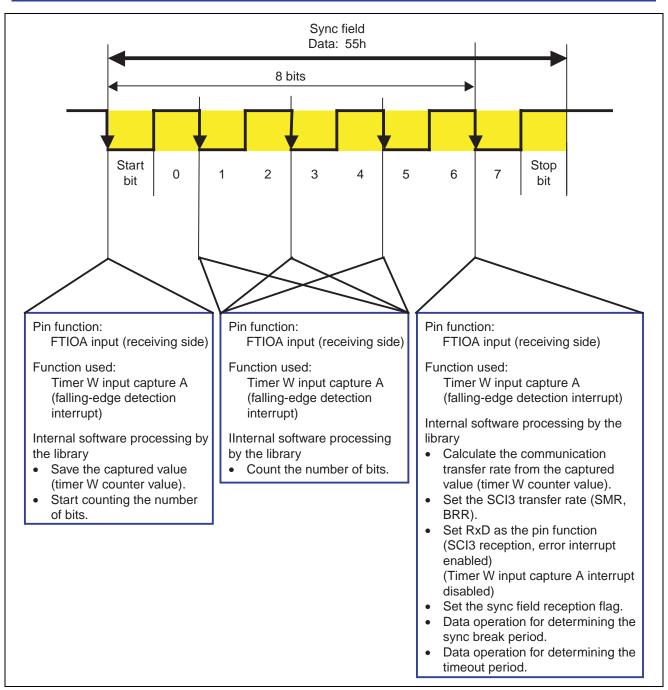


Figure 9 Correction of the Communication Transfer Rate by the Timer W Input Capture Function

3. Reception of an ID Field

The SCI3 reception function determines the ID (including the DLC and parity bits) in the ID field reception data. If the ID is a response transmission request ID intended for the local node, transmission of a response frame starts.

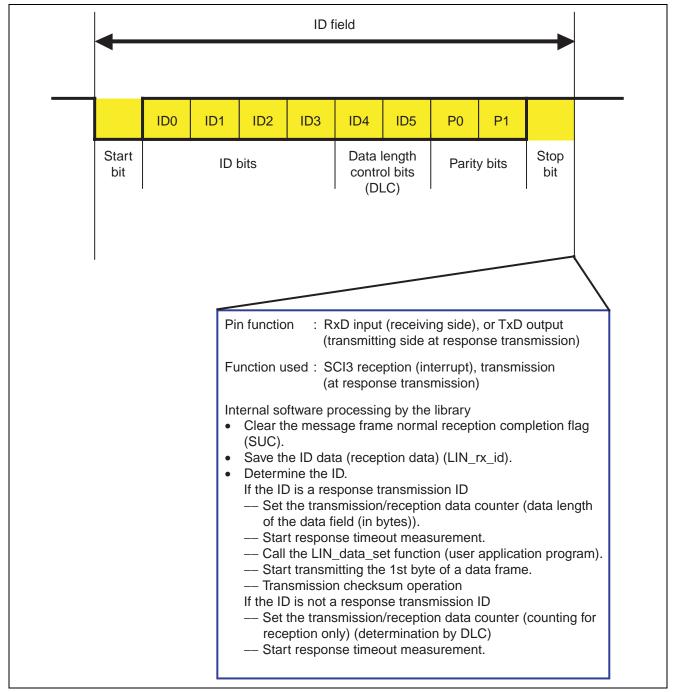


Figure 10 ID Field Reception and Determination

2.5.2 Transmission and Reception of a Response Frame

Transmission and Reception of a Data Field (Transmission of a Checksum Field)
 The SCI3 reception function saves received data and performs a reception checksum data operation.
 When a response is transmitted, the subsequent data is transmitted, and a transmission checksum data operation is performed. (Within a reception interrupt)



Figure 11 Transmission/Reception of a Data Field and Transmission of Checksum Data

2. Reception of a Checksum Field

The SCI3 reception function makes a determination from the received checksum field and reception checksum data obtained by an operation from the data field.

	Checksum field										
		C0	C1	C2	C3	C4	C5	C6	C7		
	tart bit	LSB			Checks	um bits			MSB	Stop bit	
	I									I	
				Pin fur	nction	: RxD ir	nput (rec	ceiving s	ide)		\rightarrow
					on used		·	,	. ,		
				• De	al softwa termine	the num	ber of re			s.	
				 Init 	termine ializatior	n (wait fo	r sync b		d detecti	ion)	
	If the determination is acceptable — Set the message frame normal reception completion flag (SUC).										
					Determi	ne a slee			h		
	 If a sleep command is determined Set the sleep flag (SLEEP). Call the LIN_sleep function (user application program). 										
	If a sleep command is not determined (normal message frame) Call the LIN_end function (user application										
				וניו	prog	ram).				auun	
					ne deteri Set the	checksu	m error f	lag (CS	E).	ion	
					Call the program			user	applicat		

Figure 12 Checksum Field Reception and Determination

2.5.3 Transmission and Reception of a Wake-up Signal

The SCI3 transmission function transmits a wake-up signal (transmission data: 80h).

The IRQ0 falling-edge detection function detects a wake-up signal from another node.

1. Transmission of a Wake-up Signal

A definition statement in LINID.h (#define __T_WAKEUP __ON) includes the wake-up signal transmission function when compilation is performed, allowing the SCI3 transmission function to transmit a wake-up signal when the user application program calls the LIN_transmit_wake_up function. This library does not perform wake-up delimiter output control.

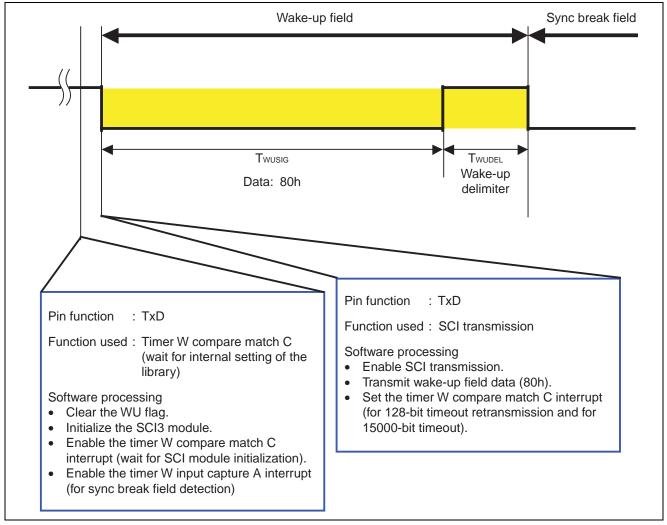


Figure 13 Transmission of a Wake-up Signal

2. Reception of a Wake-up Signal

A definition statement in LINID.h (#define ___R_WAKEUP ___ON) includes the wake-up signal reception function when compilation is performed, allowing the IRQ falling-edge detection function to wait for a wake-up signal from another node when the user application program calls the LIN_wake_up_PR function.

