

SH7262/SH7264 Group

Configuring Asynchronous Mode Using the Serial Communication Interface with FIFO and Direct Memory Access Controller R01AN0215EJ0100 Rev. 1.00 Dec. 28, 2010

Summary

This application note describes an example to transmit or receive data using the Serial Communication Interface with FIFO (SCIF) asynchronous mode, and store the data in the on-chip RAM using the Direct Memory Access Controller.

Target Device

SH7262/SH7264 (In this document, SH7262/SH7264 are described as SH7264.)

Contents

1.	Introduction	2
۷.	Applications	4
3.	Sample Program Listing	17
4.	References	27

1. Introduction

1.1 **Specifications**

- Uses the Serial Communication Interface with FIFO (SCIF) channel 0
- Configures the SCIF in asynchronous mode to transmit or receive data
- Uses the Direct Memory Access Controller (DMAC) channel 4 to transfer the transmit data, and uses channel 5 to transfer the receive data

1.2 **Modules Used**

- Serial Communication Interface with FIFO (SCIF)
- Direct Memory Access Controller (DMAC)

1.3 **Applicable Conditions**

MCU SH7262/SH7264

Operating Frequency Internal clock: 144 MHz

Bus clock: 72 MHz

Peripheral clock: 36 MHz

Integrated Development Renesas Electronics Corporation

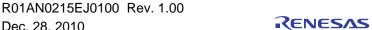
High-performance Embedded Workshop Ver.4.07.00 Environment C Compiler Renesas Electronics SuperH RISC engine Family

C/C++ compiler package Ver.9.03 Release 00

Compiler Options Default setting in the High-performance Embedded Workshop

> (-cpu=sh2afpu -fpu=single -debug -gbr=auto -global volatile=0 -opt_range=all -infinite_loop=0 -del_vacant_loop=0 -struct_alloc=1)

1.4 **Related Application Notes**


For more information, refer to the following application notes:

- SH7262/SH7264 Group Example of Initialization
- SH7262/SH7264 Group Serial Communication Interface with FIFO, Configuration to Transmit Strings in Asynchronous Mode
- SH7262/SH7264 Group Serial Communication Interface with FIFO, Configuration to Receive Strings in Asynchronous Mode
- SH7262/SH7264 Group Serial Communication Interface with FIFO, Configuring the Serial Communication in Clock Synchronous Mode (Full-duplex)

1.5 **About Active-low Pins (Signals)**

The symbol "#" suffixed to the pin (or signal) names indicates that the pins (or signals) are active-low.

Dec. 28, 2010

1.6 Hardware Conditions

1.6.1 Platform

This demo code was test on M3A-HS64G50(CPU board), referenced in the source code, which uses SCIF channel 0. To run this on the SH7264 RSK, the code needs to be converted to use SCIF channel 3. This includes the pin configuration that is part of the io_init_scif0_dma() function and source for the DMAC triggers set in the io_init_dmac4() and io_init_dmac5() functions. Please refer to the notes in the flow chart in figure 3 for which STANDBY bit to clear when using SCIF3.

1.6.2 Serial Connections

The demo runs to completion only if it gets the required number of receive bytes. It will run to completion if a loopback is installed on the serial channel being used OR if the serial port is connected to a terminal and the correct number of bytes are typed in. Evaluate the hardware in use and connect TXD / RXD as necessary on the serial connector in use to fully exercise the demo code.

R01AN0215EJ0100 Rev. 1.00 Dec. 28, 2010

2. Applications

This application uses the Serial Communication Interface with FIFO (SCIF), and uses the Direct Memory Access Controller (DMAC) to transfer the transmit/receive data.

2.1 Overview of Modules

(1) Serial Communication Interface with FIFO (SCIF)

The SH7264 SCIF transmits or receives a "character", appending a start bit which indicates the initiation of the communication, and a stop bit which indicates the end of the communication to data. Then, the SH7264 SCIF handles communication in sync per character. The internal clock or external clock from the SCK pin can be specified as the clock source Transfer data format and baud rate can be set in the SCIF.

Table 1 lists the overview of asynchronous mode. Figure 1 shows the SCIF block diagram. For more information about the SCIF, refer to the Serial Communication Interface with FIFO chapter in the SH7262 Group, SH7264 Group Hardware Manual.

