

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

 APPLICATION NOTE

REJ06J0016-0100/Rev.1.00 June 2007 Page 1 of 32

SuperH RISC engine C/C++ Compiler Package
APPLICATION NOTE: [Compiler use guide] C Coding Guide (Using FPU)

This document explains usage and gives precautions for FPUs (SH-2E, SH2A-FPU,
SH-4, SH-4A), for the SuperH RISC engine C/C++ Compiler V.9.

Table of contents

1. Floating-point Processing Unit (FPU).. 2
1.1 Specification for Floating-point Numbers .. 2
1.1.1 Internal Representation of Floating-point Numbers .. 2
1.1.2 Single-precision (float type) data format ... 3
1.1.3 Double-precision (double type) data format .. 5
1.2 Register ... 6
1.2.1 Floating-point status / control registers (FPSCR).. 6
1.2.2 Floating-point registers.. 7
1.2.3 Floating-point communication register (FPUL).. 11
1.2.4 Status register (SR)... 11
1.3 Rounding ... 11

2. Options for Floating-point Calculations and #pragma... 13
2.1 Conversion from double -> float (DOuble=Float) for SH-2E ... 13
2.2 Floating-point Calculation Mode (FPu={Single|Double}) for SH2A-FPU, SH-4, and SH-4A 14
2.3 Rounding Methods (Round={Zero|Nearest}) for SH2A-FPU, SH-4, and SH-4A 15
2.4 Handling Non-normalized Numbers (DENormalize={OFF|ON}) for SH-4 and SH-4A........................ 17
2.5 Converting Floating-point Division into Multiplication (APproxdiv).. 18
2.6 Converting Floating-point Division (FDIv) ... 19
2.7 Switching the FPSCR Register Precision Mode (FPScr={Aggressive|Safe}) for SH2A-FPU, SH-4,

and SH-4A... 20
2.8 Skipping Range Checking during Floating-point Number-integer Conversion (SIMple_float_conv) .. 22
2.9 Suppressing Save/Restore for Floating-point Registers (IFUnc, #pragma ifunc) 23

3. Efficient Programming Techniques ... 27
3.1 Using Floating-point Instructions... 27

4. Frequently Asked Questions ... 28
4.1 Floating-point Calculation Results... 28
4.2 Values for Floating-point Numbers in the Watch Window... 29
Website and Support <website and support,ws> .. 31

b1500043
テキストボックス
Notice: There are some errata on page 15.

APPLICATION NOTE

1. Floating-point Processing Unit (FPU)
SH-2E, SH2A-FPU, SH-4, and SH-4A come with a built-in FPU for performing high-speed floating-point calculations.
SH2A-FPU, SH-4, and SH-4A can perform calculations using double-precision (double type) or single-precision
(float type) in the FPU, while SH-2E can use only single-precision calculations

The FPU offers the following characteristics:

• Two rounding modes: Round to Nearest and Round to Zero
 (SH-2E only has Round to Zero)

• Two processing modes for non-normalized numbers (only on SH-4 and SH-4A)
• Six exception causes, allowing occurring exceptions to be masked or enabled for each.

 – FPU error, invalid calculation, division by zero, overflow, underflow, and inaccurate
(SH-2E only has invalid calculation and division by zero)

1.1 Specification for Floating-point Numbers
1.1.1 Internal Representation of Floating-point Numbers
• Internal representation format

float types are represented in the IEEE single-precision format (32-bit), and double types and long double
types are represented in the IEEE double-precision format (64-bit).

• Internal representation configuration
Figure 1-1 shows the configuration for the internal representation of the float type, double type, and long
double type.

63 62 52 51 0

023 2231 30

Exponent portion (8 bits) Mantissa portion (23 bits)
Sign portion (1 bit)

Exponent portion (11 bits) Mantissa portion (52 bits)
Sign portion (1 bit)

float type

double type and long

 Note: When double=float is specified, the double type and float type have the same internal
representation.
When both cpu=sh2afpu|sh4|sh4a and fpu=single are specified, the double type and
long double type have the same internal representation as the float type.
When both cpu=sh2afpu|sh4|sh4a and fpu=double are specified, the float type has the
same internal representation as the double type.

Figure 1-1

The following explains the meaning of each configuration element in an internal representation.
(i) Sign portion

Indicates the sign of the floating-point number. 0 indicates positive sign, and 1 indicates negative sign.
(ii) Exponent portion

Indicates the exponent of the floating-point number as a power of two.
(iii) Mantissa portion

Data about the significant digits in the floating-point number.

REJ06J0016-0100/Rev.1.00 June 2007 Page 2 of 32

APPLICATION NOTE

REJ06J0016-0100/Rev.1.00 June 2007 Page 3 of 32

• Types of values expressed
In addition to regular real numbers, floating-point numbers can also represent infinity and other values. The
following lists the types of values that can be represented by a floating-point number.
(i) Normalized number

When the exponent portion is 0 or not all bits are 1. This represents a regular real number.
(ii) Non-normalized number

When the exponent portion is 0, and the mantissa portion is not 0. This represents a real number with a small
absolute value.

(iii) Zero
When the exponent portion and mantissa portion are 0. This represents the value 0.0.

(iv) Infinity
When all bits in the exponent portion are 1 and the mantissa portion is 0. This represents infinity.

(v) Non-number
When all bits in the exponent portion are 1 and the mantissa portion is not 0. This is obtained when the
calculation results are non-numerical, such as for 0.0/0.0, ∞/∞, and ∞-∞.

Table 1-1 lists the conditions used to determine the values representing floating-point numbers.

Table 1-1 Types of values that represent floating-point numbers
Exponent portion

Mantissa portion 0 Not all bits are either 0 or 1 All bits are 1
0 0 Normalized number Infinity
Anything other than 0 Non-normalized number Normalized number Non-number
Note: A non-normalized number represents a floating-point number with a small absolute value in a

range that cannot be expressed by a normalized number, but which has fewer significant digits
than a normalized number. As such, when the calculation results or any temporary results are a
non-normalized number, the significant digits of the results are not guaranteed.

1.1.2 Single-precision (float type) data format
The internal representation of the float type consists of a 1-bit sign portion, an 8-bit exponent portion, and a 23-bit
mantissa portion.

• Normalized numbers
The sign portion is 0 (positive) or 1 (negative), indicating the sign of the value.
The exponent portion is a value from 1 to 254 (28 – 2). The actual exponent is a value 127 less than this value, with
a range from –126 to 127.
The mantissa portion is a value from 0 to 223 – 1. The actual mantissa is interpreted as a value whose 223 bit is 1,
with a decimal point immediately following.
Values expressing normalized numbers are as follows:

(–1)sign-portion × 2exponent-portion–127 × (1 + mantissa-portion × 2–23)

APPLICATION NOTE

REJ06J0016-0100/Rev.1.00 June 2007 Page 4 of 32

Example:
31 30 23 22 0

 1 10000000 11000000000000000000000
Sign: –
Exponent: 10000000(2) – 127 = 1
Mantissa: 1.11(2) = 1.75
Value: –1.75×21 = –3.5
 Note: (2) indicates a decimal number.