This library detects only falling-edges, without verifying the wake-up field data.

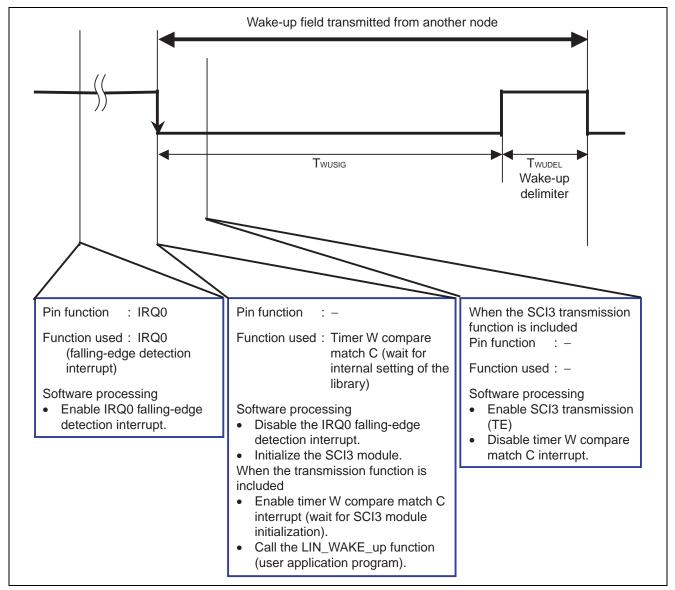


Figure 14 Reception of a Wake-up Signal

2.5.4 Reception of a Sleep Command

After the normal reception of a message frame, if the received ID field data is 3Ch and the first byte of the response data is 00h, the reception of a sleep command is recognized. Then, the sleep flag (SLEEP) is set, and the LIN_sleep function (user application program) is called. (In this case, the LIN_end function is not called in the message frame.)

2.6 Software Description

This section explains the library software.

2.6.1 Including Header Files

Includes the standard library (machine.h), the LIN library definition file (LINID.h), and the on-chip peripheral register definition files (H8_3664f.h and H8_36014f.h).

```
#include <machine.h>
#define __LIN_LIB
#include "LINID.h"
#if __CPU == __H8_3694F
#include "H8_3664f.h"
#elif __CPU == __H8_36014F
#include "H8_36014f.h"
#endif
```

2.6.2 Defining Functions

Functions (modules) in the library must be defined.

The inclusion of the LIN_data_set function is selected by defining __Res2byte_ID, __Res4byte_ID, or __Res8byte_ID in LINID.h.

The inclusion of the LIN_transmit_wake_up function is selected by the __T_WAKEUP definition.

The inclusion of the LIN_intc_init function, LIN_wake_up function, and LIN_wake_up_PR function is selected by the _____R_WAKEUP definition.

```
void
       LIN_initialize(void);
void
       LIN_system_init(void);
void
       LIN_port_init(void);
     LIN_sci_init(void);
void
       LIN_timerW_init(void);
void
void
       LIN_Sflag_init(void);
void LIN_end(void);
void
       LIN_sleep(void);
void
       LIN_error(void);
void
       LIN_break_reception_PR(void);
void
       LIN_start(void);
void
       LIN_stop(void);
```



```
___RESPONSE
                        __ON
#if
                  ==
void
     LIN_data_set(void);
#endif
#if __T_WAKEUP == __ON
void LIN_transmit_wake_up(void);
#endif
#if
     ___R_WAKEUP == ___ON
void LIN_intc_init(void);
void LIN_wake_up(void);
void LIN_wake_up_PR(void);
#endif
```

2.6.3 Defining Library Internal Constants and Variables

This section defines the constants and variables that are used in the library.

Table 5 Definition of Library Internal Constants and Variables

Label name		
(variable name)	Data type	Description
t_1	unsigned short	1-bit counter value (for waiting at SCI3 initialization)
t_11	unsigned long	11-bit counter value (for sync break field detection)
t_128	(Structure)	128-bit counter value (for sync break field detection
t_128.LONG	unsigned long	timeout at wake-up transmission)
t_128.WORD.h	unsigned short	
t_128.WORD.I	unsigned short	
t_15k	unsigned long	15000-bit counter value (for timeout after wake-up retry
		transmission (3 times))
		(LIN_status.BIT.TOA3B)
t_25k	unsigned long	25000-bit counter value (for no bus active detection)
		(LIN_status.BIT.NBA)
flame_max_2	(Structure)	Maximum response timeout value
flame_max_2.LONG	unsigned long	(LIN_status.BIT.SNRE)
flame_max_2.WORD.h	unsigned short	
flame_max_2.WORD.I	unsigned short	
flame_max_4	(Structure)	
flame_max_4.LONG	unsigned long	
flame_max_4.WORD.h	unsigned short	
flame_max_4.WORD.I	unsigned short	
flame_max_8	(Structure)	
flame_max_8.LONG	unsigned long	
flame_max_8.WORD.h	unsigned short	
flame_max_8.WORD.I	unsigned short	
baudrate	(Structure)	Baud rate setting for SCI3 module
baudrate.WORD	unsigned short	
baudrate.BYTE.smr	unsigned char	
baudrate.BYTE.brr	unsigned char	

