

R01AN2164EJ0240 Rev.2.40 Page 1 of 39

Feb.15.2022

RL78/F13, F14, F15

Safety Function Application Note

RL78/F13, F14, F15

Safety Function Application Note

Introduction

This application note describes the safety functions implemented on the RL78/F13, RL78/F14 and RL78/F15
microcontrollers (MCUs).

Target Device

RL78/F13, RL78/F14, RL78/F15

Contents

1. Overview of the Safety Function .. 3

2. Flash Memory CRC Operation Function (High-speed CRC) ... 4

2.1 Overview of High-speed CRC Operation .. 4

2.2 Registers used for High-speed CRC Operation .. 5

2.3 Processing Example of High-speed CRC Operation .. 6

2.3.1 Processing Example of High-speed CRC Operation (Operation Range: 64 KB) 7

2.4 Cautions when Using High-speed CRC Operation ... 8

3. CRC Operation Function (General-purpose CRC) ... 9

3.1 Overview of General-purpose CRC Operation .. 9

3.2 General-purpose CRC Operation Registers ... 9

3.3 Processing Example of General-purpose CRC Operation .. 10

3.4 Cautions when Using General-purpose CRC Operation... 10

4. RAM-ECC Function .. 11

4.1 Overview of RAM-ECC Function ... 11

4.2 Registers used for RAM-ECC Function... 12

4.3 Processing Example of RAM-ECC Function ... 14

4.4 ECC Test Mode ... 15

4.5 Cautions when Using RAM-ECC Function .. 16

5. CPU Stack Pointer Monitor Function ... 17

5.1 Overview of CPU Stack Pointer Monitor Function .. 17

5.2 Registers used for CPU Stack Pointer Monitor Function .. 17

5.3 Processing Example of CPU Stack Pointer Monitor Function... 18

5.4 Interrupt Determination of CPU Stack Pointer Monitor Function .. 19

5.5 Cautions when Using CPU Stack Pointer Monitor Function ... 19

6. Clock Monitor Function ... 20

6.1 Overview of Clock Monitor Function.. 20

6.2 Registers used for Clock Monitor Function ... 20

6.3 Processing Example of Clock Monitor Function .. 21

6.4 Interrupt Determination of Clock Monitor Function .. 22

6.5 Cautions when Using Clock Monitor Function .. 23

7. RAM Guard Function ... 24

7.1 Overview of RAM Guard Function ... 24

R01AN2164EJ0240
Rev.2.40

Feb.15.2022

RL78/F13, F14, F15 Safety Function Application Note

R01AN2164EJ0240 Rev.2.40 Page 2 of 39

Feb.15.2022

7.2 Registers used for RAM Guard Function .. 24

7.3 Processing Example of RAM Guard Function ... 25

7.4 Cautions when Using RAM Guard Function ... 25

8. SFR Guard Function .. 26

8.1 Overview of SFR Guard Function ... 26

8.2 Registers used for SFR Guard Function ... 26

8.3 Processing Example of SFR Guard Function ... 27

8.4 Cautions when Using SFR Guard Function .. 27

9. Invalid Memory Access Detection Function .. 28

9.1 Overview of Invalid Memory Access Detection Function .. 28

9.2 Registers used for Invalid Memory Access Detection Function .. 30

9.3 Processing Example of Invalid Memory Access Detection Function .. 30

9.4 Cautions when Using Invalid Memory Access Detection Function ... 31

10. Frequency Detection Function ... 32

10.1 Overview of Frequency Detection Function .. 32

10.2 Registers used for Frequency Detection Function .. 32

10.3 Processing Example of Frequency Detection Function .. 33

11. A/D Test Function .. 34

11.1 Overview of A/D Test Function .. 34

11.2 Registers used for A/D Test Function ... 34

11.3 Processing Example of A/D Test Function .. 35

11.4 Cautions when Using A/D Test Function .. 36

12. I/O Port Output Signal Level Detection Function .. 37

12.1 Overview of I/O Port Output Signal Level Detection Function .. 37

12.2 Registers used for I/O Port Output Signal Level Detection Function .. 37

12.3 Processing Example of I/O Port Output Signal Level Detection Function .. 38

12.4 Cautions when using I/O Port Output Signal Level Detection Function .. 38

Revision History .. 39

RL78/F13, F14, F15 Safety Function Application Note

R01AN2164EJ0240 Rev.2.40 Page 3 of 39

Feb.15.2022

1. Overview of the Safety Function

To detect any errors and failures with the built-in self-test function, the RL78/F13, RL78/F14 and RL78/F15
MCUs have the following safety functions.

(1) CRC (cyclic redundancy check) operation functions (High-speed CRC operation & general-
purpose CRC operation)

High-speed CRC operation: This check is executed on the entire code flash memory area after stopping
the CPU (making the CPU transition to HALT mode).

General-purpose CRC operation: The general-purpose CRC can be used in the code flash memory
area. Also, it can be used for multi-purpose data check such as serial
communication.

(2) RAM-ECC function

This function detects and corrects data corruption (bit errors) during a read access to RAM and notifies
the error detected/corrected by generating an interrupt.

(3) CPU stack pointer monitor function

This function detects an overflow and underflow of the stack pointer (SP) and generates an interrupt in
response.

(4) Clock monitor function

This function detects an oscillation stop of the main system clock (fMAIN) and main/PLL selection clock
(fMP) using the low-speed on-chip oscillation clock (fIL) and accordingly generates a reset signal or interrupt.

(5) RAM guard function

This function protects data in RAM that is to be guarded from any erroneous writing when a CPU runaway
etc., occurs.

(6) SFR guard function

This function protects the SFRs (special function registers for port functions, interrupts, clock control, and
voltage detector control) that is to be guarded from any erroneous writing when a CPU runaway or any
problem occurs.

(7) Invalid memory access detection function

This function detects any invalid access to the memory area when a CPU runaway or any problem occurs
and generates a reset signal.

(8) Frequency detection function

The function detects whether or not the clock is operating on an abnormal frequency by comparing the
high-speed on-chip oscillator clock (fIH), external X1 oscillation clock (fMX), or PLL clock (fPLL) with the low-
speed on-chip oscillator clock (fIL).

(9) A/D test function

This function performs self-diagnosis for the A/D converter.

(10) I/O port output signal level detection function

This function detects any output abnormality by reading the digital output level (high or low) of the pin
when the port is set to output mode.

RL78/F13, F14, F15 Safety Function Application Note

R01AN2164EJ0240 Rev.2.40 Page 4 of 39

Feb.15.2022

2. Flash Memory CRC Operation Function (High-speed CRC)

2.1 Overview of High-speed CRC Operation

The high-speed CRC operation is a function to perform a high-speed check on the entire code flash memory
area by stopping the CPU (by making the CPU enter HALT mode). Any failure in the code flash memory can
be detected by comparing the expected value of the CRC function which is calculated beforehand with the
result of the high-speed CRC operation.

The CRC generator polynomial used complies with “X16 + X12 + X5 + 1” of CRC-16-CCITT. The high-speed
CRC operates in MSB first order from bit 31 to bit 0.

Since the CPU is stopped during the high-speed CRC operation, it is impossible to run the user software.
Confirm the processing time for the high-speed CRC operation function listed in Table 2-1 and use this function
according to the specifications of your system.