• Non-normalized numbers

The sign portion is 0 (positive) or 1 (negative), indicating the sign of the value.
The exponent portion is 0, with an actual exponent of –126.
The mantissa portion is from 1 to 223–1, with the actual mantissa interpreted as a value whose 223 bit is 0, with a
decimal point immediately following.
Values expressing non-normalized numbers are as follows:

(–1)sign-portion × 2–126 × (mantissa-portion × 2–23)

Example:
31 30 23 22 0

 0 00000000 11000000000000000000000

Sign: +
Exponent: –126
Mantissa: 0.11(2) = 0.75
Value: 0.75 × 2–126

 Note: (2) indicates a decimal number.

• Zero

The sign portion is 0 (positive) or 1 (negative), indicating either +0.0 or –0.0.
Both the exponent portion and mantissa portion are 0.
Both +0.0 and –0.0 indicate a value of 0.0.

• Infinity

The sign portion is 0 (positive) or 1 (negative), indicating either +∞ or –∞.
The exponent portion is 255 (28–1).
The mantissa portion is 0.

• Non-number

The exponent portion is 255 (28–1).
The mantissa portion is a value other than 0.

Note: When the CPU is SH-2E, SH2A-FPU, SH-4, or SH-4A, a non-number for which the highest order bit of the

mantissa portion is 0 is called qNaN, a non-number for which the highest order bit of the mantissa portion
is 1 is called sNaN.
The values of other mantissa fields, and sign portions are not defined.

APPLICATION NOTE

REJ06J0016-0100/Rev.1.00 June 2007 Page 5 of 32

1.1.3 Double-precision (double type) data format
The internal representations of the double type and long double type consist of a 1-bit sign portion, an 11-bit
exponent portion, and a 52-bit mantissa portion.

• Normalized numbers
The sign portion is 0 (positive) or 1 (negative), indicating the sign of the value.
The exponent portion is a value from 1 to 2046 (211–2). The actual exponent is a value 1023 less than this value,
with a range from –1022 to 1023.
The mantissa portion is a value from 0 to 252–1. The actual mantissa is interpreted as a value whose 252 bit is 1, with
a decimal point immediately following.
Values expressing normalized numbers are as follows:

(–1)sign-portion × 2exponent-portion–1023 × (1 + mantissa-portion × 2–52)

Example:
63 62 52 51 0

 0 01111111111 111000

Sign: +
Exponent: 1111111111(2) –1023 = 0
Mantissa: 1.111(2) = 1.875
Value: 1.875 × 20 = 1.875
 Note: (2) indicates a decimal number.

• Non-normalized number

The sign portion is 0 (positive) or 1 (negative), indicating the sign of the value.
The exponent portion is 0, with an actual exponent of –1022.
The mantissa portion is from 1 to 252–1, with the actual mantissa interpreted as a value whose 252 bit is 0, with a
decimal point immediately following.
Values expressing non-normalized numbers are as follows:

(–1)sign-portion × 2–1022 × (mantissa-portion × 2–23)

Example:
63 62 52 51 0

 1 00000000000 111000

Sign: –
Exponent: –1022
Mantissa: 0.111(2) = 0.875
Value: 0.875 × 2–1022

 Note: (2) indicates a decimal number.

• Zero

The sign portion is 0 (positive) or 1 (negative), indicating either +0.0 or –0.0.
Both the exponent portion and mantissa portion are 0.
Both +0.0 and –0.0 indicate a value of 0.0.

• Infinity

The sign portion is 0 (positive) or 1 (negative), indicating either +∞ or –∞.
The exponent portion is 2047 (211–1).
The mantissa portion is 0.

APPLICATION NOTE

• Non-number
The exponent portion is 2047 (211–1).
The mantissa portion is any value other than 0.
Note: When the CPU is SH2A-FPU, SH-4, or SH-4A, a non-number for which the highest order bit of the

mantissa portion is 0 is called qNaN, a non-number for which the highest order bit of the mantissa portion
is 1 is called sNaN.
The values of other mantissa fields, and sign portions are not defined.

1.2 Register
1.2.1 Floating-point status / control registers (FPSCR)
FPSCR is a 32-bit register that controls storage of detailed information about the rounding mode, asymptotic underflow
(non-normalized number), and FPU exceptions.

Bit: 31 22 21 20 19 1817 12 11 7 6 2 1 0

RMFlag Enable Cause DNPRSZFRQIS

Figure 1-2

• QIS: (SH2A-FPU)
qNaN or ±∞ is handled as sNaN. This only takes effect when V=1 is set for Enable in FPSCR.
QIS=0: Processing is performed as qNaN or ±∞.
QIS=1: An exception occurred (same processing as sNaN).

• FR: floating-point register bank (SH-4 and SH-4A)

Allocation is switched between floating-point registers FPR0_BANK0 to FPR15_BANK0 and FPR0_BANK1 to
FPR15_BANK1.

• SZ: transfer size mode (SH2A-FPU, SH-4, and SH-4A)

SZ=0: The data size for FMOV instructions is 32 bits.
SZ=1: The data size for FMOV instructions is 32 bit pairs (64 bits).

• PR: precision mode (SH2A-FPU, SH-4, and SH-4A)

PR=0: Floating-point instructions are executed as single-precision calculations.
PR=1: Floating-point instructions are executed as double-precision calculations. The results of instructions for
which double-precision is not supported are not defined.

Note:

Do not set both SZ and PR to 1 at the same time for SH-4. This setting is reserved. [SZ, PR] = 11: Reserved (The
FPU calculation instructions are not defined).

• DN: non-normalized mode (SH-2E, SH2A-FPU, SH-4, and SH-4A)

DN=1 is always set for SH-2E and SH2A-FPU.
DN=0: Non-normalized numbers are handled as non-normalized numbers.
DN=1: Non-normalized numbers are handled as 0.

REJ06J0016-0100/Rev.1.00 June 2007 Page 6 of 32

APPLICATION NOTE

• Cause: FPU exception cause field (SH-2E, SH2A-FPU, SH-4, and SH-4A)
• Enable: FPU exception enable field (SH-2E, SH2A-FPU, SH-4, and SH-4A)
• Flag: FPU exception flag field (SH-2E, SH2A-FPU, SH-4, and SH-4A)

When an FPU calculation instruction is executed, the FPU exception cause field is first set to 0.
When the next FPU exception occurs, the corresponding bit in the FPU exception cause field and FPU exception
flag field is set to 1.
The FPU exception flag field keeps the status of the exceptions that occur after the FPU exception flag field is last
cleared.

Table 1-2 Bit allocation for FPU exception processing
 FPU error

(E)
Invalid

calculation (V)
0 division

(Z)
Overflow

(O)
Underflow

(U)
Undetermined

(I)
Cause FPU exception

cause field
Bit 17 Bit 16 Bit 15 Bit 14 Bit 13 Bit 12

Enable FPU exception
enable field

None Bit 11 Bit 10 Bit 9 Bit 8 Bit 7

Flag FPU exception
flag field

None Bit 6 Bit 5 Bit 4 Bit 3 Bit 2

• RM: rounding mode (SH-2E, SH2A-FPU, SH-4, and SH-4A)

This is always 01 (Round to Zero) for SH-2E.
RM=00: Round to Nearest
RM=01: Round to Zero

1.2.2 Floating-point registers
SH-2E and SH2A-FPU have 16 32-bit floating-point registers, while SH-4 and SH-4A have 32. Details are as follows.