Label name		
(variable name)	Data type	Description
ex_counter	(Structure)	Time W extended counter
ex_counter.LONG	unsigned long	
ex_counter.WORD.h	unsigned short	
ex_counter.WORD.I	unsigned short	
flame_max	unsigned short	Response timeout setting (timer W overflow count value)
counter	unsigned char	Transmission/reception data counter
t_checksum	(Structure)	Transmission data checksum operation value
t_checksum.WORD	unsigned short	
t_checksum.BYTE.carry	unsigned char	
t_checksum.BYTE.data	unsigned char	
r_checksum	(Structure)	Reception data checksum operation value
r_checksum.WORD	unsigned short	
r_checksum.BYTE.carry	unsigned char	
r_checksum.BYTE.data	unsigned char	
in_status	(Structure)	Internal status of library
in_status.BYTE	unsigned char	
in_status.BIT.wk7	Bit 7	Reserved bit
in_status.BIT.sync_field	Bit 6	Sync field reception flag
in_status.BIT.wk5	Bit 5	Reserved bit
in_status.BIT.r_id	Bit 4	Response ID determination flag
		At response data transmission: 1
		At reception: 0
in_status.BIT.sci	Bit 3	SCI3 module initialization flag
in_status.BIT.brr	Bit 2	Baud rate correction flag
in_status.BIT.wu	Bits 1 to 0	Wake-up signal transmission flag (transmission counter for internal setting)

```
#if __Corrects_baud_rate == __ON
static unsigned short t_1;
static unsigned long t_11;
static union{
           unsigned short WORD;
           struct{
              unsigned char smr;
              unsigned char brr;
           } BYTE;
} baudrate;
#elif __Corrects_baud_rate ==
                               ___OFF
const unsigned short t_1 =
                              t_1_data;
const unsigned long t_11 = t_11_data;
const union{
          unsigned short WORD;
          struct{
            unsigned char smr;
             unsigned char brr;
          } BYTE;
}
    baudrate
             = baudrate_data;
```


#endif

```
unsigned long t_25k = t_25k_data;
const
const
       union{
          unsigned long LONG;
          struct {
            unsigned short h;
            unsigned short 1;
          } WORD;
} flame_max_2 = t_2byte_data;
const union {
          unsigned long LONG;
          struct {
            unsigned short h;
            unsigned short 1;
          } WORD;
} flame_max_4 = t_4byte_data;
const union {
          unsigned long LONG;
          struct {
            unsigned short h;
             unsigned short 1;
          } WORD;
} flame_max_8 = t_8byte_data;
static union {
          unsigned long LONG;
          struct {
            unsigned short h;
             unsigned short 1;
           } WORD;
} ex_counter;
static unsigned short flame_max;
static unsigned char counter;
#if
     __T_WAKEUP == __ON
const
     union {
         unsigned long LONG;
          struct {
            unsigned short h;
             unsigned short 1;
          } WORD;
} t_128 = t_128_data;
const unsigned long t_15k = t_15k_data;
#endif
#if __RESPONSE == __ON
static union {
          unsigned short WORD;
           struct {
              unsigned char carry;
              unsigned char data;
           } BYTE;
}
   t_checksum;
```

RENESAS

#endif

static union	{					
ur	signed short W)RD;				
-						
SU	struct {					
	unsigned char	carry;				
	unsigned char	data;				
}	BYTE;					
<pre>} r_checksum;</pre>						
static union	{					
unsigned char BYTE;						
struct {						
	unsigned char	wk7	:1;			
	unsigned char	sync_field	:1;			
	unsigned char	wk5	:1;			
	unsigned char	r_id	:1;			
	unsigned char	sci	:1;			
	unsigned char	brr	:1;			
	unsigned char	wu	:2;			
}	BIT;					
} in_status;						

2.6.4 Defining Global Variables

The variables that are shared between the user application program and library must be defined.

(See Table 4.)

```
==
       ___RESPONSE
                            __ON
#if
volatile unsigned char LIN_tx_data[8];
#endif
          unsigned char
volatile
                         LIN_rx_id;
volatile unsigned char LIN_rx_data[8];
volatile union {
                 unsigned char
                                BYTE;
                 struct {
                     unsigned char NBA
                                             :1;
                     unsigned char CSE
                                             :1;
                     unsigned char
                                     ISFE
                                             :1;
                     unsigned char
                                    TOA3B
                                             :1;
                     unsigned char
                                     SNRE
                                             :1;
                     unsigned char
                                     SCI
                                             :1;
                     unsigned char
                                     SUC
                                             :1;
                                     SLEEP
                     unsigned char
                                             :1;
                 }
                     BIT;
} LIN_status;
volatile
          union {
                 unsigned char BYTE;
                 struct {
                                         :1;
                     unsigned char
                                     CBR
                     unsigned char
                                     wkб
                                           :1;
                     unsigned char
                                     WU
                                           :1;
```


	unsigned char	wk4	:5;
}	BIT;		

2.6.5 Initialization Function

LIN_control;

}

This function initializes the H8/3664/3694/36014 on-chip peripheral functions used for LIN communication control and the software flags, as well as other settings used in the library.

Note: Pins P14 (IRQ0), P21 (RxD), P22 (TxD), and P81 (FTIOA) are used for LIN communication. When a user application uses other pins (P10 to P12, P15 to P17, P20, P23, P24, P80, and P82 to P87) with ports 1, 2, and 8, the pin settings may be changed by the setting statements of PCR2 and PCR8 in the LIN_port_init function and PCR1 in the LIN_intc_init function in the source file shown below. When using the above-mentioned pins, set each PCR within the user application program, then delete the setting statements of PCR1, PCR2, and PCR8 in the source file below or set them as comments.