Table 2-1. Processing Time of High-speed (HS) CRC Operation

Range of HS CRC operation Note Processing time (fCLK=32 MHz) Register setting

16 KB (00000H – 03FFBH) 4095 clocks (approx. 128 μs) CRC0CTL.FEA[5:0] = 000000B

32 KB (00000H – 07FFBH) 8191 clocks (approx. 256 μs) CRC0CTL.FEA[5:0] = 000001B

48 KB (00000H – 0BFFBH) 12287 clocks (approx. 384 μs) CRC0CTL.FEA[5:0] = 000010B

64 KB (00000H – 0FFFBH) 16383 clocks (approx. 512 μs) CRC0CTL.FEA[5:0] = 000011B

80 KB (00000H – 13FFBH) 20479 clocks (approx. 640 μs) CRC0CTL.FEA[5:0] = 000100B

96 KB (00000H – 17FFBH) 24575 clocks (approx. 768 μs) CRC0CTL.FEA[5:0] = 000101B

112 KB (00000H – 1BFFBH) 28671 clocks (approx. 896 μs) CRC0CTL.FEA[5:0] = 000110B

128 KB (00000H – 1FFFBH) 32767 clocks (approx. 1024 μs) CRC0CTL.FEA[5:0] = 000111B

144 KB (00000H – 23FFBH) 36863 clocks (approx. 1152 μs) CRC0CTL.FEA[5:0] = 001000B

160 KB (00000H – 27FFBH) 40959 clocks (approx. 1280 μs) CRC0CTL.FEA[5:0] = 001001B

176 KB (00000H – 2BFFBH) 45055 clocks (approx. 1408 μs) CRC0CTL.FEA[5:0] = 001010B

192 KB (00000H – 2FFFBH) 49151 clocks (approx. 1536 μs) CRC0CTL.FEA[5:0] = 001011B

208 KB (00000H – 33FFBH) 53247 clocks (approx. 1664 μs) CRC0CTL.FEA[5:0] = 001100B

224 KB (00000H – 37FFBH) 57343 clocks (approx. 1792 μs) CRC0CTL.FEA[5:0] = 001101B

240 KB (00000H – 3BFFBH) 61439 clocks (approx. 1920 μs) CRC0CTL.FEA[5:0] = 001110B

256 KB (00000H – 3FFFBH) 65535 clocks (approx. 2048 μs) CRC0CTL.FEA[5:0] = 001111B

272 KB (00000H – 43FFBH) 69631 clocks (approx. 2176 μs) CRC0CTL.FEA[5:0] = 010000B

288 KB (00000H – 47FFBH) 73727 clocks (approx. 2304 μs) CRC0CTL.FEA[5:0] = 010001B

304 KB (00000H – 4BFFBH) 77823 clocks (approx. 2432 μs) CRC0CTL.FEA[5:0] = 010010B

320 KB (00000H – 4FFFBH) 81919 clocks (approx. 2560 μs) CRC0CTL.FEA[5:0] = 010011B

336 KB (00000H – 53FFBH) 86015 clocks (approx. 2688 μs) CRC0CTL.FEA[5:0] = 010100B

352 KB (00000H – 57FFBH) 90111 clocks (approx. 2816 μs) CRC0CTL.FEA[5:0] = 010101B

368 KB (00000H – 5BFFBH) 94207 clocks (approx. 2944 μs) CRC0CTL.FEA[5:0] = 010110B

384 KB (00000H – 5FFFBH) 98303 clocks (approx. 3072 μs) CRC0CTL.FEA[5:0] = 010111B

400 KB (00000H – 63FFBH) 102399 clocks (approx. 3200 μs) CRC0CTL.FEA[5:0] = 011000B

416 KB (00000H – 67FFBH) 106495 clocks (approx. 3328 μs) CRC0CTL.FEA[5:0] = 011001B

432 KB (00000H – 6BFFBH) 110591 clocks (approx. 3456 μs) CRC0CTL.FEA[5:0] = 011010B

448 KB (00000H – 6FFFBH) 114687 clocks (approx. 3584 μs) CRC0CTL.FEA[5:0] = 011011B

464 KB (00000H – 73FFBH) 118783 clocks (approx. 3712 μs) CRC0CTL.FEA[5:0] = 011100B

480 KB (00000H – 77FFBH) 122879 clocks (approx. 3840 μs) CRC0CTL.FEA[5:0] = 011101B

496 KB (00000H – 7BFFBH) 126975 clocks (approx. 3968 μs) CRC0CTL.FEA[5:0] = 011110B

512 KB (00000H – 7FFFBH) 131071 clocks (approx. 4096 μs) CRC0CTL.FEA[5:0] = 011111B

Note: The last four bytes of the flash memory (e.g., an area of 003FFCH-003FFFH of a 16-KB memory) are
not included in the range of high-speed CRC operation.

RL78/F13, F14, F15 Safety Function Application Note

R01AN2164EJ0240 Rev.2.40 Page 5 of 39

Feb.15.2022

2.2 Registers used for High-speed CRC Operation

The registers used for the high-speed CRC operation are described below.

(1) Flash memory CRC control register (CRC0CTL)

This register enables/disables the high-speed CRC operation and specifies the calculation range. This
CRC0CTL register can be accessed by a 1-bit memory manipulation instruction (CRC0EN) or an 8-bit
memory manipulation instruction.

Address: F02F0H After reset: 00H R/W

Symbol <7> 6 5 4 3 2 1 0

CRC0CTL CRC0EN 0 FEA5 FEA4 FEA3 FEA2 FEA1 FEA0

Bit Name Description

CRC0EN 0: Stops the high-speed CRC arithmetic unit.

1: Starts the high-speed CRC operation upon execution of the HALT instruction.

FEA[5:0] Specify the high-speed CRC operation range. Note

000000B: 16 KB 000001B: 32 KB 000010B: 48 KB 000011B: 64 KB

000100B: 80 KB 000101B: 96 KB 000110B: 112 KB 000111B: 128 KB

001000B: 144 KB 001001B: 160 KB 001010B: 176 KB 001011B: 192 KB

001100B: 208 KB 001101B: 224 KB 001110B: 240 KB 001111B: 256 KB

010000B: 272 KB 010001B: 288 KB 010010B: 304 KB 010011B: 320 KB

010100B: 336 KB 010101B: 352 KB 010110B: 368 KB 010111B: 384 KB

011000B: 400 KB 011001B: 416 KB 011010B: 432 KB 011011B: 448 KB

011100B: 464 KB 011101B: 480 KB 011110B: 496 KB 011111B: 512 KB

Other than the above ranges: Setting prohibited.

Note: Be sure to set the calculation range to be within the memory range of the product used.

(2) Flash memory CRC operation result register (PGCRCL)

This register stores the results of high-speed CRC operation. This register can be accessed by a 16-bit
memory manipulation instruction.

Address: F02F2H After reset: 0000H R/W

Symbol 15 0

PGCRCL PGCRC[15:0]

Bit Name Description

PGCRC[15:0] Stores the results of high-speed CRC operation. Note

Note: This register is writable only when the value of the CRC0EN bit is 1.

RL78/F13, F14, F15 Safety Function Application Note

R01AN2164EJ0240 Rev.2.40 Page 6 of 39

Feb.15.2022

2.3 Processing Example of High-speed CRC Operation

Figure 2-1 is an example of using the high-speed CRC operation.

Load the HALT and RET instructions to RAM_ADDR.Note 2

RAM_ADDR: Start address of the function loaded to RAM
Load the HALT and RET

instructions to RAM

Disable all interrupts

Enable CRC high-speed operation

DI(), Sets interrupt mask flag to disable interrupts.

CRC0CTL.CRC0EN = 1

CALL RAM_ADDR (Execute the HALT and RET instructions
 in RAM.)

End

Disable CRC high-speed
operation

CRC0CTL.CRC0EN = 0

Compare the value of the PGCRCL register to the expected value.

Handle detected errors according to the
specification of the system.

Set the CRC0CTL.FEA[5:0] bits.Specify the operation range

Call the function loaded to
RAM

High-speed CRC
operation error handler

＝

Check the expected
CRC value

Start Note 1

Notes 1: To use the high-speed CRC operation function, the expected value (four bytes) of the high-speed CRC calculation needs to be
stored in the ROM area (from the address xxxx to the address yyyy) in advance. To generate a write file,
set the appropriate option in CS+. For details, refer to the development environment documentation.

 2: Since the HALT instruction must be executed in RAM, load the HALT and RET instructions in RAM.
Insert the equivalent of 10 NOP instructions after the RET instruction.

Figure 2-1. Example of Using High-speed CRC Operation

RL78/F13, F14, F15 Safety Function Application Note

R01AN2164EJ0240 Rev.2.40 Page 7 of 39

Feb.15.2022

2.3.1 Processing Example of High-speed CRC Operation (Operation Range: 64 KB)

Figure 2-2 is an example of the high-speed CRC operation function for a product whose ROM size is 64 KB.

Start Note

Load the successive instructions [HALT, RET, NOP*10]
to RAM.

Load the HALT and RET
instructions to RAM

Disable interrupts DI()

CRC0CTL.CRC0EN = 1: Enables the high-speed CRC operation

CALL !!addr20

End

Disable high-speed CRC
operation

CRC0CTL.CRC0EN=0

Compare the value of the PGCRCL register to the expected values
(the values stored in the areas at 0FFFCH and 0FFFDH).Note

Handle detected errors according to the
specifications of the system.

CRC0CTL = 03H
CRC0EN = 0 : Stops the high-speed CRC operation
FEA[5:0] = 000011B : Area from 00000H to 0FFFBH

Stop high-speed CRC operation
Specify the operation range

Call the functions loaded to
RAM [HALT and RET]

High-speed CRC operation
error handler

＝

Check the expected
CRC value

Execute the RET instruction

Set all the interrupt mask flag to
disable the interrupts

Enable high-speed CRC operation
(operation start by the HALT

instruction)

Set the interrupt mask flags to 1.

Transition to HALT mode
Execute high-speed CRC

operation

HALT()
HALT mode is released when the operation is completed

Call and reset the program counter (PC).

Execution
in RAM

Note: In this example, the integrated development environment is used to store the expected values of high-speed CRC calculation in
the areas at 0FFFCH and 0FFFDH using CS+.

Figure 2-2. Example of Using High-speed CRC Operation (Range: 64 KB)

RL78/F13, F14, F15 Safety Function Application Note

R01AN2164EJ0240 Rev.2.40 Page 8 of 39

Feb.15.2022

2.4 Cautions when Using High-speed CRC Operation

The following are the cautions when using the high-speed CRC operation function.

(1) The high-speed CRC operation starts upon execution of the HALT instruction in RAM. HALT mode is
released when the calculation is finished. Therefore, before executing the HALT instruction, be sure to
disable the interrupts (DI) and also to set all the interrupt mask flags to 1 (interrupt processing disabled).

(2) Since the CPU is stopped during high-speed CRC operation, it is impossible to run the user software.
When using this function, confirm that the processing time of the high-speed CRC operation function will
not lead to problems. (See Table 2-1.)

(3) The RL78 CPU core performs pre-reading when an instruction code is fetched. Therefore, to execute the
instruction in the RAM area, the subsequent addresses (after the instruction) up to a size of 10 bytes need
to be initialized.

(4) When the expected value of the high-speed CRC operation function is calculated using the integrated
development environment, the result can be represented in a HEX file. However, it will not be represented
in a load module file.

(5) The monitor program is allocated to the code flash memory area. Accordingly, high-speed CRC
calculation result will not match its expected value during on-chip debugging.

RL78/F13, F14, F15 Safety Function Application Note

R01AN2164EJ0240 Rev.2.40 Page 9 of 39

Feb.15.2022

3. CRC Operation Function (General-purpose CRC)

3.1 Overview of General-purpose CRC Operation

The function of general-purpose CRC is to write calculation data to the CRC input register (CRCIN) and to
store the calculation result in the CRC data register (CRCD) while the CPU is operating. This function can be
used for a wide variety of purposes, such as serial communication or other applications.

The CRC generator polynomial supports “X16 + X12 + X5 + 1” of CRC-16-CCITT and “X4 + X3 + X2 +1” of SENT
compliant.