• SH-2E
Figure 1-3 shows the floating-point registers. There are 16 floating-point registers (FRn), from FR0 to FR15, each
of which is 32 bits long. Floating-point registers are used for floating-point instructions.

31 0
FR0
FR1
FR2
FR3
FR4
FR5
FR6
FR7
FR8
FR9
FR10
FR11
FR12
FR13
FR14
FR15

Figure 1-3

REJ06J0016-0100/Rev.1.00 June 2007 Page 7 of 32

APPLICATION NOTE

• SH2A-FPU
Figure 1-4 shows the floating-point registers. There are 16 floating-point registers, from FR0 to FR15, each of
which is 32 bits long. These 16 registers are referenced from FR0 to FR15, as DR0/2/4/6/8/l0/12/14. The
correspondence between FPRn and reference name is determined by the FPSCR PR bit and SZ bit.

(1) Floating-point registers FPRn (16 registers)

FPR0, FPRl, FPR2, FPR3, FPR4, FPR5, FPR6, FPR7, FPR8, FPR9, FPR10, FPR11, FPR12, FPR13, FPR14,
and FPR15

(2) Single-precision floating-point registers FRi (16 registers)
FR0 to FR15 are allocated to FPR0 to FPR15.

(3) Double-precision floating-point registers, or single-precision floating-point register pairs DRi (8 registers)
DR0 = {FPR0, FPR1}, DR2 = {FPR2, FPR3},
DR4 = {FPR4, FPR5}, DR6 = {FPR6, FPR7},
DR8 = {FPR8, FPR9}, DR10 = {FPR10, FPR11},
DR12 = {FPR12, FPR13}, DR14 = {FPR14, FPR15}

31 0
FPR0
FPR1
FPR2
FPR3
FPR4
FPR5
FPR6
FPR7
FPR8
FPR9
FPR10
FPR11
FPR12
FPR13
FPR14
FPR15

DR0

DR2

DR4

DR6

DR8

DR10

DR12

DR14

FPSCR.PR=1
FPSCR.SZ=1

FPSCR.PR=0
FPSCR.SZ=0

For a calculation
For a transfer

FR0
FR1

FR3
FR4
FR5
FR6
FR7
FR8
FR9
FR10
FR11
FR12
FR13
FR14
FR15

FR2

Figure 1-4

REJ06J0016-0100/Rev.1.00 June 2007 Page 8 of 32

APPLICATION NOTE

REJ06J0016-0100/Rev.1.00 June 2007 Page 9 of 32

XMTRX =

• SH-4 and SH-4A
Figure 1-5 shows the decimal point registers, for which there are thirty-two 32-bit floating-point registers. Each is
comprised of two banks, FPR0_BANK0 to FPR15_BANK0, and FPR0_BANK1 to FPR15_BANK1. These 32
registers are referenced as FR0 to FR15, DR0/2/4/6/8/l0/12/14, FV0/4/8/12, XF0 to XF15,
XD0/2/4/6/8/l0/12/14, and XMTRX. The correspondence between FPRn_BANKi and the reference name is
determined by the FR bit for FPSCR.
(1) Floating-point registers FPRn_BANKi (32 registers)

FPR0_BANK0, FPRl_BANK0, FPR2_BANK0, FPR3_BANK0,
FPR4_BANK0, FPR5_BANK0, FPR6_BANK0, FPR7_BANK0,
FPR8_BANK0, FPR9_BANK0, FPR10_BANK0, FPR11_BANK0,
FPR12_BANK0, FPR13_BANK0, FPR14_BANK0, and FPR15_BANK0
FPR0_BANK1, FPR1_BANK1, FPR2_BANK1, FPR3_BANK1,
FPR4_BANK1, FPR5_BANK1, FPR6_BANK1, FPR7_BANK1,
FPR8_BANK1, FPR9_BANK1, FPR10_BANK1, FPR11_BANK1,
FPR12_BANK1, FPR13_BANK1, FPR14_BANK1, and FPR15_BANK1

(2) Single-precision floating-point registers FRi (16 registers)
When FPSCR.FR = 0 is set, FR0 to FR15 are allocated to FPR0_BANK0 to FPR15_BANK0.
When FPSCR.FR = 1 is set, FR0 to FR15 are allocated to FPR0_BANK1 to FPR15_BANK1.

(3) Double-precision floating-point registers, or pairs of single-precision floating-point registers DRi (8 registers)
A DR register consists of two FR registers.
DR0 = {FR0, FR1}, DR2 = {FR2, FR3},
DR4 = {FR4, FR5}, DR6 = {FR6, FR7},
DR8 = {FR8, FR9}, DR10 = {FR10, FR11},
DR12 = {FR12, FR13}, and DR14 = {FR14, FR15}

(4) Single-precision floating-point vector registers FVi (4 registers)
An FV register consists of four FR registers.
FV0 = {FR0, FR1, FR2, FR3},
FV4 = {FR4, FR5, FR6, FR7},
FV8 = {FR8, FR9, FR10, FR11}, and
FVl2 = {FR12, FR13, FR14, FR15}

(5) Single-precision floating-point extended registers XFi (16 registers)
When FPSCR.FR = 0 is set, XF0 to XF15 are allocated to FPR0_BANK1 to FPR15_BANK1.
When FPSCR.FR = 1 is set, XF0 to XF15 are allocated to FPR0_BANK0 to FPR15_BANK0.

(6) Single-precision floating-point extended register pairs XDi (8 registers)
An XD register consists of two XF registers.
XD0 = {XF0, XF1}, XD2 = {XF2, XF3},
XD4 = {XF4, XF5}, XD6 = {XF6, XF7},
XD8 = {XF8, XF9}, XD10 = {XF10, XF11},
XD12 = {XF12, XF13}, and XD14 = {XF14, XF15}

(7) Single-precision floating-point extended register matrix XMTRX
XMTRX consists of 16 XF registers.