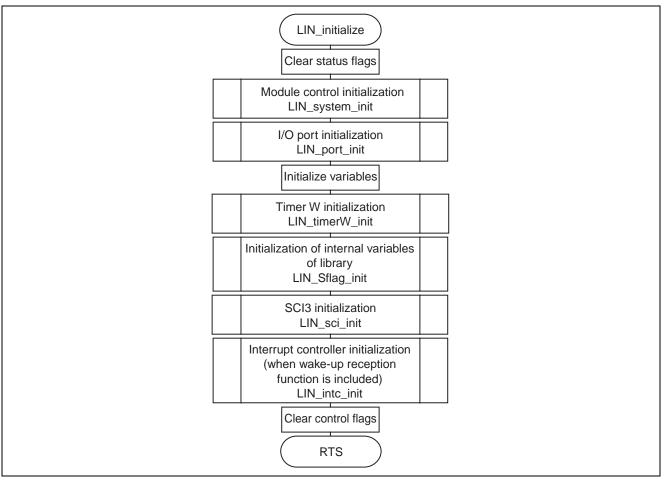


Figure 15 Initialization Function Flowchart

```
void LIN_initialize(void) {
   LIN_status.BYTE
                    = 0;
    LIN_system_init();
    LIN_port_init();
     __Corrects_baud_rate ==
#if
                              __ON
    t_1 = t_1_data;
    t_11 = t_11_data;
    baudrate.WORD = baudrate_data;
#endif
   LIN_timerW_init();
   LIN_Sflag_init();
   LIN_sci_init();
#if __R_WAKEUP == __ON
  LIN_intc_init();
#endif
   ex_counter.WORD.h = 0;
  LIN_control.BYTE = 0;
}
void LIN_system_init(void) {
  MSTCR1.BYTE &= 0x5B;
}
void LIN_port_init(void){
IO.PMR1.BYTE = 0x12;
#elif __R_WAKEUP == __OFF
   IO.PMR1.BYTE |= 0x02;
#endif
   IO.PDR2.BIT.B2 = 1;
                      /* Note: When using ports 2 and 8 in a user application, set \; */
/* IO.PCR2 = 0;
                        /* the bits for setting the pins used in LIN to 0(input */
/* IO.PCR8 = 0;
                         /*
                               pins) in the user application and then delete these
                                                                              */
                        /*
                               setting statements to ensure system protection
                                                                             */
}
void LIN_sci_init(void){
    SCI3.SCR3.BYTE = 0;
    SCI3.SMR.BYTE = baudrate.BYTE.smr;
    SCI3.BRR = baudrate.BYTE.brr;
#if ((__RESPONSE == __ON) || (__T_WAKEUP == __ON))
    TW.GRC = TW.TCNT + t_1;
    TW.TSRW.BIT.IMFC = 0;
    TW.TIERW.BIT.IMIEC = 1;
    in_status.BIT.sci = 1;
```

ENESAS

```
RENESAS
                                                                H8/300H Tiny Series
                              LIN (Local Interconnect Network) Application Note: Slave
 #endif
 }
 void LIN_timerW_init(void){
     TW.TMRW.BYTE = 0x48;
     TW.TCRW.BYTE = 0 \times 30;
                      0x8D;
     TW.TIOR0.BYTE =
     TW.TIOR1.BYTE = 0xF8;
     TW.TSRW.BYTE &= 0x70;
     TW.TIERW.BYTE = 0x81;
     TW.TMRW.BIT.CTS = 1;
 }
 #if ___R_WAKEUP ==
                       __ON
 void LIN_intc_init(void){
 /* IO.PCR1 = 0;
                           /* Note: When using port 1 in a user application, set the bits */
                           /* for setting the pins used in LIN to 0 (input pins) in */
                           /*
                                  the user application and then delete this setting */
                           /*
                                  statement to ensure system protection.
                                                                                 */
     IEGR1.BIT.IEG0 =
                        0;
     IRR1.BIT.IRRI0 =
                       0;
     IENR1.BIT.IEN0 = 0;
 }
 #endif
 #if ___R_WAKEUP ==
                        __ON
 void LIN_wake_up_PR(void){
    IRR1.BIT.IRRI0 = 0;
     IENR1.BIT.IEN0 = 1;
 }
 #endif
 void LIN_Sflag_init(void){
     counter = 0;
     in_status.BYTE = 0;
```


2.6.6 LIN Communication Control Stop Function

This function stops LIN communication control so that it no longer communicates over the LIN bus.

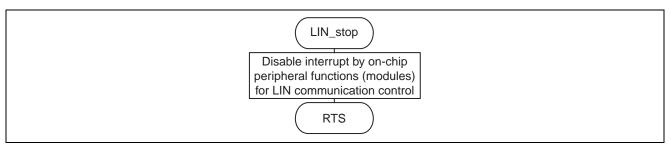


Figure 16 Flowchart of the LIN Communication Control Stop Function

```
void LIN_stop(void){
    SCI3.SSR.BYTE &= 0x84;
    SCI3.SCR3.BYTE = 0x00;
    TW.TIERW.BYTE &= 0x70;
#if __R_WAKEUP == __ON
    IENR1.BIT.IEN0 = 0;
#endif
}
```

2.6.7 Function for LIN Communication Restart Preparation

This function restarts LIN communication control (that has previously been placed in the stopped state by the LIN communication control stop function described in Section 2.6.6 or some other reason), and then LIN communication control waits for the reception of a sync break field.

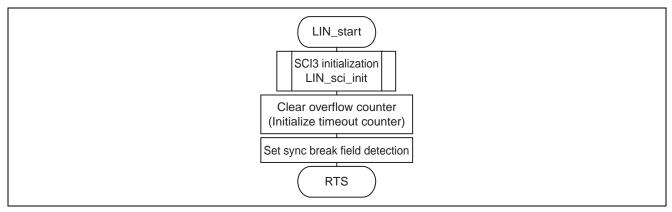


Figure 17 Flowchart of the LIN Communication Control Restart Preparation Functions

void	LIN_start(void)	{		
	LIN_sci_init();			
	ex_counter.WORD.h		=	0;
	TW.TSRW.BYTE	&=		0x70;
	TW.TIERW.BYTE	=		0x81;
}				

2.6.8 Wake-up Signal Transmission Function

This function transmits a wake-up signal. If a sync break field is not detected within the 128-bit period after the transmission of the wake-up signal, the function retries transmission up to three times, including the first transmission (transmission is controlled within the timer W interrupt function). If a sync break field is not detected within the 15000-bit period after the signal has been transmitted three times, the function sets the timeout flag (LIN_status.BIT.TOA3B) and calls the LIN_error function (user application program).

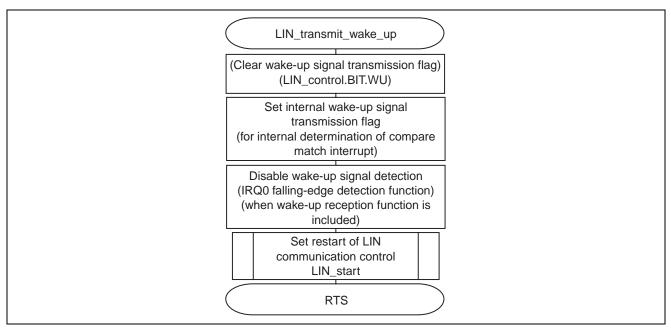


Figure 18 Flowchart of the Wake-up Signal Transmission Function

```
#if
      ___T_WAKEUP
                        ==
                             __ON
void LIN_transmit_wake_up(void) {
    LIN_control.BIT.WU =
                             0;
    in_status.BIT.wu =
                           1;
      ___R_WAKEUP
#if
                           __ON
                      ==
    IENR1.BIT.IEN0
                      =
                           0;
#endif
    LIN_start();
}
#endif
```

2.6.9 Function for Preparing for Wake-up Signal Reception

This function prepares for receiving a wake-up signal from another node.