3.2 General-purpose CRC Operation Registers

The registers used for the general-purpose CRC operation are described below.

(1) CRC input register (CRCIN)

This register is used to set data used for CRC operation. This register can be accessed by an 8-bit memory
manipulation instruction.

Address: FFFACH After reset: 00H R/W

Symbol 7 6 5 4 3 2 1 0

CRCIN CRCIN[7:0]

Bit Name Description

CRCIN[7:0] Specifies the range of input data for CRC operation.

When supporting CRC-CCITT: 00H to FFH

When conforming to SENT: 00H to 0FH

(2) CRC operation mode control register (CRCMD)

This register selects a calculation mode (CRC generator polynomial) for the general-purpose CRC
arithmetic unit. This register can be accessed by an 8-bit memory manipulation instruction.

Address: F02F9H After reset: 00H R/W

Symbol 7 6 5 4 3 2 1 0

CRCMD − − − − − − − POLYSEL

Bit Name Description

POLYSEL 0: CRC-CCITT (X16+X12+X5+1)

1: Conforms to SENT (4+X3+X2+1)

(3) CRC data register (CRCD)

This register stores the results of general-purpose CRC operation. This register can be accessed by a 16-
bit memory manipulation instruction.

Address: F02FAH After reset: 0000H R/W

Symbol 15 0

CRCD CRCD[15:0]

Bit Name Description

CRCD[15:0] Stores the result of CRC operation.

When supporting CRC-CCITT: 0000H to FFFFH

When conforming to SENT: 0000H to 000FH

RL78/F13, F14, F15 Safety Function Application Note

R01AN2164EJ0240 Rev.2.40 Page 10 of 39

Feb.15.2022

3.3 Processing Example of General-purpose CRC Operation

Figure 3-1 is an example of using the general-purpose CRC operation.

Start

CRCD = 0000HInitialize the CRC data register

Write operation data to the CRCIN register.Note 1

End

Read the operation result Read the operation result from the CRCD register.Note 2

Set the CRCMD.POLYSEL bit.Select CRC operation mode

CRC operation
for the target data is

completed?

CRC operation ends if the target data is the final data
segment.

No
(Data to be
calculated exist)

Yes (final data segment)

Write operation data to CRCIN

Notes 1: The values written to the CRCIN register vary according to the CRC operation mode (CRC-CCITT: 00H to FFH,
 SENT conformant: 00H to 0FH).

 2: After writing to the CRCIN register, wait at least one clock cycle (fCLK) before reading the CRCD register.

Figure 3-1. Example of Using General-purpose CRC Operation

3.4 Cautions when Using General-purpose CRC Operation

The following are the cautions when using the general-purpose CRC operation function.

(1) After writing to the CRCIN register, wait at least one clock cycle (fCLK) before reading the CRCD register.

(2) Do not set any software break in the target area of CRC operation. Setting a software break in that area
will alter the CRC operation result. This is because the debugger changes the row where the software
break is to be set into a break instruction.

RL78/F13, F14, F15 Safety Function Application Note

R01AN2164EJ0240 Rev.2.40 Page 11 of 39

Feb.15.2022

4. RAM-ECC Function

4.1 Overview of RAM-ECC Function

The RAM-ECC function detects any data corruption (bit error) and accordingly generates an interrupt. Also, if
the error detected is a 1-bit error, this function corrects the corruption data.

For the write access to RAM, this function generates a 4-bit ECC code and a 1-bit parity bit for 8-bit data written
to RAM. For the read access to RAM, this function checks the ECC code and parity bits and outputs the bit
error detection interrupt request (INTRAM) if a bit error is detected.

Table 4-1. Operation of the RAM-ECC Function

Bit corruption (bit error) Interrupt

notification

(INTRAM)

ECCER register
ERADR register Read value

Data bit ECC code Parity bit DBERR bit

No bit error − − −
Expected

value

1-bit error − −
Request

generation Note 1
0 Note 1

Address storage

Note 1

Expected

value

− 1-bit error −
Request

generation Note 1
0 Note 1

Address storage

Note 1

Expected

value

− − 1-bit error − − −
Expected

value

2-bit error
Request

generation Note 2
1 Address storage

Indefinite
 Note 2

3-bit or more error Indefinite Note 3 Indefinite Note 3 Indefinite Note 3
Indefinite

 Note 3

Notes 1: When the value of the IEN bit in the ECCIER register is 1 (Interrupt enabled), the interrupt request
signal (INTRAM) is generated. Also, in this case, the ERADR register and the DBERR bit will be
updated.

 2: An interrupt request signal will be generated regardless of the setting of the IEN bit. In this case,
the ERADR register and the DBERR bit will be updated. Since the error detected is a multiple-bits
(two or more) error, the expected data correction will not be performed.

 3: Since the error detected is a multiple-bits (two or more) error, the expected data correction will not
be performed. In addition, error detection will not be checked correctly.

Remark In the table above, “−“ means “no bit error” and “no update” for the item “Bit corruption (bit error)
and other items (Input notification, ECCER register, ERADR register and Read value), respectively.

RL78/F13, F14, F15 Safety Function Application Note

R01AN2164EJ0240 Rev.2.40 Page 12 of 39

Feb.15.2022

4.2 Registers used for RAM-ECC Function

The registers used for the RAM-ECC function are described below.

(1) Error address store register (ERADR)

This register stores the address corresponding to a bit error detected. This register can be read by a 16-
bit memory manipulation instruction.

Address: F0200H After reset: 0000H R

Symbol 15 0

ERADR ERAD[15:0]

Bit Name Description

ERAD[15:0] Stores the address of a bit error detected. Note

Note: The register value is updated every time a bit error interrupt request is generated.

(2) 1-bit error detection interrupt enable register (ECCIER)

This register enables/disables the interrupt when a 1-bit error is detected. This register can be accessed
by an 8-bit memory manipulation instruction.

Address: F0202H After reset: 00H R/W

Symbol 7 6 5 4 3 2 1 0

ECCIER − − − − − − − IEN

Bit Name Description

IEN 0: Disables the interrupt generation for a 1-bit error detected. Note

1: Enables the interrupt generation for a 1-bit error detected.

Note: When a 2-bit error is detected, a bit-error detection interrupt request (INTRAM) is generated
regardless of the setting of the IEN bit.

(3) Bit error detection register (ECCER)

This register checks whether the bit error detected is a 1-bit error (correction of errors detected) or a 2-
bit error. This register is accessed by an 8-bit memory manipulation instruction.

Address: F0203H After reset: 00H R/W

Symbol 7 6 5 4 3 2 1 0

ECCER − − − − − − − DBERR

Bit Name Description

DBERR Note 0: A 1-bit error detected (Error correction)

1: A 2-bit error detected

Note: If the bit error interrupt request (INTRAM) has not been generated, the value of the DBERR bit is
invalid.

RL78/F13, F14, F15 Safety Function Application Note

R01AN2164EJ0240 Rev.2.40 Page 13 of 39

Feb.15.2022

(4) ECC test protect register (ECCTPR)

This register enables/disables the access to the ECC test mode register (ECCTMDR). This register can
be accessed by an 8-bit memory manipulation instruction.

Address: F0204H After reset: 00H R/W

Symbol 7 6 5 4 3 2 1 0

ECCTPR − − − − − TPR[2:0]

Bit Name Description

TPR[2:0] Other than 111B

111B

: Disables the access to the ECCTMDR register.

: Enables the access to the ECCTMDR register.

(5) ECC test mode register (ECCTMDR)

This register selects an ECC test mode. This register can be accessed by an 8-bit memory manipulation
instruction. Before accessing this register, write 07H to the ECCTPR register.

Address: F0205H After reset: 00H R/W

Symbol 7 6 5 4 3 2 1 0

ECCTMDR − − − − − TMD[2:0]

Bit Name Description

TMD[2:0] 000B: Normal operating mode

001B: ECC test mode

Other than above: Setting prohibited

(6) Write data inversion register (ECCDWRVR)

This register is used to confirm that the ECC is operating correctly by inverting the parity bits of write data
and ECC code in ECC test mode. This register can be accessed by a 16-bit memory manipulation
instruction.

Address: F0206H After reset: 0000H R/W

Symbol 15 14 13 12 11 10 9 8

ECCDWRVR − − − PRTYRV ECCRV[3:0]

 7 6 5 4 3 2 1 0

 DWRV[7:0]

Bit Name Description

PRTYRV 0: Parity bit not inverted

1: Parity bit inverted

ECCRV[3:0] 0: Bit (i) of ECC code not inverted

1: Bit (i) of ECC code inverted

DWRV[7:0] 0: Bit (j) of RAM write data not inverted

1: Bit (j) of RAM write data inverted

Remarks i: 0 to 3, j: 0 to 7

RL78/F13, F14, F15 Safety Function Application Note

R01AN2164EJ0240 Rev.2.40 Page 14 of 39

Feb.15.2022

4.3 Processing Example of RAM-ECC Function

Figure 4-1 is an example of using the RAM-ECC function.

Start

ECCIER = 00H: When the interrupt notification is disabled
or
ECCIER = 01H: When the interrupt notification is enabled

Enable/disable the interrupt when
a 1-bit error is detected

Set the RAM error detection
interrupt

PR10H.RAMPR1 = 0, PR00H.RAMPR0 = 0: Sets the interrupt level to 0.
IF0H.RAMIF = 0 : Clears the RAM error detection interrupt request flag.
MK0H.RAMMK = 0 : Enables the RAM error detection interrupt.

Enable the interrupts

Error occurrence during a read access to RAM

DI()Disable interrupts

EI()

Main processing routine

End of the RAM error interrupt

RAM error handler

Start of the RAM error interrupt

The ERADR register and the ECCER register are used to confirm the error detection
address and the error type, respectively. Handle detected RAM errors according to the
specifications of the system.