XF0 XF4 XF8 XF12
XF1 XF5 XF9 XF13
XF2 XF6 XF10 XF14
XF3 XF7 XF11 XF15

APPLICATION NOTE

31 0
FPR0_BANK0
FPR1_BANK0
FPR2_BANK0
FPR3_BANK0
FPR4_BANK0
FPR5_BANK0
FPR6_BANK0
FPR7_BANK0
FPR8_BANK0
FPR9_BANK0

FPR10_BANK0
FPR11_BANK0
FPR12_BANK0
FPR13_BANK0
FPR14_BANK0
FPR15_BANK0

FPSCR.FR=1

XMTRX

XR14

XR12

XR10

XR8

XR6

XR4

XR2

XR0

XR15
XR14
XR13
XR12

XR10
XR11

XR9
XR8
XR7
XR6
XR5
XR4
XR3
XR3
XR1
XR0

FV12

FV8

FV4

FV0

DR14

DR12

DR10

DR8

DR6

DR4

DR2

DR0

FR15
FR14
FR13
FR12
FR11
FR10
FR9
FR8
FR7
FR6
FR5
FR4
FR3
FR3
FR1
FR0

XMTRX

XR14

XR12

XR10

XR8

XR6

XR4

XR2

XR0

XR15
XR14
XR13
XR12
XR11
XR10
XR9
XR8
XR7
XR6
XR5
XR4
XR3
XR3
XR1
XR0

31 0
FPR0_BANK1
FPR1_BANK1
FPR2_BANK1
FPR3_BANK1
FPR4_BANK1
FPR5_BANK1
FPR6_BANK1
FPR7_BANK1
FPR8_BANK1
FPR9_BANK1

FPR10_BANK1
FPR11_BANK1
FPR12_BANK1
FPR13_BANK1
FPR14_BANK1
FPR15_BANK1

FV12

DR14

DR12

DR10

FV4

DR6

DR2

DR4

FR13
FR14
FR15

FR11
FR12

FR10
FR9

FR7
FR8 FV8 DR8

FR6
FR5
FR4
FR3
FR3
FR1

FV0 DR0 FR0

FPSCR.FR=0

Figure 1-5

REJ06J0016-0100/Rev.1.00 June 2007 Page 10 of 32

APPLICATION NOTE

1.2.3 Floating-point communication register (FPUL)
The FPUL register is used to relay information between the FPU and CPU. The 32-bit FPUL register is the system
register, and can be accessed from the CPU through LDS and STS instructions. For example, the processing flow for
converting an integer stored in general register R1 to a single-precision floating-point is as follows:

R1 -> (LDS instruction) -> FPUL -> (single-precision FLOAT instruction) -> FR1

1.2.4 Status register (SR)
When the FD bit of a status register (SR) is 1, FPU instructions throw general FPU suppression exceptions, and if the
FPU instruction is in a delay slot, a slot FPU suppression exception occurs (FPU instruction: H'F*** instruction, LDS
(.L) / STS (.L) instruction for FPUL/FPSCR).

31 16 15 14 7 2 1 0Bit:
- MD RB BL

30 29 28 27

- FD FD FD

10 9 8

TS
3

IMASK

4
-

Status register (SR)

Figure 1-6

1.3 Rounding
The following rounding is performed during arithmetic calculation for floating-point numbers or constant substitution
when the mantissa of the internal representation of a proper value exceeds the significant digits:

• When the CPU is SH-2E, Round to Zero is performed (the portion beyond the significant digits is truncated).
• When the CPU is SH2A-FPU, SH-4, or SH-4A, either Round to Zero or Round to Nearest can be selected for the

FPSCR RM.
• For CPUs with no FPU, floating-point calculations are processed by a run-time routine, and Round to Nearest is

performed.

Round to Nearest
With Round to Nearest, of two approximating floating-point numbers, the value is rounded to that with the closer
internal representation.
The direction in which the value is approximated is determined by the value after the final digit of the mantissa.
Note that when the value before approximation is exactly between the two approximated floating-point numbers,
rounding is performed to the value with 0 as the final digit of the mantissa.

... 0 1…
When the value after the last mantissa digit is 1, it is
truncated.
Note that this is exactly in the middle when every digit after 1
is 0.

Mantissa

... 1

Mantissa

... 0 0… ... 0

... 00 10...0 ... 00

... 01 10...0 ... 10

Description

Number before rounding

Out of valid
mantissa range

Number after rounding

When the value after the last mantissa digit is 0, it is
truncated.

When the last mantissa digit is 0, it is truncated.

When the last mantissa digit is 1, it is truncated.

When the value is
exactly in the middle

Figure 1-7

For example, since 0.1 cannot be expressed properly within the significant digits for the single-precision floating-point
number format, it is rounded.

It is represented as 0x3DCCCCCC for Round to Zero, or 0x3DCCCCCD for Round to Nearest.

REJ06J0016-0100/Rev.1.00 June 2007 Page 11 of 32

APPLICATION NOTE

REJ06J0016-0100/Rev.1.00 June 2007 Page 12 of 32

This value will become 0.0999..., the approximated value closest to 0.1.

APPLICATION NOTE

REJ06J0016-0100/Rev.1.00 June 2007 Page 13 of 32

2. Options for Floating-point Calculations and #pragma

2.1 Conversion from double -> float (DOuble=Float) for SH-2E
This option handles floating-point numbers of the float type and double type (anything other than that declared as
a long double type) as used within the program, as a single-precision number. Since the FPU for SH-2E only
supports single-precision, double-precision calculation are processed by calling a run-time routine. This option can be
specified to enable the FPU to handle floating-point calculations for types other than the long double type, thereby
increasing floating-point calculation speed.

Note:

This option can also be specified on CPUs with no built-in FPU (SH-1, SH-2, SH-2A, SH2-DSP, SH-3, SH3-DSP,
and SH4AL-DSP).

Example:

Source code
double func (double a, float b)
{
 return a + b;
}
Expanded assembly code when double=float is
unspecified (default)
_func:
 STS.L PR,@-R15
 MOV R15,R2
 ADD #8,R2
 MOV.L @ (4,R2),R1 ; (part of) a
 MOV.L @R2,R4 ; (part of) a
 MOV.L R1,@-R15
 MOV.L R4,@-R15
 ADD #-8,R15
 MOV R15,R4
 MOV.L R4,@-R15
 MOV.L L11,R5 ; __ftod_a
 JSR @R5
 FMOV.S FR4,FR0
 ADD #4,R15
 MOV.L @ (20,R15),R6
 MOV.L L11+4,R7 ; __addd_a
 JSR @R7
 MOV.L R6,@-R15
 ADD #20,R15
 LDS.L @R15+,PR
 RTS
 NOP
L11:
 .DATA.L __ftod_a
 .DATA.L __addd_a

Expanded assembly code when double=float is
specified
_func:
 FADD FR5,FR4
 RTS
 FMOV.S FR4,FR0

APPLICATION NOTE

Setting this option in High-Performance Embedded-Workshop (herein as HEW)

Figure 2-1

2.2 Floating-point Calculation Mode (FPu={Single|Double}) for SH2A-FPU, SH-4, and
SH-4A

This option handles the floating-point number types used within the program by unifying them. Even though the
SH2A-FPU, SH-4, and SH-4A FPUs support both single-precision and double-precision calculation, when calculations
with different precisions are performed, the FPSCR PR bit needs to be switched. As such, performance may degrade
when floating-point calculations of differing precisions are performed. This can be mitigated by using the FPU option
to unify the types of floating-point numbers within a program.

• Mix [default]
Calculation is performed as specified in the C/C++ source.
The compiler generates code to switch the PR bit in the FPSCR register.

• Single (fpu=single)
All floating-point calculations are performed using single-precision floating-point numbers (float type).
The compiler does not use the PR bit in the FPSCR register.

• Double (fpu=double)
All floating-point calculations are performed using double-precision floating-point numbers (double type).
The compiler does not use the PR bit in the FPSCR register.