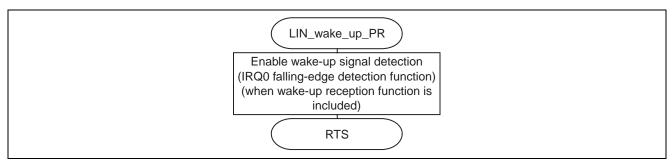


Figure 19 Flowchart of the Wake-up Signal Reception Preparation Function

```
#if __R_WAKEUP == __ON
void LIN_wake_up_PR(void){
    IRR1.BIT.IRRI0 = 0;
    IENR1.BIT.IEN0 = 1;
}
#endif
```

2.6.10 Function for Preparing to Detect a Sync Break Field in the Library

When message frame transmission or reception is completed, when an extended frame ID is received, or when an error is detected, this function makes the preparations needed to receive the next message frame (preparation for sync break field detection) in the library.

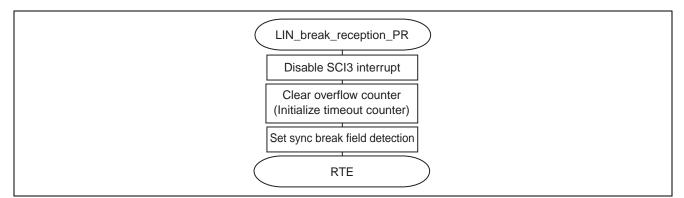


Figure 20 Function for Preparing for Sync Break Field Detection and Reception

```
void LIN_break_reception_PR(void) {
    SCI3.SSR.BYTE &= 0x84;
#if (( __RESPONSE == __ON) || (__T_WAKEUP == __ON))
    SCI3.SCR3.BYTE = 0x20;
#else
    SCI3.SCR3.BYTE = 0x00;
#endif
    ex_counter.WORD.h = 0;
```


TW.TSRW.BYTE &= 0x70; TW.TIERW.BYTE = 0x81; }

2.6.11 IRQ Interrupt Function

This function processes the IRQ0 falling-edge detection interrupt. After the settings have been made by the wake-up signal reception preparation function, as described in Section 2.6.9, this function detects a falling-edge on the LIN bus and makes the preparations required for LIN communication control.

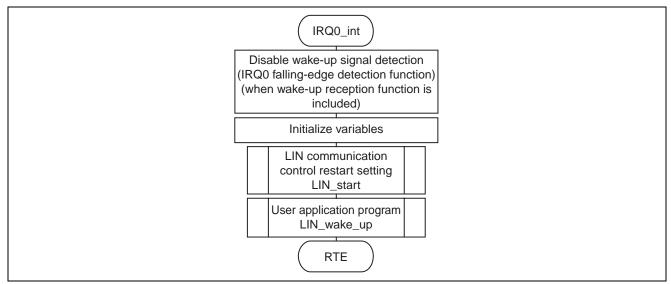


Figure 21 Flowchart of the IRQ Interrupt Function

```
#if ____R_WAKEUP
                      __ON
               ==
#pragma interrupt(IRQ0_int)
void IRQ0_int(void){
   LIN_status.BIT.SLEEP
                           0;
                       =
   IRR1.BIT.IRRI0 = 0;
   IENR1.BIT.IEN0 = 0;
   ___Corrects_baud_rate
#if
                         ==
                                ON
   t_1 = t_1_data;
   t_11 = t_11_data;
   baudrate.WORD = baudrate_data;
#endif
   LIN_start();
   LIN_wake_up();
}
#endif
```

RENESAS H8/300H Tiny Series LIN (Local Interconnect Network) Application Note: Slave

2.6.12 Timer W Interrupt Function

This function processes the timer W input capture A interrupt (I/C-A), compare match B interrupt (O/C-B), compare match C interrupt (O/C-C), and overflow interrupt (OVF).