Figure 4-1. Example of Using RAM-ECC Function

RL78/F13, F14, F15 Safety Function Application Note

R01AN2164EJ0240 Rev.2.40 Page 15 of 39

Feb.15.2022

4.4 ECC Test Mode

In ECC test mode, operations of the RAM-ECC function can be checked by writing a bit-inverted value to write
data/ECC code/parity bits and by reading the target RAM. To enable this mode, the RAM must not be accessed.
(Enable this mode when, for example, initialization of RAM is being executed.)

Start

Enable/disable the interrupt when
 a 1-bit error is detected

Set the RAM error detection interrupt

Enable the access to ECCTMDR
register

End

Enable ECC test mode

Handle detected RAM-ECC errors according
to the specifications of the system.

DI()
Disable interrupts

RAM-ECC function error handler

No(RAMIF=0,
 DBERR is not the expected value, or
 ERADR is not the expected value)

Yes(RAMIF=1,
 DBERR and ERADR are
 the expected values)

Check the RAM-ECC
function

Invert write data
(including Parity and ECC)

Write to RAM

Disable the inversion of write data
(including Parity and ECC)

Release ECC test mode

Disable the access to ECCTMDR
register

Read the data written to RAM

ECCIER = 00H: When the interrupt notification is disabled
or
ECCIER = 01H: When the interrupt notification is enabled

RAMPR1=0, RAMPR0 = 0: Sets the interrupt level to 0.
RAMIF = 0 : Clears the RAM error detection interrupt request flag.
RAMMK = 0: Enables the RAM error detection interrupt.

ECCTPR = 07H

ECCTMDR=01H

ECCDWRVR = xxxxH: Select a bits whose values are to be inverted

Inverts the selected bits and writes the results to RAM.

ECCDWRVR = 0000H: Set the bits selected above not to be inverted.

ECCTMDR=00H

ECCTPR=00H

Bit error occurs. RAMIF, DBERR bit, ERADR register changes.

Check the RAMIF bit, the DBERR bit and the
ERADR register to ensure that the RAM-ECC
function is operating as expected.

Enable the interrupts EI() (Execute the interrupt processing according to the system specifications.)

Clear the RAM error detection
 interrupt request bit

RAMIF = 0

Write any value to
 the checked RAM area

Wait for the value of the RAMIF bit to
be inverted

NOP()*2 or more

Figure 4-2. Example of ECC Test Mode

RL78/F13, F14, F15 Safety Function Application Note

R01AN2164EJ0240 Rev.2.40 Page 16 of 39

Feb.15.2022

Table 4-2 is an example of the setting of the ECC test mode.

Table 4-2. Setting Example of ECC Test Mode

ECCDWRVR register Interrupt

notification

(INTRAM)

ECCER register
ERADR register Read value

DWRV[7:0] ECCRV[3:0] PRTYRV DBERR bit

No bit inversion − − −
Expected

value

1-bit inversion − −
Request

generation Note 1
0 Note 1

Address storage

Note 1

Expected

value

− 1-bit inversion −
Request

generation Note 1
0 Note 1

Address storage

Note 1

Expected

value

− − 1-bit inversion − − −
Expected

value

2-bit inversion − −
Request

generation
1 Address storage

Indefinite
 Note 2

1-bit inversion 1-bit inversion −
Request

generation
1 Address storage

Indefinite
 Note 2

1-bit inversion − 1-bit inversion
Request

generation
1 Address storage

Expected

value

− 2-bit inversion −
Request

generation
1 Address storage

Indefinite
 Note 2

− 1-bit inversion 1-bit inversion
Request

generation
1 Address storage

Expected

value

3-bit or more inversion Indefinite Note 3 Indefinite Note 3 Indefinite Note 3
Indefinite

 Note 3

Notes 1: When the value of the IEN bit in the ECCIER register is 1 (Interrupt enabled), the interrupt request
signal (INTRAM) is generated. In this case, the ERADR register and the DBERR bit will be updated.

 2: Since the error detected is a multiple-bit (two or more) error, the expected data correction will not
be performed.

 3: Since the error detected is a multiple-bit (three or more) error, the expected data correction will not
be performed. In this case, error detection will not be checked correctly

Remark In the table above, “−“ means “no bit inversion” and “no update” for the item “ECCDWRVR register”
and other items (Input notification, ECCER register, ERADR register and Read value), respectively.

4.5 Cautions when Using RAM-ECC Function

The following are the cautions when using the RAM-ECC function.

(1) When a 1-bit error is detected, the expected value (a value written) can be read since the error detected
is to be corrected. However, since the RAM value will not be rewritten, when the 1-bit error detection
interrupt enable bit is set to 1 (Interrupt enabled), the interrupt request (INTRAM) is generated every time
the address where this error has been detected is read.

(2) Since the RAM-ECC function is not executed during on-chip debugging, do not use the ECC test mode.

(3) When a 2-bit error is detected, the bit error detection interrupt (INTRAM) is generated regardless of the
setting of the IEN bit (enables/disables the interrupt when a 1-bit error is detected) in the ECCIER register.

(4) When a program is executed in RAM, error detection/correction will not be performed even if a bit-error
occurs at instruction fetch.

RL78/F13, F14, F15 Safety Function Application Note

R01AN2164EJ0240 Rev.2.40 Page 17 of 39

Feb.15.2022

5. CPU Stack Pointer Monitor Function

5.1 Overview of CPU Stack Pointer Monitor Function

This function monitors the address pointed to by a stack pointer to check that the address is within the stack
area. When the stack pointer moves to an address beyond the area, the interrupt request (INTSPM) is
generated.

5.2 Registers used for CPU Stack Pointer Monitor Function

The registers used for the CPU stack pointer monitor function are described below.

(1) SPM control register (SPMCTRL)

This register enables/disables the CPU stack pointer monitor function. This register can be accessed by
an 8-bit memory manipulation instruction.

Address: F00D8H After reset: 0000H R/W

Symbol 7 6 5 4 3 2 1 0

SPMCTRL SPMEN − − − − − − −

Bit Name Description

SPMEN Note 0: Disables the stack pointer monitor function.

1: Enables the stack pointer monitor function.

Disables writing to the SPOFR and SPUFR registers.

Note: Writing 1 to the SPMEN bit is only valid and writing 0 after setting the SPMEN bit to 1 is invalid.

(2) SP overflow address setting register (SPOFR)

This register specifies a stack pointer overflow address (upper limit). This register can be accessed by a
16-bit memory manipulation instruction.

Address: F00DAH After reset: FFFEH R/W

Symbol 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SPOFR − − − − − − − − − − − − − − − 0

Bit Name Description

15 - 0 Note Sets a stack pointer overflow address.

The lowest bit (0) is fixed to 0. When writing, write 0.

Note: When SPMEN=1, writing to the SPOFR register is invalid.

(3) SP underflow address setting register (SPUFR)

This register specifies a stack pointer underflow address (lower limit). This register can be accessed by a
16-bit memory manipulation instruction.

Address: F00DCH After reset: 0000H R/W

Symbol 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SPUFR − − − − − − − − − − − − − − − 0

Bit Name Description

15 - 0 Note Sets a stack pointer underflow address.

The lowest bit (0) is fixed to 0. When writing, write 0.

Note: When SPMEN=1, writing to the SPUFR register is invalid.

RL78/F13, F14, F15 Safety Function Application Note

R01AN2164EJ0240 Rev.2.40 Page 18 of 39

Feb.15.2022

5.3 Processing Example of CPU Stack Pointer Monitor Function

Figure 5-1 is an example of using the CPU stack pointer monitor function.

Start

SPOFR : Set the overflow address (upper limit value).
SPUFR : Set the underflow address (lower limit value).

Set the stack pointer monitor
function upper limit and the lower

limit values

Set the stack pointer monitor
function interrupt

PR10L.SPMPR1 = 0, PR00L.SPMPR0 = 0: Sets the interrupt level to 0.
IF0L.SPMIF = 0 : Clears the interrupt request flag.
MK0L.SPMMK = 0 : Enables the interrupt.

Enable the interrupts

Occurrence of an SP overflow or underflow

DI()Disable the interrupts

EI()

Main processing routine

End of the CPU stack pointer
monitor function interrupt

Stack pointer error handler

Start of the CPU stack pointer
monitor function interrupt

Handle detected errors according to the specifications of the system.

Enable the stack pointer monitor
function

SPMCTRL = 80H

Figure 5-1. Example of Using CPU Stack Pointer Monitor Function

RL78/F13, F14, F15 Safety Function Application Note

R01AN2164EJ0240 Rev.2.40 Page 19 of 39

Feb.15.2022

5.4 Interrupt Determination of CPU Stack Pointer Monitor Function

The interrupt generated by the CPU stack pointer monitor function shares the same vector table address with
the INTP4 interrupt. When the two interrupts are both used, the source of the interrupt needs to be determined
by software.

Figure 5-2 shows the interrupt determination processing of the CPU stack pointer monitor function.

Start Note

Execute the processing for the
detected INTP4 according to the
specifications of the system.

Get the SP value

Check whether the INTP4
interrupt occurred

Check whether the INTSPM
interrupt occurred

End

Execute the processing for the
detected INTSPM according to the
specifications of the system.

INTFLG0=C6HClear INTFLG00

Note: When enabling both the INTSPM and INTP4 interrupts, enable the multiple interrupt servicing.

INTSPM handler

Yes (within range)

No (out of range)

SPUFR SP value SPOFR?

The INTP4 interrupt occurred?

INTP4 handler

No(INTFLG00 1)

Yes(INTFLG00＝1)

Figure 5-2. Determination of INTSPM and INTP4 Interrupts

5.5 Cautions when Using CPU Stack Pointer Monitor Function

The following are the cautions when using the CPU stack pointer monitor function.