Note:

Since the compiler does not use the PR bit in the FPSCR register when Single or Double is selected, the initial
value needs to be set by the user program.
Note that since the value of the PR bit for the initial status of the CPU is 0 (single-precision), the calculation is
invalid when Double is selected and no initial value setting was performed. FPSCR can be set by using the
set_fpscr embedded function.

REJ06J0016-0100/Rev.1.00 June 2007 Page 14 of 32

APPLICATION NOTE

Example:
Source code
double func (double a, float b)
{
 return a + b;
}
Expanded assembly code when fpu is not
specified (default)

_func:
 FLDS FR6,FPUL
 STS FPSCR,R2
 MOV #8,R6 ; H'00000008
 SHLL16 R6
 OR R6,R2
 LDS R2,FPSCR
 FCNVSD FPUL,DR0
 RTS
 FADD DR4,DR0

Expanded assembly code when
fpu=single is specified
_func:
 FADD FR5,FR4
 RTS
 FMOV.S FR4,FR0

Expanded assembly code when
fpu=double is specified
_func:
 FMOV.S FR4,FR0
 FMOV.S FR5,FR1
 RTS
 FADD DR6,DR0

Setting this option in HEW

Figure 2-2

2.3 Rounding Methods (Round={Zero|Nearest}) for SH2A-FPU, SH-4, and SH-4A
The method used for rounding can be selected for SH2A-FPU, SH-4, and SH-4A. When the rounding method is set, the
setting for the RM bit for FPSCR and the setting for the compiler round option must be the same. The compiler round
option is performed in Round to, in Figure 2-3.

• Zero (round=zero) [default]
Rounding is performed using Round to Zero.

• Nearest (round=nearest)
Rounding is performed using Round to Nearest.

Since the compiler does not generate code to change the value of the RM bit in FPSCR, the RM bit must be set explicitly
by the user program. In the initial CPU status, the value of the RM bit is 00 (Round to Zero). When Nearest is
specified, set the RM bit to 01 (Round to Nearest). FPSCR can be set by using the set_fpscr embedded function.

REJ06J0016-0100/Rev.1.00 June 2007 Page 15 of 32

b1500043
取り消し線

b1500043
テキストボックス
In the initial CPU status, the value of the RM bit is 01 (Round to Zero).When Nearest is specified, set the RM bit to 00 (Round to Nearest).

APPLICATION NOTE

Example:
Source code
float ff = 0.1f;

Expanded assembly code when round=zero is
specified (default)
_ff:
 .DATA.L H'3DCCCCCC

Expanded assembly code when round=nearest is
specified
_ff:
 .DATA.L H'3DCCCCCD

Setting this option in HEW

Figure 2-3

REJ06J0016-0100/Rev.1.00 June 2007 Page 16 of 32

APPLICATION NOTE

2.4 Handling Non-normalized Numbers (DENormalize={OFF|ON}) for SH-4 and SH-4A
SH-4 and SH-4A can handle non-normalized numbers either as non-normalized numbers, or as 0. When handling for
non-normalized number is set, the setting for the FPSCR DN bit and the setting for the compiler denormalize option
need to be the same. The compiler denormalize option can be set by selecting the Denormalized number allower
as a result check box in Figure 2-4.

• When the check box is not selected (denormalize=off) [default]
Non-normalized numbers are handled as 0.

• When the check box is selected (denormalize=on)
Non-normalized constants are handled as non-normalized numbers.

Since the compiler does not generate code to change the value of the FPSCR DN bit, the DN bit must be set explicitly by
the user program. The value of the FPSCR DN in the initial CPU status is 1 (handle non-normalized numbers as 0). To
handle non-normalized numbers as non-normalized numbers, explicitly set the DN bit to 0 (handle non-normalized
number as non-normalized numbers). FPSCR can be set by using the set_fpscr embedded function.

Example:
Source code
float ff = 1.0e-38f;

Expanded assembly code when denormalize=off is
specified (default)
_ff:
 .DATA.L H'00000000

Expanded assembly code when denormalize=on is
specified
_ff:
 .DATA.L H'006CE3EE

Setting this option in HEW

Figure 2-4

REJ06J0016-0100/Rev.1.00 June 2007 Page 17 of 32

APPLICATION NOTE

2.5 Converting Floating-point Division into Multiplication (APproxdiv)
This option replaces division by a floating-point constant to multiplication by the inverse of the constant, allowing
improved calculation speed. The Approximate a float-point constant division check box in Figure 2-5 can be selected
to specify optionapproxdiv.

This option can be specified regardless of the FPU used.

Note:
Keep in mind that this optimization may change the margin of error for floating-point calculations.

Example: For cpu=sh4

Source code
float x;

void f (float y)
{
 x=y/3.0f;
}
Expanded assembly code when approxdiv is not
specified (default)
_f:
 MOVA L11,R0
 MOV.L L11+4,R2 ; _x
 FMOV.S @R0,FR8
 FDIV FR8,FR4 ;FR8=H'40400000
 ; (3.0)
 RTS
 FMOV.S FR4,@R2 ; x
L11:
 .DATA.L H'40400000
 .DATA.L _x

Expanded assembly code when approxdiv is specified

_f:
 MOVA L11,R0
 MOV.L L11+4,R2 ; _x
 FMOV.S @R0,FR8
 FMUL FR8,FR4 ;FR8=H'3EAAAAAA
 ; (0.3333333…)
 RTS
 FMOV.S FR4,@R2 ; x
L11:
 .DATA.L H'3EAAAAAA
 .DATA.L _x

In this example, division by 3.0 is converted into multiplication by its inverse.

Setting this option in HEW

Figure 2-5

REJ06J0016-0100/Rev.1.00 June 2007 Page 18 of 32

APPLICATION NOTE

REJ06J0016-0100/Rev.1.00 June 2007 Page 19 of 32

2.6 Converting Floating-point Division (FDIv)
This option converts integer division to floating-point division. By converting integer division processed by a run-time
routine into an FPU division instruction, calculation speed can be improved. The Change integer division into
floating-point check box in Figure 2-6 can be selected to specify the optionfdiv option.

Note:
When cpu=sh2afpu|sh4|sh4a and fpu=double are specified, conversion is performed when both the divisor
and dividend are within 4 bytes. Otherwise, conversion is performed when both the divisor and dividend are within
2 bytes.

Example: For cpu=sh4 and fpu=double
Source code
int x;

func (int a, int b)
{
 x = a/b;
}
Expanded assembly code when fdiv is not
specified (default)
_func:
 STS.L PR,@-R15
 MOV.L L11+2,R2 ; __divls
 MOV R4,R1
 MOV.L L11+6,R6 ; _x
 JSR @R2
 MOV R5,R0
 LDS.L @R15+,PR
 RTS
 MOV.L R0,@R6 ; x
L11:
 .RES.W 1
 .DATA.L __divls
 .DATA.L _x

Expanded assembly code when fdiv is specified

_func:
 LDS R4,FPUL
 MOV.L L11,R6 ; _x
 FLOAT FPUL,DR6
 LDS R5,FPUL
 FLOAT FPUL,DR8
 FDIV DR8,DR6
 FTRC DR6,FPUL
 STS FPUL,R2
 RTS
 MOV.L R2,@R6 ; x
L11:
 .DATA.L _x

APPLICATION NOTE

Setting this option in HEW

Figure 2-6

2.7 Switching the FPSCR Register Precision Mode (FPScr={Aggressive|Safe}) for
SH2A-FPU, SH-4, and SH-4A

This option specifies whether to guarantee the FPSCR precision mode (PR bit) before and after function calls. When
fpscr=aggressivee (default) is specified, the value of the PR bit before and after function calls is not guaranteed.