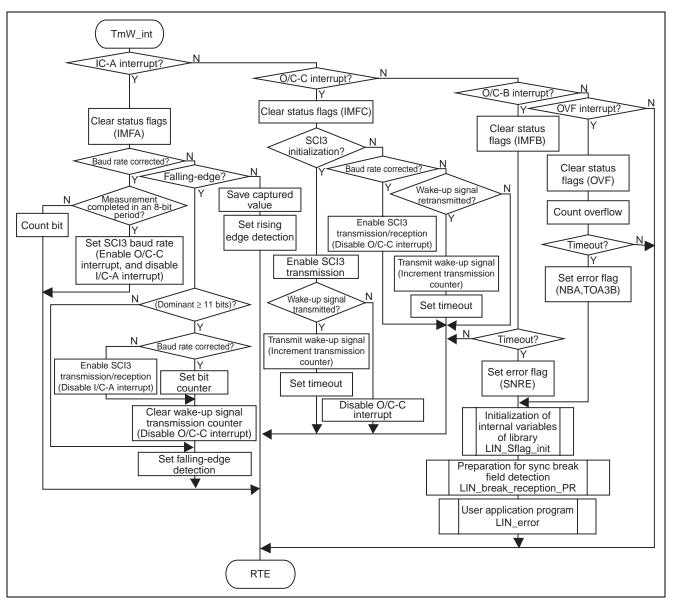


Figure 22 Flowchart of the Timer W Interrupt Function

```
#pragma
           interrupt(TmW_int)
void
        TmW_int(void){
    unsigned long
                     i;
    unsigned short
                      N,w;
    if((TW.TSRW.BIT.IMFA) && (TW.TIERW.BIT.IMIEA)){
         TW.TSRW.BIT.IMFA
                                      0;
                                 =
#if
                                      __ON
        _Corrects_baud_rate
                               ==
```



```
if(in_status.BIT.brr == 0){
#endif
         if(TW.TIOR0.BIT.IOA0){
             TW.TIOR0.BIT.IOA0 = 0;
             ex_counter.LONG = (unsigned long)TW.GRA;
             TW.GRB = TW.GRA;
             if((TW.TSRW.BIT.OVF) && (ex_counter.WORD.l < 0x00FF)){
                TW.TSRW.BIT.OVF = 0;
             }
         }else{
             w = ex_counter.WORD.1;
             ex_counter.WORD.l = TW.GRA;
             if((TW.TSRW.BIT.OVF) && (ex_counter.WORD.l < 0x00FF)){</pre>
                 ex_counter.WORD.h += 1;
                 TW.TSRW.BIT.OVF = 0;
             }
             ex_counter.LONG -= w;
             if(ex_counter.LONG >= t_11){
#if __Corrects_baud_rate == __ON
                 if(LIN_control.BIT.CBR){
                   in_status.BIT.brr = 1;
                   LIN_control.BIT.CBR = 0;
                   counter = 4;
                }else{
#endif
                   SCI3.SSR.BYTE &= 0x84;
#if ____RESPONSE == ___ON
                  SCI3.SCR3.BYTE = 0x70;
#elif ___RESPONSE
                  == ___OFF
                  SCI3.SCR3.BYTE = 0x50;
#endif
                   TW.TIERW.BIT.IMIEA = 0;
#if
     __Corrects_baud_rate == __ON
               }
#endif
     __T_WAKEUP == __ON
#if
                in_status.BIT.wu = 0;
                 TW.TIERW.BIT.IMIEC = 0;
#endif
            }
            TW.TIOR0.BIT.IOA0 = 1;
         }
#if
     __Corrects_baud_rate == __ON
      }else{
         if(counter){
```

ENESAS

```
H8/300H Tiny Series
                  LIN (Local Interconnect Network) Application Note: Slave
   if(counter == 4){
      ex_counter.LONG = (unsigned long)TW.GRA;
      SCI3.SCR3.BYTE =
                       0;
      SCI3.SMR.BYTE = 0;
      if((TW.TSRW.BIT.OVF) && (ex_counter.WORD.l < 0x00FF)){
          TW.TSRW.BIT.OVF = 0;
      }
   counter -= 1;
}else{
   TW.TIERW.BYTE = 0xF4;
   w = ex_counter.WORD.1;
   ex_counter.WORD.1 = TW.GRA;
   if((TW.TSRW.BIT.OVF) && (ex_counter.WORD.l < 0x00FF)){</pre>
     ex_counter.WORD.h += 1;
     TW.TSRW.BIT.OVF = 0;
   t_1 = (ex_counter.LONG - w) >> 3;
   for (N = ((t_1 + 2) >> 2); N > 0x0100; N >>= 2)
     SCI3.SMR.BIT.CKS += 1;
   SCI3.BRR = N - 1;
   TW.GRC = (TW.TCNT + t_1);
   TW.TSRW.BYTE &= 0xF0;
   ex_counter.WORD.h = 0;
   in_status.BIT.sync_field = 1;
   t_11 = t_1 * 11;
```

```
}else if((TW.TSRW.BIT.IMFC) && (TW.TIERW.BIT.IMIEC)){
   TW.TSRW.BIT.IMFC = 0;
   if(in_status.BIT.sci){
      SCI3.SSR.BYTE &= 0x84;
       SCI3.SCR3.BIT.TE = 1;
```

```
#if
     ___T_WAKEUP == __ON
         if(in_status.BIT.wu == 1){
            TW.GRC = TW.TCNT + t_128.WORD.1;
            SCI3.TDR =
                        0x80;
            in_status.BIT.wu += 1;
         }else{
```

#endif

```
TW.TIERW.BIT.IMIEC = 0;
```

```
__T_WAKEUP == __ON
#if
         }
#endif
```

}

}

}

}

}

#endif

```
in_status.BIT.sci = 0;
#if
      __Corrects_baud_rate == __ON
      }else if(in_status.BIT.brr){
```


SCI3.SSR.BYTE 0x84; &= #if $((_RESPONSE == _ON) || (_T_WAKEUP == _ON))$ SCI3.SCR3.BYTE = 0x70; #else SCI3.SCR3.BYTE = 0x50;#endif TW.TIERW.BIT.IMIEC = 0; #endif #if __T_WAKEUP == __ON }else if((in_status.BIT.wu == 2) && (ex_counter.WORD.h >= t_128.WORD.h)){ SCI3.TDR = 0x80; ex_counter.WORD.h = 0; TW.GRC = TW.TCNT + t_128.WORD.1; in_status.BIT.wu += 1; }else if((in_status.BIT.wu == 3) && (ex_counter.WORD.h >= t_128.WORD.h)){ SCI3.TDR = 0x80; ex_counter.WORD.h = 0; TW.TIERW.BIT.IMIEC = 0; #endif } }else if((TW.TSRW.BIT.IMFB) && (TW.TIERW.BIT.IMIEB)){ TW.TSRW.BIT.IMFB = 0; if(ex_counter.WORD.h >= flame_max){ LIN_status.BIT.SNRE = 1; LIN Sflag init(); LIN_break_reception_PR(); LIN_error(); } }else if((TW.TSRW.BIT.OVF) && (TW.TIERW.BIT.OVIE)){ TW.TSRW.BIT.OVF = 0; ex_counter.WORD.h += 1; if((ex_counter.LONG > t_25k)){ LIN_status.BIT.NBA = 1; LIN_Sflag_init(); LIN_break_reception_PR(); LIN error(); ___T_WAKEUP #if == ___ON }else if((ex_counter.LONG >= t_15k) && (in_status.BIT.wu == 3)){ in_status.BIT.wu = 0; LIN_status.BIT.TOA3B = 1; LIN_error(); #endif } } }

2.6.13 SCI3 Interrupt Function

This function processes the SCI3 error detection and reception interrupts.