(1) If the value of the stack pointer remains out of ranges of the SPOFR and SPUFR registers after an SP
overflow/underflow is detected, SP overflow/underflow will no longer be detected. To keep the monitor
function enabled, set the stack pointer address value again to be within the monitorable range.

(2) The same vector table address is used by the INTSPM and INTP4 interrupts. To use both interrupts
together, the source of the interrupt needs to be determined by SP overflow or underflow interrupt.

RL78/F13, F14, F15 Safety Function Application Note

R01AN2164EJ0240 Rev.2.40 Page 20 of 39

Feb.15.2022

6. Clock Monitor Function

6.1 Overview of Clock Monitor Function

The clock monitor function monitors the statuses of the main system clock (fMAIN) and main system /PLL select
clock (fMP) by using the low-speed on-chip oscillator clock (fIL).

When this function detects that the oscillation of the main system clock (fMAIN) has stopped, it generates a reset
signal.

When this function detects that the oscillation of the PLL select clock (fMP) has stopped, clock through mode
is forcibly selected (PLLSTS.SELPLLS is set to 0), and the INTCLM interrupt request is generated. However,
the value of the SELPLL bit in the PLLCTL register will not change from “1”.

If the sampling clock (low-speed on-chip oscillator clock) is stopped, the clock monitor will not operate.

6.2 Registers used for Clock Monitor Function

The option byte area in the code flash memory used for the clock monitor function is described below.

(1) User option byte (000C1H/020C1H)

Set the operation enables/disables of the clock monitor function by setting this area.

Address: 000C1H/020C1H After reset: － (User setting value)

 7 6 5 4 3 2 1 0

000C1H/020C1H VPOC[2:0] CLKMB LVIS[1:0] LVIMDS[1:0]

Bit Name Description

CLKMB 0: Enables the clock monitor function.

1: Stops the clock monitor function.

RL78/F13, F14, F15 Safety Function Application Note

R01AN2164EJ0240 Rev.2.40 Page 21 of 39

Feb.15.2022

6.3 Processing Example of Clock Monitor Function

Figure 6-1 is an example of using the clock monitor function.

Start

IAWCTL.GCSC = 0 : Enables the write access to OSMC.
OSMC.WUTMMCK0 = 1 : Starts the low-speed OCO operation.

Set the low-speed on-chip
oscillator clock

Disable the interrupts
DI()

Enable the interrupts

Clock stop detection

Write 0 to the CLKMB bin in the user option byte (000C1H/020C1H).Enable the clock monitor function
operation

EI()

Main processing routine

End of the PLL clock stop
detection interrupt

Processing for PLL clock
stop

Start of the PLL clock stop
detection interrupt

Handle detected errors according to the specifications of the system.

Set the clock monitor function
interrupt

PR10H.CLMPR1 = 0, PR10H.CLMPR0 = 0: Sets the interrupt level to 0.
IF0H.CLMIF = 0 : Clears the interrupt request flag.
MK0H.CLMMK = 0 : Enables the interrupt.

Main clock stop :Generate a reset.
PLL clock stop :Generate an interrupt(INTCLM).

Figure 6-1. Example of Using Clock Monitor Function

RL78/F13, F14, F15 Safety Function Application Note

R01AN2164EJ0240 Rev.2.40 Page 22 of 39

Feb.15.2022

6.4 Interrupt Determination of Clock Monitor Function

The PLL clock stop detection interrupt of the clock monitor function shares the same vector table address with
the INTP13 interrupt. To use both interrupts together, the source of the interrupt needs to be determined by
software.

Figure 6-2 shows the interrupt determination processing of the clock monitor function.

Start

Execute the processing for the detected
INTP13 according to the system specifications.

Check whether the INTP13
interrupt occurred

Check whether the INTCLM
interrupt occurred

End

Execute the processing for the detected PLL
clock stop according to the specifications of the
system.

INTFLG0 = 47HClear INTFLG07

No (SELPLLS=1)

Yes(SELPLLS=0)

Is SELPLLS cleared?

The INTP13 interrupt occurred?

INTP13 handler

No(INTFLG07 1)

Yes(INTFLG07=1)

Is fMP clock selected?

Is PLL clock selected？

Processing for PLL clock stop

No (CLS=1)

Yes(CLS=0)

No (SELPLL=0)

Yes(SELPLL=1)

Figure 6-2. Determination of PLL Clock Stop Detection and INTP13 Interrupts

RL78/F13, F14, F15 Safety Function Application Note

R01AN2164EJ0240 Rev.2.40 Page 23 of 39

Feb.15.2022

6.5 Cautions when Using Clock Monitor Function

The following are the cautions when using the clock monitor function.

(1) The clock monitor function is disabled (stopped) under the following conditions:

・ The value of bit 4 (CLKMB) in the user option byte (000C1H/020C1H) is 1.

・ The sampling clock is stopped (the low-speed on-chip oscillator stops).

・ In STOP/SNOOZE mode

・ While oscillation stabilization time is being counted after STOP mode is released.

・ The CPU/peripheral hardware clock frequency (fCLK) is equal to the subsystem clock (fSUB) or the low-
speed on-chip oscillator clock (fIL).

(2) To transition the CPU to STOP mode by stopping the PLL while the clock monitor function is enabled, set
the PLLCTL.PLLON bit to 0 (PLL stopped) prior to execution of the STOP instruction.

(3) The PLL clock stop detection interrupt of the clock monitor function shares the same vector table address
with the INTP13 interrupt. To use both interrupts together, the source of the interrupt needs to be
determined by software.

RL78/F13, F14, F15 Safety Function Application Note

R01AN2164EJ0240 Rev.2.40 Page 24 of 39

Feb.15.2022

7. RAM Guard Function

7.1 Overview of RAM Guard Function

The RAM guard function protects data in a specified memory space. When the RAM guard function is enabled,
writing to the protected space is invalid.

7.2 Registers used for RAM Guard Function

The register used by the RAM guard function is described below.

(1) Invalid memory access detection control register (IAWCTL)

This register enables/disables the RAM guard function and specifies the space to be protected. This
register can be accessed by an 8-bit memory manipulation instruction.

Address: F0078H After reset: 00H R/W

Symbol 7 6 5 4 3 2 1 0

IAWCTL IAWEN 0 GRAM[1:0] 0 GPORT GINT GCSC

Bit Name Description

GRAM[1:0] RAM guard space (protected area) settings

00B: Disabled

01B: 128 bytes starting from the RAM lowest address

10B: 256 bytes starting from the RAM lowest address

11B: 512 bytes starting from the RAM lowest address

Table 7-1. RAM Guard Space by RL78/F13 (LIN-incorporated) products

Product GRAM[1:0]=01B GRAM[1:0]=10B GRAM[1:0]=11B

R5F10AnA (n=6, A, B, G) FFB00H – FFB7FH FFB00H – FFBFFH FFB00H – FFCFFH

R5F10AnC (n=6, A, B, G, L) FF700H – FF77FH FF700H – FF7FFH FF700H – FF8FFH

R5F10AnD (n=6, A, B, G, L) FF300H – FF37FH FF300H – FF3FFH FF300H – FF4FFH

R5F10AnE (n=6, A, B, G, L, M) FEF00H – FEF7FH FEF00H – FEFFFH FEF00H – FF0FFH

R5F10AnF (n=G, L, M) FE700H – FE77FH FE700H – FE7FFH FE700H – FE8FFH

R5F10AnG (n=G, L, M) FDF00H – FDF7FH FDF00H – FDFFFH FDF00H – FE0FFH

Table 7-2. RAM Guard Space by RL78/F13 (CAN&LIN-incorporated) products

Product GRAM[1:0]=01B GRAM[1:0]=10B GRAM[1:0]=11B

R5F10BnC (n=A, B, G, L) FF700H – FF77FH FF700H – FF7FFH FF700H – FF8FFH

R5F10BnD (n=A, B, G, L) FF300H – FF37FH FF300H – FF3FFH FF300H – FF4FFH

R5F10BnE (n=A, B, G, L, M) FEF00H – FEF7FH FEF00H – FEFFFH FEF00H – FF0FFH

R5F10BnF (n=G, L, M) FE700H – FE77FH FE700H – FE7FFH FE700H – FE8FFH

R5F10BnG (n=G, L, M) FDF00H – FDF7FH FDF00H – FDFFFH FDF00H – FE0FFH

RL78/F13, F14, F15 Safety Function Application Note

R01AN2164EJ0240 Rev.2.40 Page 25 of 39

Feb.15.2022

Table 7-3. RAM Guard Space by RL78/F14 products

Product GRAM[1:0]=01B GRAM[1:0]=10B GRAM[1:0]=11B

R5F10PnD (n=A, B, GL) FF300H – FF37FH FF300H – FF3FFH FF300H – FF4FFH

R5F10PnE (n=A, B, G, L, M, P) FEF00H – FEF7FH FEF00H – FEFFFH FEF00H – FF0FFH

R5F10PnF (n=G, L, M, P) FE700H – FE77FH FE700H – FE7FFH FE700H – FE8FFH

R5F10PnG (n=G, L, M, P) FDF00H – FDF7FH FDF00H – FDFFFH FDF00H – FE0FFH

R5F10PnH (n=G, L, M, P) FBF00H – FBF7FH FBF00H – FBFFFH FBF00H – FC0FFH

R5F10PnJ (n=G, L, M, P) FAF00H – FAF7FH FAF00H – FAFFFH FAF00H – FB0FFH

Table 7-4. RAM Guard Space by RL78/F15 products

Product GRAM[1:0]=01B GRAM[1:0]=10B GRAM[1:0]=11B

R5F113nG (n=P, T) FDF00H – FDF7FH FDF00H – FDFFFH FDF00H – FE0FFH

R5F113nH (n=P, T) FBF00H – FBF7FH FBF00H – FBFFFH FBF00H – FC0FFH

R5F113nJ (n=P, T) FAF00H – FAF7FH FAF00H – FAFFFH FAF00H – FB0FFH

R5F113nK (n=G, L, M, P, T) F9700H – F977FH F9700H – F97FFH F9700H – F98FFH

R5F113nL (n=G, L, M, P, T) F7F00H – F7F7FH F7F00H – F7FFFH F7F00H – F80FFH

7.3 Processing Example of RAM Guard Function

Figure 7-1 is an example of using the RAM guard function.