When fpscr=safe is specified, the value of the PR bit of a called function is guaranteed so that single-precision is
always used after the function call.

When fpscr=aggressivee (default) is specified, the value of the PR bit when a function call returns is unknown.
As such, when a floating-point calculation occurs after a function call, code is always generated to re-set the FPSCR
value. However, when fpscr=safe is specified, FPSCR is only set when needed, since the PR bit when a function
call is returned is guaranteed to be single-precision. As such, fpscr=safe generates more efficient code.

When specifying fpscr=safe, select the Change FPSCR register if double data used check box in Figure 2-7.

Note:
Since this option changes the function interface, it needs to be changed for all files at the same time.
Extra precaution is required when libraries created using a compiler of a previous version are linked.

REJ06J0016-0100/Rev.1.00 June 2007 Page 20 of 32

APPLICATION NOTE

Example: For cpu=sh4
Source code
extern void sub (void) ;
extern float f1, f2;

func ()
{
 sub () ;
 f1 =1.0f;
}
Expanded assembly code when fpscr=aggressive is
specified(default)
_func:
 STS.L PR,@-R15
 MOV.L L11,R1 ; _sub
 JSR @R1
 NOP
 STS FPSCR,R4
 MOV.L L11+4,R6 ; H'FFE7FFFF
 MOVA L11+8,R0
 MOV.L L11+12,R5 ; _f1
 AND R6,R4
 LDS R4,FPSCR
 FMOV.S @R0,FR8
 LDS.L @R15+,PR
 RTS
 FMOV.S FR8,@R5 ; f1
L11:
 .DATA.L _sub
 .DATA.L H'FFE7FFFF
 .DATA.L H'3F800000
 .DATA.L _f1

Expanded assembly code when fpscr=safe is
specified

_func:
 STS.L PR,@-R15
 MOV.L L11,R1 ; _sub
 JSR @R1
 NOP
 MOVA L11+4,R0
 MOV.L L11+8,R4 ; _f1
 FMOV.S @R0,FR8
 LDS.L @R15+,PR
 RTS
 FMOV.S FR8,@R4 ; f1
L11:
 .DATA.L _sub
 .DATA.L H'3F800000
 .DATA.L _f1

Setting this option in HEW

Figure 2-7

REJ06J0016-0100/Rev.1.00 June 2007 Page 21 of 32

APPLICATION NOTE

REJ06J0016-0100/Rev.1.00 June 2007 Page 22 of 32

2.8 Skipping Range Checking during Floating-point Number-integer Conversion
(SIMple_float_conv)

This option generates code for skipping range checking for converted values, when type conversion is performed
between an unsigned integer type and floating-point number type. By skipping value range checking, calculation speed
can be improved. However, when the value before type conversion is neither an integer from 0 to 2147483647 nor a
floating-point number from 0.0 to 2147483647.0, the calculation results are invalid. Do not use this option when values
outside these ranges may be input.

Example: For cpu=sh4

• Conversion from the float type to the unsigned int type
Source code
unsigned long func (float f)
{
 return ((unsigned int) f) ;
}
Expanded assembly code when simple_float_conv
is not specified (default)
_func:
 MOV #79,R2 ; 0x0000004F
 SHLL8 R2 ;
 SHLL16 R2 ; 0x4F000000
 LDS R2,FPUL
 FSTS FPUL,FR8
 FCMP/GT FR4,FR8
 BT L12
 FADD FR8,FR8 ; when f>=0x4F000000,
 FSUB FR8,FR4 ; the value before
 ; conversion
 ; is (f-0x4F800000)
L12:
 FTRC FR4,FPUL ;float -> int conversion
 RTS
 STS FPUL,R0

Expanded assembly code when simple_float_conv
is specified
_func:
 FTRC FR4,FPUL ;float -> int
 ; conversion
 RTS
 STS FPUL,R0

• Conversion from the unsigned int type to the float type

Source code
float func (unsigned int ui)
{
 return ((float) ui) ;
}
Expanded assembly code when simple_float_conv
is not specified (default)
_func:
 LDS R4,FPUL
 CMP/PZ R4
 BT/S L12
 FLOAT FPUL,FR0 ;int->float
 ;conversion
 MOVA L13+2,R
 FMOV.S @R0,FR9 ; When u >= 0x80000000u,
 FADD FR9,FR0 ; 0x4F800000 is added to
 ; the converted value.
L12:
 RTS
 NOP
L13:
 RES.W 1
 DATA.L H'4F800000

Expanded assembly code when
simple_float_conv is specified
_func:
 LDS R4,FPUL
 RTS
 FLOAT FPUL,FR0 ;int ->float
 ;conversion

APPLICATION NOTE

Setting this option in HEW

Figure 2-8

2.9 Suppressing Save/Restore for Floating-point Registers (IFUnc, #pragma ifunc)
This option and #pragma prevent floating-point registers from being saved or restored. This function is used with the
interrupt function specification (#pragma interrupt).

If a function call exists within the interrupt function, since which register to use cannot be determined from within the
called function, all registers including the floating-point register are saved and restored. However, when floating-point
calculation are not used within the called function, save and restore can be skipped for the floating-point register. By
specifying optionifunc or #pragma ifunc, save and restore can be suppressed for a floating-point register.

When optionifunc is used, the specification takes effect for all functions in the source file, whereas a #pragma ifunc
specification takes effect for a particular function. ifunc and #pragma ifunc need to be specified in both the interrupt
function and the function called from the interrupt function. When the function called from an interrupt function
requires a floating-point instruction, the following compile error is reported:

C2843 (E) Illegal floating type used in function

Likewise, when a function for which ifunc or #pragma ifunc is not specified is called from a interrupt function,
the following warning is reported:

C1029 (W) Function with ifunc calls function-name without ifunc

Note that even when this warning is reported, suppression of floating-point register save/restore remains suppressed.