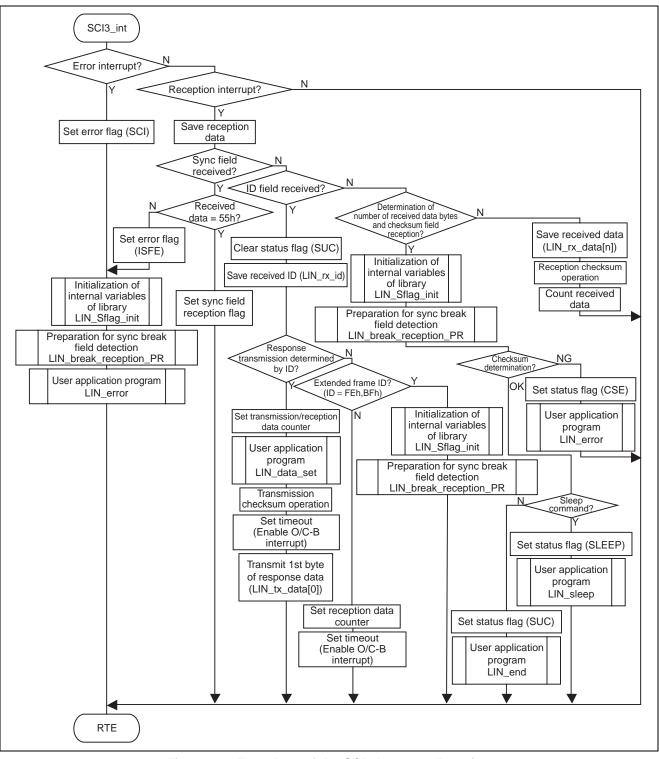


Figure 23 Flowchart of the SCI3 Interrupt Function

```
interrupt(SCI3_int)
#praqma
void
     SCI3_int(void){
   unsigned char buff,nmbr,nm,id,dlc;
   if(SCI3.SSR.BYTE & 0x38){
      LIN status.BIT.SCI = 1;
      LIN_Sflag_init();
      LIN_break_reception_PR();
      LIN_error();
   }else if(SCI3.SSR.BIT.RDRF){
      buff = SCI3.RDR;
      if(in_status.BIT.sync_field){
          if(counter){
             nm = counter & 0x0F;
              nmbr = (counter >> 4) -
                                               nm;
              if(nm){
                LIN rx data[nmbr] = buff;
                 r_checksum.WORD +=
                                     (unsigned short)LIN_rx_data[nmbr];
                 r_checksum.BYTE.data += r_checksum.BYTE.carry;
                 r_checksum.BYTE.carry = 0;
                 counter -=
                              1;
                       __ON
      ___RESPONSE
#if
                ==
                 if(in_status.BIT.r_id){
                     if(nm - 1){
                        buff = LIN_tx_data[(nmbr + 1)];
                        SCI3.TDR = buff;
                        t checksum.WORD += buff;
                                           += t_checksum.BYTE.carry;
                        t_checksum.BYTE.data
                        t_checksum.BYTE.carry = 0;
                     }else{
                        t_checksum.BYTE.data = ~(t_checksum.BYTE.data);
                        SCI3.TDR = t_checksum.BYTE.data;
                        in_status.BIT.r_id = 0;
                     }
                 }
#endif
              }else{
                 LIN_Sflag_init();
                 LIN_break_reception_PR();
                 if((r_checksum.BYTE.data ^ buff) != 0xFF){
                    LIN_status.BIT.CSE = 1;
                    LIN_error();
                 }else{
                     if((LIN_rx_id == 0x3C) && (LIN_rx_data[0] == 0)){
                        LIN_status.BIT.SLEEP = 1;
                        LIN_sleep();
                     }else{
                        LIN status.BIT.SUC = 1;
                        LIN_end();
                     }
                 }
              }
```

ENESAS

RENESAS

	}else{			
	in_	_status.	BYTE &=	0x40;
	LII	N_status	.BIT.SUC	= 0;
	LII	N_rx_id	= buff	;
	SWI	itch(LIN	_rx_id){	
	Res2byte_1	ID ==	ON	
#ifdef	ID00			
		case	ID00:	
#endif	01			
#ifdef	ID01		01	
		case	ID01:	
#endif #ifdef	ID02			
#IIGEI	1D02	a200	ID02:	
#endif		case	1D02+	
#ifdef	ID03			
#11401	1200	case	ID03:	
#endif		oube		
#ifdef	ID04			
		case	ID04:	
#endif				
#ifdef	ID05			
		case	ID05:	
#endif				
#ifdef	ID06			
		case	ID06:	
#endif				
#ifdef	ID07			
		case	ID07:	
#endif				
#ifdef	ID08			
		case	ID08:	
#endif				
#ifdef	ID09			
		case	ID09:	
#endif	0			
#ifdef	ID0a			
11 1 <i>1</i>		case	ID0a:	
#endif #ifdef	TDOb			
#11de1	ID0b	a200	TDOb·	
#endif		case	ID0b:	
#ifdef	ID0c			
#IIGCI		case	ID0c:	
#endif		cube		
#ifdef	ID0d			
		case	ID0d:	
#endif				
#ifdef	ID0e			
		case	ID0e:	
#endif				
#ifdef	ID0f			
		case	IDOf:	
#endif				

#ifdef	ID10	case	ID10:
#endif			<u> </u>
#ifdef	ID11		
#IIGEI		~~~~	T.11.
		case	ID11:
#endif			
#ifdef	ID12		
		case	ID12:
#endif			
#ifdef	ID13		
		case	ID13:
#endif			
#ifdef	ID14		
TIGCI		case	ID14:
How diff		Case	
#endif	1 -		
#ifdef	ID15		
		case	ID15:
#endif			
#ifdef	ID16		
		case	ID16:
#endif			
#ifdef	ID17		
		case	ID17:
#endif			
#ifdef	ID18		
#II del		case	ID18:
#endif		Case	
	TD10		
#ifdef	ID19		
		case	ID19:
#endif			
#ifdef	ID1a		
		case	ID1a:
#endif			
#ifdef	ID1b		
		case	ID1b:
#endif			
#ifdef	ID1c		
-		case	ID1c:
#endif			
#ifdef	TD1d		
HTTACT		0200	ID1d:
How diff.		Case	
#endif			
#ifdef	IDle		
		case	ID1e:
#endif			
#ifdef	ID1f		
		case	ID1f:
#endif			
		С	ounter = 0x22;
		i	n_status.BIT.r_id = 1;
			uff = LIN_tx_data[0];
			_checksum.WORD = (unsigned short)buff;
		C	

		fl TW TW SC	<pre>W.GRB += flame_max_2.WORD.l; lame_max = flame_max_2.WORD.h; W.TSRW.BIT.IMFB = 0; W.TIERW.BIT.IMIEB = 1; CI3.TDR = buff; reak;</pre>
#endif			
#if	_Res4byte_ID) ==	=ON
#ifdef	ID20		
		case	ID20:
#endif			
#ifdef	ID21		
		case	ID21:
#endif			
#ifdef			
		case	ID22:
#endif			
#ifdef			7702
		case	ID23:
#endif	1004		
#ifdef			1004.
Handle		case	ID24:
#endif #ifdof	TDJE		
#ifdef			TD0E •
#endif		case	ID25:
#endii #ifdef	1026		
#ILGEL		case	ID26:
#endif		Case	
#ifdef	27תד		
#IIGEI		case	ID27:
#endif		cube	
#ifdef	ID28		
		case	ID28:
#endif			
#ifdef	ID29		
		case	ID29:
#endif			
#ifdef	ID2a		
		case	ID2a:
#endif			
#ifdef	ID2b		
		case	ID2b:
#endif			
#ifdef	ID2c		
		case	ID2c:
#endif			
#ifdef	ID2d		
		case	ID2d:
#endif			
#ifdef	ID2e		
		case	ID2e:
#endif			
#ifdef	ID2f		