Start

DI()Disable the interrupts

Disable the RAM guard function

Write to a protected RAM area

IAWCTL IAWCTL & 87H

・GRAM[1:0] = 00B：Disables RAM guard.

End

Enable the RAM guard function

EI() (Execute the interrupt processing according to the
 specifications of the system.)

Enable the interrupts

Note: Specify one of the following setting values:

　　 01B (128 bytes starting from the lowermost address in RAM),

 10B (256 bytes starting from the lowermost address in RAM), or

　　 11B (512 bytes starting from the lowermost address in RAM)

GRAM[1:0]=xxB Note：Enables the protected RAM area.

Figure 7-1. Example of Using RAM Guard Function

7.4 Cautions when Using RAM Guard Function

The following are the cautions when using the RAM guard function.

(1) When writing to a protected area in RAM by step execution during on-chip debugging, the RAM guard
function is disabled.

(2) Do not specify a RAM area that is used as a stack to an area where the RAM guard function is enabled.

RL78/F13, F14, F15 Safety Function Application Note

R01AN2164EJ0240 Rev.2.40 Page 26 of 39

Feb.15.2022

8. SFR Guard Function

8.1 Overview of SFR Guard Function

The SFR guard function protects data of the registers used for port/interrupt/clock control functions and the
registers to control the voltage detection circuit. Once the SFR guard function is enabled, writing data to the
SFR that is protected will be invalid.

Table 8-1 lists the registers that the SFR guard function can protect.

Table 8-1. SFR Guard-target Registers

Function Registers protected by SFR guard function Note

Port function PMxx, PUxx, PIMxx, POMxx, PMCxx, PITHLxx, ADPC, PIORx

Interrupt function IFxx, MKxx, PRxx, EGPx, EGNx

Clock control and voltage

detector

CMC, CSC, OSTS, CKC, PERx, OSMC, LVIM, LVIS, CANCKSEL,

LINCKSEL, CKSEL, PLLCTL, MDIV, RTCCL, POCRES, STPSTC

Note: The target registers vary depending on products (according to ports or interrupt implemented).

8.2 Registers used for SFR Guard Function

The register used by the SFR guard function is described below.

(1) Invalid memory access detection control register (IAWCTL)

This register is used to enable/disable the SFR guard function. This register can be accessed by an 8-bit
memory manipulation instruction.

Address: F0078H After reset: 00H R/W

Symbol 7 6 5 4 3 2 1 0

IAWCTL IAWEN 0 GRAM[1:0] 0 GPORT GINT GCSC

Bit Name Description

GPORT Guard of registers for the port function

0: Disabled

1: Enabled

GINT Guard of registers for the interrupt function

0: Disabled

1: Enabled

GCSC Guard of registers for the clock control and the voltage detector

0: Disabled

1: Enabled

RL78/F13, F14, F15 Safety Function Application Note

R01AN2164EJ0240 Rev.2.40 Page 27 of 39

Feb.15.2022

8.3 Processing Example of SFR Guard Function

Figure 8-1 is an example of using the SFR guard function.

Start

DI()Disable the interrupts

Disable the SFR guard function

Write to SFRs to be protected

IAWCTL IAWCTL & B0H

･ GPORT = 0 : Disables the guard function for port function control registers.

･ GINT = 0 : Disables the guard function for interrupt function registers.

･ GCSC = 0 : Disables the guard function for clock control function and

 voltage detection circuit control registers.

End

Enable the SFR guard function

 EI() (Execute the interrupt handler according to the specifications of the system.)Enable the interrupts

Execute according to the specification of the system.

IAWCTL IAWCTL | 07H

･ GPORT = 1 : Enables the guard function for port function control registers.

･ GINT = 1 : Enables the guard function for interrupt function registers.

･ GCSC = 1 : Enables the guard function for clock control function and

 voltage detection circuit control registers.

Figure 8-1. Example of Using SFR Guard Function

8.4 Cautions when Using SFR Guard Function

The following is the caution when using the SFR guard function.

(1) This function will be disabled when reset is released (the values of the GPORT, GINT and GCSC bits are
set to 0.)

RL78/F13, F14, F15 Safety Function Application Note

R01AN2164EJ0240 Rev.2.40 Page 28 of 39

Feb.15.2022

9. Invalid Memory Access Detection Function

9.1 Overview of Invalid Memory Access Detection Function

The invalid memory access detection function triggers a reset if an invalid access detection space (see Figure
9-1) is accessed.

Specia l faction register
（SFR）

Specia l function register (2nd SFR)
2 KB

Data Flash Memory

Code Flash Memory

RAM

Not usable

General-purpose
register
32 bytes

Mirror

Not usable

Not usable

Not usable

FFFFFH

FFF00H

FFEFFH

FFEE0H

(f)

(e)

(d)

(c)

F1000H

F0FFFH

F0800H

F07FFH

F0000H

EFFFFH

EF000H

00000H

(b)

(a)

(a) to (f) : Vary depending on the products.

Read Write
Instruction fetch

(execute)

Detection
space

Detection
space

Detection
space

Detection
space

Detection
space

Detection
space

Detection
space

FFEDFH

EEFFFH

Figure 9-1. Invalid Access Detection Area

RL78/F13, F14, F15 Safety Function Application Note

R01AN2164EJ0240 Rev.2.40 Page 29 of 39

Feb.15.2022

Table 9-1. Memory Space by RL78/F13 (LIN incorporated) Models

Products (models) (a) (b) (c) (d) (e) (f)

R5F10AnA (n=6, A, B, G) 03FFFH 10000H F1FFFH F2000H F4000H FFB00H

R5F10AnC (n=6, A, B, G, L) 07FFFH 10000H F1FFFH F2000H F8000H FF700H

R5F10AnD (n=6, A, B, G, L) 0BFFFH 10000H F1FFFH F2000H FC000H FF300H

R5F10AnE (n=6, A, B, G, L) 0FFFFH 10000H F1FFFH F2000H − FEF00H

R5F10AME 0FFFFH 10000H F1FFFH F2000H FDF00H FEF00H

R5F10AnF (n=G, L, M) 17FFFH 20000H F1FFFH F2000H FDF00H FE700H

R5F10AnG (n=G, L, M) 1FFFFH 20000H F1FFFH F2000H − FDF00H

Table 9-2. Memory Space by RL78/F13 (CAN&LIN incorporated) Models

Products (models) (a) (b) (c) (d) (e) (f)

R5F10BnC (n=A, B, G, L) 07FFFH 10000H F1FFFH F2000H F8000H FF700H

R5F10BnD (n=A, B, G, L) 0BFFFH 10000H F1FFFH F2000H FC000H FF300H

R5F10BnE (n=A, B, G, L, M) 0FFFFH 10000H F1FFFH F2000H FDF00H FEF00H

R5F10BnF (n=A, B, G, L, M) 17FFFH 20000H F1FFFH F2000H FDF00H FE700H

R5F10BnG (n=A, B, G, L, M) 1FFFFH 20000H F1FFFH F2000H − FDF00H

Table 9-3. Memory Space by RL78/F14 Models

Products (models) (a) (b) (c) (d) (e) (f)

R5F10PnD (n=A, B, G) 0BFFFH 10000H F1FFFH F2000H FC000H FEF00H

R5F10PnE (n=A, B, G, L, M) 0FFFFH 10000H F1FFFH F2000H FDF00H FE700H

R5F10PPE 0FFFFH 10000H F1FFFH F3000H FAF00H FE700H

R5F10PnF (n=G, L, M) 17FFFH 20000H F1FFFH F2000H − FDF00H

R5F10PPF 17FFFH 20000H F1FFFH F3000H FAF00H FDF00H

R5F10PnG (n=G, L, M, P) 1FFFFH 20000H F2FFFH F3000H FAF00H FDF00H

R5F10PnH (n=G, L, M, P) 2FFFFH 30000H F2FFFH F3000H FAF00H FBF00H

R5F10PnJ (n=G, L, M, P) 3FFFFH 40000H F2FFFH F3000H − FAF00H

Table 9-4. Memory Space by RL78/F15 Models

Products (models) (a) (b) (c) (d) (e) (f)

R5F113nG (n=P, T) 1FFFFH 20000H F2FFFH F5000H F7F00H FD700H

R5F113nH (n=P, T) 2FFFFH 30000H F2FFFH F5000H F7F00H FBF00H

R5F113nJ (n=P, T) 3FFFFH 40000H F2FFFH F5000H F7F00H FAF00H

R5F113nK (n=G, L, M, P, T) 5FFFFH 60000H F4FFFH F5000H F7F00H F9700H

R5F113nL (n=G, L, M, P, T) 7FFFFH 80000H F4FFFH F5000H − F7F00H

RL78/F13, F14, F15 Safety Function Application Note

R01AN2164EJ0240 Rev.2.40 Page 30 of 39

Feb.15.2022

9.2 Registers used for Invalid Memory Access Detection Function

The register used by the invalid memory access detection function is described below.