REJ06J0016-0100/Rev.1.00 June 2007 Page 23 of 32

APPLICATION NOTE

REJ06J0016-0100/Rev.1.00 June 2007 Page 24 of 32

Example: For cpu=sh4
Source code (#pragma ifunc not specified)
#pragma interrupt (func)

void sub ()
{
}
void func ()
{
 sub () ;
}
Expanded assembly code
_sub:
 RTS
 NOP
_func:
 MOV.L R0,@-R15
 MOV.L R1,@-R15
 MOV.L R2,@-R15
 MOV.L R3,@-R15
 MOV.L R4,@-R15
 MOV.L R5,@-R15
 MOV.L R6,@-R15
 MOV.L R7,@-R15
 STS.L PR,@-R15
 FMOV.S FR0,@-R15
 FMOV.S FR1,@-R15
 FMOV.S FR2,@-R15
 FMOV.S FR3,@-R15
 FMOV.S FR4,@-R15
 FMOV.S FR5,@-R15
 FMOV.S FR6,@-R15
 FMOV.S FR7,@-R15
 FMOV.S FR8,@-R15
 FMOV.S FR9,@-R15
 FMOV.S FR10,@-R15
 FMOV.S FR11,@-R15
 STS.L FPUL,@-R15
 STS.L FPSCR,@-R15
 STC SSR,@-R15
 STC SPC,@-R15
 BSR _sub
 NOP
 LDC @R15+,SPC
 LDC @R15+,SSR
 LDS.L @R15+,FPSCR
 LDS.L @R15+,FPUL
 FMOV.S @R15+,FR11
 FMOV.S @R15+,FR10
 FMOV.S @R15+,FR9
 FMOV.S @R15+,FR8
 FMOV.S @R15+,FR7
 FMOV.S @R15+,FR6
 FMOV.S @R15+,FR5
 FMOV.S @R15+,FR4
 FMOV.S @R15+,FR3
 FMOV.S @R15+,FR2
 FMOV.S @R15+,FR1
 FMOV.S @R15+,FR0
 LDS.L @R15+,PR
 MOV.L @R15+,R7
 MOV.L @R15+,R6
 MOV.L @R15+,R5
 MOV.L @R15+,R4
 MOV.L @R15+,R3
 MOV.L @R15+,R2
 MOV.L @R15+,R1
 MOV.L @R15+,R0
 RTE

Source code (#pragma ifunc specified)
#pragma interrupt (func)
#pragma ifunc (sub,func)
void sub ()
{
}
void func ()
{
 sub () ;
}
Expanded assembly code
_sub:
 RTS
 NOP
_func:
 MOV.L R0,@-R15
 MOV.L R1,@-R15
 MOV.L R2,@-R15
 MOV.L R3,@-R15
 MOV.L R4,@-R15
 MOV.L R5,@-R15
 MOV.L R6,@-R15
 MOV.L R7,@-R15
 STS.L PR,@-R15
 STC SSR,@-R15
 STC SPC,@-R15
 BSR _sub
 NOP
 LDC @R15+,SPC
 LDC @R15+,SSR
 LDS.L @R15+,PR
 MOV.L @R15+,R7
 MOV.L @R15+,R6
 MOV.L @R15+,R5
 MOV.L @R15+,R4
 MOV.L @R15+,R3
 MOV.L @R15+,R2
 MOV.L @R15+,R1
 MOV.L @R15+,R0
 RTE
 NOP

APPLICATION NOTE

(1) Specifying #pragma ifunc
Format: #pragma ifunc [(]function-name[)]

Description: Suppresses floating-point register save/restore for the function specified by function-name.

Notes:

Specify #pragma ifunc before the function declaration.
A compile error will occur when a floating-point number is used within a function for which #pragma ifunc
is specified.

 (2) Specifying optionifunc
This is specified on a file basis. A compile error will occur when this is specified for a source program for which
floating-point instructions are generated.

Figure 2-9

REJ06J0016-0100/Rev.1.00 June 2007 Page 25 of 32

APPLICATION NOTE

Choose the Code generation tab, and then select the Use no FPU instructions.

Figure 2-10

REJ06J0016-0100/Rev.1.00 June 2007 Page 26 of 32

APPLICATION NOTE

REJ06J0016-0100/Rev.1.00 June 2007 Page 27 of 32

3. Efficient Programming Techniques

3.1 Using Floating-point Instructions
Overview

To use floating-point instructions FABS (SH-2E, SH2A-FPU, SH-4, and SH-4A) or FSQRT (SH2A-FPU, SH-4, and
SH-4A) for single-precision, include the mathf.h include file, and then call the fabsf or sqrtf
single-precision floating-point function. For double-precision, include the math.h include file, and then call the
fabs or sqrt double-precision floating-point function.

Description

Perform the following to use the single-precision floating-point instruction FABS (SH-2E, SH2A-FPU, SH-4, and
SH-4A) or FSQRT (SH2A-FPU, SH-4, and SH-4A):
(a) Include mathf.h.
(b) Call the fabsf function (FABS) or sqrtf function (FSQRT).

Perform the following to use the double-precision floating-point instruction FABS (SH2A-FPU, SH-4, and SH-4A)
or FSQRT (SH2A-FPU, SH-4, and SH-4A):
(a) Include math.h.
(b) Call the fabs function (FABS) or sqrt function (FSQRT).

Usage examples

In the BEFORE example, since mathf.h is not included, the compiler does not recognize it as a standard function,
and calls the fabsf function from the library. If mathf.h is included, the compiler can recognize that the
function is for the FABS instruction, and generate a FABS instruction directly.

Note:

The mathf.h header is not an ANSI-standard C library function.

Source code - BEFORE
float fabsf (float) ;

float f (float x, float y) {
 return fabsf (x) +fabsf (y) ;
}
Assembly code - BEFORE
_f:
 STS.L PR,@-R15
 FMOV.S FR14,@-R15
 FMOV.S FR15,@-R15
 MOV.L L11+2,R1 ; _fabsf
 JSR @R1
 FMOV.S FR5,FR15
 FMOV.S FR0,FR14
 MOV.L L11+2,R4 ; _fabsf
 JSR @R4
 FMOV.S FR15,FR4
 FADD FR0,FR14
 FMOV.S FR14,FR0
 FMOV.S @R15+,FR15
 FMOV.S @R15+,FR14
 LDS.L @R15+,PR
 RTS
 NOP
L11:
 .RES.W 1
 .DATA.L _fabsf

Source code - AFTER
#include <mathf.h>

float f (float x, float y) {
 return fabsf (x) +fabsf (y) ;
}
Assembly code - AFTER
_f:
 FABS FR4
 FABS FR5
 FADD FR5,FR4
 RTS
 FMOV.S FR4,FR0

APPLICATION NOTE

4. Frequently Asked Questions

4.1 Floating-point Calculation Results

Q:

Why does a floating-point calculation not return the expected value?
A1:

The expected value may not be returned due to a rounding error.
For example, since the variable a in List 4-1 is of the double type, it is represented internally as a
floating-point number. When the round=zero option is selected, the internal representation of this variable is
0x4023FFFFFFFFFFFF. This value is not 10, but instead 9.9999..., the closest approximated value to 10. As
such, the truncated 9s after the decimal point are substituted for variable b in List 4-1.

(Sample program)
double a = 0.1 * 100;
int b;

void func(void)
{
 b = (int) a;
}

List 4-1

This phenomenon occurs due to rounding errors for the floating-point number representation. As such, there is
no fundamental solution. Write code as follows, as a workaround.