		case	ID2f:
#endif			
		CO	unter = 0x44;
		in	_status.BIT.r_id = 1;
		r_	checksum.WORD = 0;
		LI	N_data_set();
		bu	<pre>ff = LIN_tx_data[0];</pre>
		t_	checksum.WORD = (unsigned short)buff;
		TW	.GRB += flame_max_4.WORD.l;
		fl	<pre>ame_max = flame_max_4.WORD.h;</pre>
		TW	.TSRW.BIT.IMFB = 0;
		TW	.TIERW.BIT.IMIEB = 1;
		SC	I3.TDR = buff;
		br	eak;
#endif			
#if _	Res8byte_I	D ==	ON
#ifdef	ID30		
		case	ID30:
#endif			
#ifdef	ID31		
		case	ID31:
#endif			
#ifdef	ID32		
		case	ID32:
#endif			
#ifdef	ID33		
		case	ID33:
#endif			
#ifdef	ID34		
		case	ID34:
#endif			
#ifdef	ID35		
		case	ID35:
#endif			
#ifdef	ID36		
		case	ID36:
#endif			
#ifdef	ID37		
		case	ID37:
#endif	T500		
#11de1	ID38		TD20.
Here at f		case	ID38:
#endif	TD 20		
#11de1	ID39		TD 20.
Handle		case	ID39:
#endif	TD3-		
#TTAGI	ID3a	a 266	1020.
#end:f		case	ID3a:
#endif #ifdef	TUJP		
#TTGET	ID3b	0200	1D3P.
#end:f		case	ID3b:
#endif #ifdof	PCAT		
#TTGET	ID3d	0200	1034.
		case	ID3d:

#endif	
	counter = 0x88;
	in_status.BIT.r_id = 1;
	r_checksum.WORD = 0;
	LIN_data_set();
	buff = LIN_tx_data[0];
	t_checksum.WORD = (unsigned short)buff;
	TW.GRB += flame_max_8.WORD.1;
	flame_max = flame_max_8.WORD.h;
	TW.TSRW.BIT.IMFB = 0;
	TW.TIERW.BIT.IMFB = 1;
	SCI3.TDR = buff;
Handif	break;
#endif	0-20
/* case	e 0x3C:
	counter = 0x88;
	r_checksum.WORD = 0;
	TW.GRB += flame_max_8.WORD.l;
	<pre>flame_max = flame_max_8.WORD.h;</pre>
	TW.TSRW.BIT.IMFB = 0;
	TW.TIERW.BIT.IMIEB = 1;
	break;
*/	
Case	e OxFE:
Case	e OxBF:
	LIN_Sflag_init();
	LIN_break_reception_PR();
	break;
defa	ault :
	dlc = buff & 0x30;
	if(dlc == 0x20){
	counter = 0x44;
	TW.GRB += flame_max_4.WORD.1;
	<pre>flame_max = flame_max_4.WORD.h;</pre>
	<pre>}else if(dlc == 0x30){</pre>
	counter = 0x88;
	TW.GRB += flame_max_8.WORD.1;
	<pre>flame_max = flame_max_8.WORD.h;</pre>
	}else{
	counter = $0x22;$
	TW.GRB += flame_max_2.WORD.1;
	flame_max = flame_max_2.WORD.h;
	}
	r_checksum.WORD = 0;
	TW.TSRW.BIT.IMFB = 0;
	TW.TIERW.BIT.IMIEB = 1;
	break;
}	bi cuit,
}	
} }else if(SCI3.RI	0v55)∫
	IT.sync_field = 1;
}else{	
	3IT.ISFE = 1;
LIN_Sflag_ir	11T();

}

}

LIN_break_reception_PR();
LIN_error();
}

Website and Support

Renesas Technology Website <u>http://www.renesas.com/</u>

Inquiries

http://www.renesas.com/inquiry csc@renesas.com

Revision Record

		Description		
Rev.	Date	Page	Summary	
1.00	Dec.20.03	_	First edition issued	
1.01	Jun.15.07	Pages 1, 3, 6, 7,15, 49 and 50	Content correction	
		49 and 50		

Notes regarding these materials

- 1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of Renesas or any third party with respect to the information in this document.
- 2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out of the use of any information in this document, including, but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples.
- 3. You should not use the products or the technology described in this document for the purpose of military applications such as the development of weapons of mass destruction or for the purpose of any other military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations.
- 4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas products listed in this document, please confirm the latest product information with a Renesas sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas such as that disclosed through our website. (http://www.renesas.com)
- 5. Renesas has used reasonable care in compiling the information included in this document, but Renesas assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information included in this document.
- 6. When using or otherwise relying on the information in this document, you should evaluate the information in light of the total system before deciding about the applicability of such information to the intended application. Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any particular application and specifically disclaims any liability arising out of the application and use of the information in this document or Renesas products.
- 7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of which may cause a direct threat to human life or create a risk of human injury or which require especially high quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. If you are considering the use of our products for such purposes, please contact a Renesas sales office beforehand. Renesas shall have no liability for damages arising out of the uses set forth above.
- 8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below: (1) artificial life support devices or systems
 - (2) surgical implantations

RENESAS

- (3) healthcare intervention (e.g., excision, administration of medication, etc.)
- (4) any other purposes that pose a direct threat to human life

Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas Technology Corp., its affiliated companies and their officers, directors, and employees against any and all damages arising out of such applications.

- 9. You should use the products described herein within the range specified by Renesas, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or damages arising out of the use of Renesas products beyond such specified ranges.
- 10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 11. In case Renesas products listed in this document are detached from the products to which the Renesas products are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You should implement safety measures so that Renesas products may not be easily detached from your products. Renesas shall have no liability for damages arising out of such detachment.
- 12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written approval from Renesas.
- 13. Please contact a Renesas sales office if you have any questions regarding the information contained in this document, Renesas semiconductor products, or if you have any other inquiries.

© 2007. Renesas Technology Corp., All rights reserved.