(1) Invalid memory access detection control register (IAWCTL)

This register enables/disables detection of any invalid memory access. This register can be accessed by
an 8-bit memory manipulation instruction.

Address: F0078H After reset: 00H R/W

Symbol 7 6 5 4 3 2 1 0

IAWCTL IAWEN 0 GRAM[1:0] 0 GPORT GINT GCSC

Bit Name Description

IAWEN Note 0: Disables detection of invalid memory access.

1: Enables detection of invalid memory access.

Note: Only writing 1 to the IAWEN bit is valid and writing 0 after setting the IAWEN bit to 1 is invalid.

9.3 Processing Example of Invalid Memory Access Detection Function

Figure 9-2 is an example of using the invalid memory access detection function.

Start

DI()Disable the interrupts

Enable the illegal memory access
detection function

IAWCTL IAWCTL | 80H

･ IAWEN = 1 : Enables the detection of invalid memory access.

 EI() (Execute the interrupt processing according to the
 specifications of the system.)

Enable the interrupts

Note : A reset is generated when an invalid memory access is detected.

Main processing routine

Detection of invalid memory access Note

Figure 9-2. Example of Using Invalid Memory Access Detection Function

RL78/F13, F14, F15 Safety Function Application Note

R01AN2164EJ0240 Rev.2.40 Page 31 of 39

Feb.15.2022

9.4 Cautions when Using Invalid Memory Access Detection Function

The following are the cautions when using the invalid memory access detection function.

(1) When the value of bit 4 (WDTON) in the user option byte (000C0H/020C0H) is set to 1, the invalid memory
access detection function is enabled regardless of the setting value to the IAWEN bit.

(2) With a product having a code flash memory whose size is 16KB/32KB/48KB, a value “FFH” will be read
if the space [between the start address of the code flash memory (the address “(a)” in Figure 9-1) and the
address 0FFFFH] is invalidly accessed. Also, if an instruction fetch is executed in the same space by an
invalid access, a reset is generated due to execution of the invalid instruction.

(3) With a product having a code flash memory whose size is 96KB, a value “FFH” will be read if the space
[between the start address of the code flash memory (an address “(a)” in Figure 9-1) and the address
1FFFFH] is invalidly accessed. Also, if an instruction fetch is executed in the same space by an invalid
access, a reset is generated due to execution of the invalid instruction.

RL78/F13, F14, F15 Safety Function Application Note

R01AN2164EJ0240 Rev.2.40 Page 32 of 39

Feb.15.2022

10. Frequency Detection Function

10.1 Overview of Frequency Detection Function

When either of the high-speed on-chip oscillator clock (fIH), high-speed system clock (fMX) or PLL clock (fPLL)
is selected for the CPU/peripheral hardware clock (fCLK), the frequency detection function can detect any
abnormality in the CPU/peripheral hardware clock (fCLK) by comparing the selected clock with the low-speed
on-chip oscillation clock (fIL).

The number of clock cycles of the monitor clock (either one of fIH, fMX, or fPLL) during a period of one clock cycle
of the standard clock (low-speed on-chip oscillator clock) is counted using timer array unit 0 (TAU0). Based on
the counted cycles, determine whether the frequency is correct or not using the user software.

10.2 Registers used for Frequency Detection Function

The registers used for the frequency detection function are described below.

(1) Timer input select register (TIS0)

This register selects the timer input used for channel 1 of timer array unit 0 (TAU0). To use the frequency
detection function, select the low speed on chip oscillator clock as the input. This register can be accessed
by an 8-bit memory manipulation instruction.

Address: F0074H After reset: 00H R/W

Symbol 7 6 5 4 3 2 1 0

TIS0 TIS07 TIS06 0 TIS04 0 TIS0[2:0]

Bit Name Description

TIS0[2:0] Selects the timer input used for channel 1 of timer array unit 0.

000B, 010B, 011B: Input signal of timer input pin (TI01)

001B: Event input signal from ELC

100B: Low-speed on-chip oscillator clock (fIL)

101B: Sub/low-speed on-chip oscillator select clock (fSL)

Other than above: Setting prohibited

(2) Timer array unit 0-related registers (TMR01, TS0, TDR01, TSR01, TT0)

・ Timer mode register 01 (TMR01)
CKS01[1:0]=Selects an operation clock (select any one from CK00-CK03 for the operation clock TAU01)
CCS01=0 (Set the count clock selection bit to 0 (operation clock specified the CKS01[1:0] bits).)
SPLIT01=0 (Selects “16-bit timer operation”.)
STS01[2:0]=001B (The valid edge of the TI01 pin input is used as both the start trigger and capture

trigger.)
CIS01[1:0]=00B (Selects falling edge detection for valid edge of TI01 pin input.)
MD01[3:1]=010B (Selects “capture mode” as the operation mode for TAU01.)
MD010=0 (Selects “no generation of INTTM01 at count start”.)

・ Timer channel start register 0 (TS0)
TS01=1 (Enables TAU01 operation.)

・ Timer data register 01 (TDR01)
OVF: Checks whether TAU01 overflowed or not.

・ Timer channel stop register 0 (TT0)
TT01: Stops the TAU01 operation.

RL78/F13, F14, F15 Safety Function Application Note

R01AN2164EJ0240 Rev.2.40 Page 33 of 39

Feb.15.2022

10.3 Processing Example of Frequency Detection Function

Figure 10-1 is an example of using the frequency detection function.

Start

Select a clock from the high-speed on-chip oscillator clock, X1, or PLL.
Set the CPU and peripheral
hardware clock oscillation

Set the low-speed on-chip
oscillator clock oscillation

IAWCTL.GCSC = 0 : Enables the write access to OSMC.
OSMC.WUTMMCK0 = 1 : Starts the low-speed on-chip oscillator operation.

PER0.TAU0EN = 1Enable clock supply to TAU0

Note: After the timer starts, the first interrupt is generated when 1 is written to the TS01 bit, and thereby the value of TDR01
 captured at the interrupt is invalid. Do not use (ignore) this value.

Frequency error handler

Set the operation clock

Set a timer mode
of TAU0 channel 1

Select the input signal to
TAU0 channel 1

Clear the TAU0 channel 1
interrupt request flag

Start the TAU0 channel 1
operation

A timer interrupt request occurred?

Clear the TAU0 channel 1
interrupt request flag

A timer interrupt request occurred?

Read the TDR01 register

An overflow occurred?

Frequency count within range?

TPS0 = xxxxH : Selects an operation clock from CK00 to CK03.
Perform the settings according to the specifications of the system.

TMR01.MD01[3:1] = 010B : Selects capture mode as the channel 1 operating mode.
Perform the other settings according to the specifications of the system.

TIS0.TIS0[2:0] = 100B : Selects the low-speed on-chip oscillator clock.

IF1L.TMIF01 = 0

TS0.TS01 = 1

Yes(TMIF01 = 1)
No(TMIF01 = 0)

No(TSR01.OVF = 0)

Yes(TSR01.OVF = 1)

No

Yes

IF1L.TMIF01 = 0

Stop the TAU0 channel 1
operation

TT0.TT01 = 1

Reads the captured value.

Handle detected errors according to the
specifications of the system.

End

Yes(TMIF01 = 1)
No(TMIF01 = 0)

Discard the first data segment.
Note

Figure 10-1. Example of Using Frequency Detection Function

RL78/F13, F14, F15 Safety Function Application Note

R01AN2164EJ0240 Rev.2.40 Page 34 of 39

Feb.15.2022

11. A/D Test Function

11.1 Overview of A/D Test Function

This A/D test function checks whether the A/D converter is operating normally by executing A/D conversions
on three different internal voltages of 0V, the AVREF voltage, and the internal reference voltage (1.45V).

11.2 Registers used for A/D Test Function

The registers used by the A/D test function is described below.

(1) A/D test register (ADTES)

This register selects the A/D conversion target. This register can be accessed by an 8-bit memory
manipulation instruction.

Address: F0013H After reset: 00H R/W

Symbol 7 6 5 4 3 2 1 0

ADTES 0 0 0 0 0 0 ADTES[1:0]

Bit Name Description

ADTES[1:0] Selects an A/D conversion target.
00B: ANIx/ temperature sensor output/ internal reference voltage output (1.45V)

This is specified by the ADS register.
01B: Setting prohibited
10B: AVREFM

11B: AVREFP

(2) Analog input channel specification register (ADS)

This register specifies the input channel of the analog voltage to be A/D converted. This register can be
accessed by a 1-bit memory manipulation instruction or an 8-bit memory manipulation instruction.

Address: FFF31H After reset: 00H R/W

Symbol 7 6 5 4 3 2 1 0

ADS ADISS 0 0 ADS[4:0]

Bit Name Description

ADISS Selects an A/D conversion target.

0: Analog input channel (ANIx)

1: Temperature sensor output/ internal reference voltage output (1.45V)

ADS[4:0] Channel selection

・ Select mode (ADMD=0)

ADISS=0 [When the analog input channel (ANIx) is selected]:

00000B (ANI0) to 11110B (ANI30), 11111B (Setting prohibited)

ADISS=1 [When a temperature sensor or internal reference voltage output is

selected]:

00000B (Temperature sensor output),

00001B (Internal reference voltage output),

Other than 00000B and 00001B (Setting prohibited)

・ Scan mode (ADMD=1)

ADISS=0: 00000B (ANI0 to ANI3), …, 10100B (ANI20 to ANI23),

Other than above (Setting prohibited)

ADISS=1: Setting prohibited

RL78/F13, F14, F15 Safety Function Application Note

R01AN2164EJ0240 Rev.2.40 Page 35 of 39

Feb.15.2022

11.3 Processing Example of A/D Test Function

Figure 11-1 is an example of using the A/D test function.