(Code without error in mind)
float f;

if (f == 0.1f) {
 ・
 ・
 ・
}

(Code with error in mind)
const float s = 1.0e-10f;
float f;

if ((0.1f-s) <= f && f <= (0.1f+s)) {
 ・
 ・
 ・
}

List 4-2

REJ06J0016-0100/Rev.1.00 June 2007 Page 28 of 32

APPLICATION NOTE

A2:

For SH2A-FPU, SH-4, and SH-4A, since the option and value for FPCSR may not correspond, check the
following:
1. The correspondence between the compiler fpu option and FPCSR PR bit value.
2. The correspondence between the compiler denormalize option and FPCSR DN bit value (SH-4 and

SH-4A only).
3. The correspondence between the compiler round option and FPCSR RM bit value (SH-4 and SH-4A only).
Floating-point calculation mode

There are two possible fpu options: fpu=single and fpu=double.
When fpu=single is selected, all floating-point data is handled as single-precision floating-point data.
When fpu=double is selected, all floating-point data is handled as double-precision floating-point data.
When no fpu option is used, floating-point data is used according to the declaration type of the source code.

When no fpu option is used, the compiler generates code that changes the PR bit according to the
corresponding precision during floating-point calculations, but when fpu=single or fpu=double is
selected, the compiler does not generate any code that accesses the PR bit.

Meanwhile, the PR bit of the FPSCR register is initialized to 0 during reset.
As such, when the fpu option is not used or fpu=single is selected, operation is performed correctly
without concern for the PR bit, but when fpu=double is selected, the PR bit is changed to 1 before the
FPU calculation.

Handling non-normalized numbers
When selecting the denormalize=on option, make sure that the FPSCR DN bit is set to 0.
When selecting the denormalize=off option, make sure that the FPSCR DN bit is set to 1.

Rounding methods
When selecting the round=zero option, make sure that the FPSCR RM bit is set to 01.
When selecting the round=nearest option, make sure that the FPSCR RM bit is set to 00.

4.2 Values for Floating-point Numbers in the Watch Window

Q:

Why do the values of floating-point numbers differ between that displayed in the watch window and the actual
value?

A:

The value of floating-point numbers displayed in the watch window are approximate.
For example, the actual value of a floating-point number with the internal representation
0x4023FFFFFFFFFFFF is 9.9999..., but the value displayed in the watch window (Figure 4-1) is 10.

Figure 4-1

REJ06J0016-0100/Rev.1.00 June 2007 Page 29 of 32

APPLICATION NOTE

The internal representation of the actual value can be checked in the memory window (Figure 4-2) or register
window (Figure 4-3).

Figure 4-2

Figure 4-3

REJ06J0016-0100/Rev.1.00 June 2007 Page 30 of 32

APPLICATION NOTE

REJ06J0016-0100/Rev.1.00 June 2007 Page 31 of 32

Website and Support <website and support,ws>
Renesas Technology Website

http://japan.renesas.com/

Inquiries

http://japan.renesas.com/inquiry
csc@renesas.com

Revision Record <revision history,rh>
Description

Rev.

Date Page Summary
1.00 Jun.1.07 — First edition issued

http://japan.renesas.com/
http://japan.renesas.com/inquiry
mailto:csc@renesas.com

APPLICATION NOTE

1. This document is provided for reference purposes only so that Renesas customers may select the appropriate
Renesas products for their use. Renesas neither makes warranties or representations with respect to the
accuracy or completeness of the information contained in this document nor grants any license to any intellectual
property rights or any other rights of Renesas or any third party with respect to the information in this document.

2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out
of the use of any information in this document, including, but not limited to, product data, diagrams, charts,
programs, algorithms, and application circuit examples.

3. You should not use the products or the technology described in this document for the purpose of military
applications such as the development of weapons of mass destruction or for the purpose of any other military
use. When exporting the products or technology described herein, you should follow the applicable export
control laws and regulations, and procedures required by such laws and regulations.

4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and
application circuit examples, is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas products listed in this
document, please confirm the latest product information with a Renesas sales office. Also, please pay regular
and careful attention to additional and different information to be disclosed by Renesas such as that disclosed
through our website. (http://www.renesas.com)

5. Renesas has used reasonable care in compiling the information included in this document, but Renesas
assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information
included in this document.

6. When using or otherwise relying on the information in this document, you should evaluate the information in light
of the total system before deciding about the applicability of such information to the intended application.
Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any
particular application and specifically disclaims any liability arising out of the application and use of the
information in this document or Renesas products.

7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products
are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of
which may cause a direct threat to human life or create a risk of human injury or which require especially high
quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare,
combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. If you
are considering the use of our products for such purposes, please contact a Renesas sales office beforehand.
Renesas shall have no liability for damages arising out of the uses set forth above.

8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:
 (1) artificial life support devices or systems
 (2) surgical implantations
 (3) healthcare intervention (e.g., excision, administration of medication, etc.)
 (4) any other purposes that pose a direct threat to human life
 Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who

elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas
Technology Corp., its affiliated companies and their officers, directors, and employees against any and all
damages arising out of such applications.

9. You should use the products described herein within the range specified by Renesas, especially with respect to
the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or
damages arising out of the use of Renesas products beyond such specified ranges.

10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific
characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions.
Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or
damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and
software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment
for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer
software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

11. In case Renesas products listed in this document are detached from the products to which the Renesas products
are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You
should implement safety measures so that Renesas products may not be easily detached from your products.
Renesas shall have no liability for damages arising out of such detachment.

12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written
approval from Renesas.

13. Please contact a Renesas sales office if you have any questions regarding the information contained in this
document, Renesas semiconductor products, or if you have any other inquiries.

Notes regarding these materials

© 2007. Renesas Technology Corp., All rights reserved.

REJ06J0016-0100/Rev.1.00 June 2007 Page 32 of 32

	1. Floating-point Processing Unit (FPU)
	1.1 Specification for Floating-point Numbers
	1.1.1 Internal Representation of Floating-point Numbers
	1.1.2 Single-precision (float type) data format
	1.1.3 Double-precision (double type) data format

	1.2 Register
	1.2.1 Floating-point status / control registers (FPSCR)
	1.2.2 Floating-point registers
	1.2.3 Floating-point communication register (FPUL)
	1.2.4 Status register (SR)

	1.3 Rounding

	2. Options for Floating-point Calculations and #pragma
	2.1 Conversion from double -> float (DOuble=Float) for SH-2E
	2.2 Floating-point Calculation Mode (FPu={Single|Double}) for SH2A-FPU, SH-4, and SH-4A
	2.3 Rounding Methods (Round={Zero|Nearest}) for SH2A-FPU, SH-4, and SH-4A
	2.4 Handling Non-normalized Numbers (DENormalize={OFF|ON}) for SH-4 and SH-4A
	2.5 Converting Floating-point Division into Multiplication (APproxdiv)
	2.6 Converting Floating-point Division (FDIv)
	2.7 Switching the FPSCR Register Precision Mode (FPScr={Aggressive|Safe}) for SH2A-FPU, SH-4, and SH-4A
	2.8 Skipping Range Checking during Floating-point Number-integer Conversion (SIMple_float_conv)
	2.9 Suppressing Save/Restore for Floating-point Registers (IFUnc, #pragma ifunc)

	3. Efficient Programming Techniques
	3.1 Using Floating-point Instructions

	4. Frequently Asked Questions
	4.1 Floating-point Calculation Results
	4.2 Values for Floating-point Numbers in the Watch Window

	 Website and Support <website and support,ws>