Start

PER0.ADCEN = 1
Enable clock supply to A/D

converter

Disable A/D conversion and set
an A/D conversion channel mode

ADM0.ADCS = 0 : Stops conversion operation.
ADM0.ADMD = 0 : Select mode
ADM0.ADCE = 0 : Stops A/D voltage comparator operation.
Set FR[2:0] and LV[1:0] according to the specifications of the system.

ADM1.ADTMD[1:0] = 00B : Software trigger mode
ADM1.ADSCM = 1 : One-shot conversion mode
ADM1.ADTRS[1:0] = 00B : Selects INTTM01 as a hardware trigger signal.

Set the A/D conversion mode

Note: In consideration of the accuracy of A/D conversion or noise from the power supply, check the conversion result to determine whether
 the result is within the expected value.

A/D converter error handler

Set the reference voltage

Set the upper and lower limit
values for comparing the A/D

conversion results

Stabilization wait time A

Set the target to be A/D converted

Specify the analog input channel

Clear the A/D conversion end
interrupt request flag

A/D conversion end interrupt
request occurred?

A/D conversion result
within range? Note

ADM2 = xxH : Performa the settings according to the specifications of the
system.

ADUL = FFH : Sets the conversion result compare upper limit value.
ADLL = 00H : Sets the conversion result compare lower limit value.

When the setting of the ADM2.ADREFP[1:0] bits is changed to 10B, 5 µs of the stabilization wait
time is needed.

Set one of the following:
ADTES = 00H : With the ADS register, sets the A/D conversion target to ANIxx/temperature
 sensor output/internal reference voltage (1.45V).
ADTES = 02H : Sets the A/D conversion target to AVREFM.
ADTES = 03H : Sets the A/D conversion target to AVREFP.

ADS = xxH : Performs the setting according to the specifications of the system.

No

Yes

IF1H.ADIF=0

Read the A/D conversion result Reads the ADCR register.

Handle detected errors according to the
specifications of the system.

End

Yes(ADIF = 1)

No(ADIF = 0)

Specify an A/D conversion wait
state

Stabilization wait time B

ADM0.ADCE = 1

When the setting of the ADCE bit is changed to 1, 1 µs of the stabilization wait time is
needed.

Start A/D conversion ADM0.ADCS = 1

Waits for A/D conversion to finish.

Figure 11-1. Example of Using A/D Test Function

RL78/F13, F14, F15 Safety Function Application Note

R01AN2164EJ0240 Rev.2.40 Page 36 of 39

Feb.15.2022

11.4 Cautions when Using A/D Test Function

The following are the cautions when using the A/D test function.

(1) When the ADISS bit in the ADS register is set to 1, the result of the first A/D conversion cannot be used.

(2) The A/D conversion results must be checked with consideration of the accuracy of A/D conversions, or
noise from the power supply by using several samples of evaluation data or values having ample margins.

RL78/F13, F14, F15 Safety Function Application Note

R01AN2164EJ0240 Rev.2.40 Page 37 of 39

Feb.15.2022

12. I/O Port Output Signal Level Detection Function

12.1 Overview of I/O Port Output Signal Level Detection Function

This function can read the output level of the pin when the I/O ports are in output mode and check whether the
output level is correct or not.

12.2 Registers used for I/O Port Output Signal Level Detection Function

The register used by the I/O port output signal level detection function is described below.

(1) Port mode select register (PMS)

This register specifies whether the output latch value of a port or the output level of a pin is to be read
when the port is in output mode. This register can be accessed by a 1-bit memory manipulation instruction
or an 8-bit memory manipulation instruction.

Address: F0077H After reset: 00H R/W

Symbol 7 6 5 4 3 2 1 0

PMS 0 0 0 0 0 0 0 PMS0

Bit Name Description

PMS0 Selects the data to be read when the port is in output mode (PMmn=0).

0: Reads the value (output latch) of Pm register (Pmn bit).

1: Reads the output level of a pin.

Remarks m：0 to 16, n: 0 to 7

RL78/F13, F14, F15 Safety Function Application Note

R01AN2164EJ0240 Rev.2.40 Page 38 of 39

Feb.15.2022

12.3 Processing Example of I/O Port Output Signal Level Detection Function

Figure 12-1 is an example of using the I/O port output signal level detection function.

Start

DI()Disable the interrupts

Set the expected value

Set the port to output mode

Write the output latch data (expected value) to the Pm register.

End

Enable the digital output signal
level detection function

Read the Pm register.Read the port register

Remarks : m = 0 to 16

 　 n = 0 to 7

PMS = 01H

Set the PMmn bit corresponding to the target port of PMm register to 0.

Disable the digital output signal
level detection function

PMS = 00H

Output pin error handler

The expected value was output?
No

Yes
Handle detected errors according to the
specifications of the system.

 EI() (Execute the interrupt processing according to the specifications of the
 system.)

Enable the interrupts

Disable DTC transfer Disable the access to the Pm register by the DTC.

Figure 12-1. Example of using I/O Port Output Signal Level Detection Function

12.4 Cautions when using I/O Port Output Signal Level Detection Function

The following is the caution when using the I/O port output signal level detection function.

(1) When any writing is executed for a port register (Pm) with a bit manipulation instruction or an AND, OR
instruction while the PMS0 bit in the PMS register is set to 1 (Output level of the pin is read), the output
levels read are stored in the bits (other bits in the same port register). To write to the port register when
the PMS0 bit is set to 1, an 8-bit data transfer instruction must be used. Also, the port register must be
read while the DI (interrupt disabled) has been set.

RL78/F13, F14, F15 Safety Function Application Note

R01AN2164EJ0240 Rev.2.40 Page 39 of 39

Feb.15.2022

Revision History

Rev. Date

Description

Page Summary

2.00 Jun.30,2017 − First edition issued

2.10 Apr.26,2018 − Revised flowcharts

2.20 Aug.31,2018 P.11, 16 Added Table 4-1 and Table 4-2

2.40 Feb.15,2022 − Added description of RL78/F15 products

P.19, 23 Added description of restrictions on the use of development tool

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2022 Renesas Electronics Corporation. All rights reserved.

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your

product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use

of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,

or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this

document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics

or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,

manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any

and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for

each Renesas Electronics product depends on the product’s quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas

Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to

human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space

system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics

disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product

that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics

hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but

not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS

ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING

RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,

HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND

ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT

PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH

RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO

THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for

Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by

Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas

Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such

specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific

characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability

product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics

products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily

injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as

safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for

aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are

responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas

Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of

controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these

applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance

with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is

prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations

promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or

transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled

subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,

Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

 For further information on a product, technology, the most up-to-date

version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/.

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics

Corporation. All trademarks and registered trademarks are the property

of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview of the Safety Function
	2. Flash Memory CRC Operation Function (High-speed CRC)
	2.1 Overview of High-speed CRC Operation
	2.2 Registers used for High-speed CRC Operation
	2.3 Processing Example of High-speed CRC Operation
	2.3.1 Processing Example of High-speed CRC Operation (Operation Range: 64 KB)

	2.4 Cautions when Using High-speed CRC Operation

	3. CRC Operation Function (General-purpose CRC)
	3.1 Overview of General-purpose CRC Operation
	3.2 General-purpose CRC Operation Registers
	3.3 Processing Example of General-purpose CRC Operation
	3.4 Cautions when Using General-purpose CRC Operation

	4. RAM-ECC Function
	4.1 Overview of RAM-ECC Function
	4.2 Registers used for RAM-ECC Function
	4.3 Processing Example of RAM-ECC Function
	4.4 ECC Test Mode
	4.5 Cautions when Using RAM-ECC Function

	5. CPU Stack Pointer Monitor Function
	5.1 Overview of CPU Stack Pointer Monitor Function
	5.2 Registers used for CPU Stack Pointer Monitor Function
	5.3 Processing Example of CPU Stack Pointer Monitor Function
	5.4 Interrupt Determination of CPU Stack Pointer Monitor Function
	5.5 Cautions when Using CPU Stack Pointer Monitor Function

	6. Clock Monitor Function
	6.1 Overview of Clock Monitor Function
	6.2 Registers used for Clock Monitor Function
	6.3 Processing Example of Clock Monitor Function
	6.4 Interrupt Determination of Clock Monitor Function
	6.5 Cautions when Using Clock Monitor Function

	7. RAM Guard Function
	7.1 Overview of RAM Guard Function
	7.2 Registers used for RAM Guard Function
	7.3 Processing Example of RAM Guard Function
	7.4 Cautions when Using RAM Guard Function

	8. SFR Guard Function
	8.1 Overview of SFR Guard Function
	8.2 Registers used for SFR Guard Function
	8.3 Processing Example of SFR Guard Function
	8.4 Cautions when Using SFR Guard Function

	9. Invalid Memory Access Detection Function
	9.1 Overview of Invalid Memory Access Detection Function
	9.2 Registers used for Invalid Memory Access Detection Function
	9.3 Processing Example of Invalid Memory Access Detection Function
	9.4 Cautions when Using Invalid Memory Access Detection Function

	10. Frequency Detection Function
	10.1 Overview of Frequency Detection Function
	10.2 Registers used for Frequency Detection Function
	10.3 Processing Example of Frequency Detection Function

	11. A/D Test Function
	11.1 Overview of A/D Test Function
	11.2 Registers used for A/D Test Function
	11.3 Processing Example of A/D Test Function
	11.4 Cautions when Using A/D Test Function

	12. I/O Port Output Signal Level Detection Function
	12.1 Overview of I/O Port Output Signal Level Detection Function
	12.2 Registers used for I/O Port Output Signal Level Detection Function
	12.3 Processing Example of I/O Port Output Signal Level Detection Function
	12.4 Cautions when using I/O Port Output Signal Level Detection Function

	Revision History