Table 1 SCIF (Asynchronous Mode) Overview

Item	Description					
Number of channels	8 (SCIF0 to SCIF7)					
Clock source	Internal clock: Pφ, Pφ/4, Pφ/16, Pφ/64 P (Pφ: internal peripheral clock)					
	External clock: SCK0 to SCK3 pin input clocks					
	(The pin input divided by 16 or 8 is selected as the SCIF operating clock.)					
Data format	Transfer data length: 7-bit or 8-bit					
	Order of transfer: LSB first fixed					
	Start bit: 1-bit fixed					
	Stop bit: 1-bit or 2-bit					
	Parity bit: even parity, odd parity, or no parity					
Baud rate	When specifying the internal clock: 68.66 bps to 4500 kbps (Pφ is at 36 MHz)					
	When specifying the external clock: up to 1125 kbps (Pφ is at 36 MHz, external clock					
	is at 9 MHz)					
Error detection	Parity error, framing error, overrun error					
Interrupt request	Transmit-FIFO-data-empty interrupt (TXI) by the transmit FIFO data empty (TDFE)					
	Break interrupt (BRI) by the break (BRK) or overrun error (ORER)					
	Receive FIFO data full (RXI) by the Receive FIFO data full (RDF) or data ready (DR)					
	Receive-error interrupt (ERI) by the receive error (ER)					
Other	Break can be detected					
	 Supplying clock unused channels can be stopped to reduce power consumption 					
	 Includes the modem control functions (RTS and CTS) 					
	(Only channels 1 and 3 for the SH7264, only channel 1 for the SH7262)					
	 The number of valid data stored in the Transmit and Receive FIFO data registers, 					
	and the number of receive errors stored in the Receive FIFO data register can be detected					
	Time out error (DR) on reception can be detected					
	Base clock frequency can be either 16 or 8 times the bit rate					
	Double-speed mode can be specified for the baud rate generated (When not using the SCK pin)					

R01AN0215EJ0100 Rev. 1.00

Dec. 28, 2010

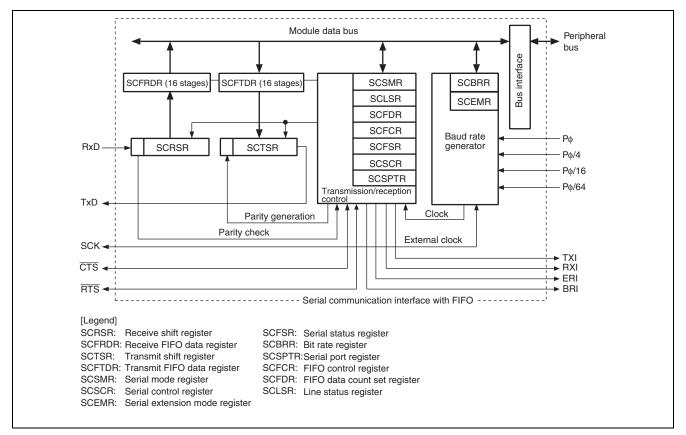


Figure 1 SCIF Block Diagram

(2) Direct Memory Access Controller (DMAC)

The DMAC transfers data among an external device with DACK (transfer request acknowledge signal), and external memory, internal memory, memory-mapped external device, and on-chip peripheral modules, instead of the CPU. It has two bus modes; cycle steal mode and burst mode.

In cycle steal mode, the DMAC leaves the bus to the other masters when it finishes "a transmit" (in bytes, words, long words, or 16 bytes). When the DMAC receives another transfer request, it retrieves the bus again. Then, it transfers data in unit of a transfer, and leaves the bus again to the other bus. The DMAC repeats this operation until the transfer end conditions are satisfied.

This application transfers the transmit/receive data at SCIF channel 0 using cycle steal mode. Set the transfer source of the transmit data and destination of the receive data to the high-speed internal RAM.

Table 2 lists the features of the DMAC. Figure 2 shows its block diagram. For more information, refer to the Direct Memory Access Controller chapter in the SH7262 Group, SH7264 Group Hardware Manual.

Table 2 DMAC Features

Item	Description			
Number of channels	16			
Address space	4 GB physically			
Transfer data length	Byte, word, long word, and 16 bytes			
Number of transfers	16,777,216 (24-bit) times			
Address mode	Single address mode, dual address mode			
Transfer request	External request, on-chip peripheral module request, auto-request			
Bus mode	Cycle steal mode (normal mode and intermittent mode)			
	Burst mode			
Interrupt source	One-half of the data transfer completed, a data transfer completed			
Reload function	DMA transfer using the same setting as the current DMA transfer can be repeated automatically without specifying the setting again. Specify the reload register during the DMA transfer to execute the next DMA transfer with another setting. The reload function can be enabled or disabled per channel, and reload register.			

R01AN0215EJ0100 Rev. 1.00

Dec. 28, 2010

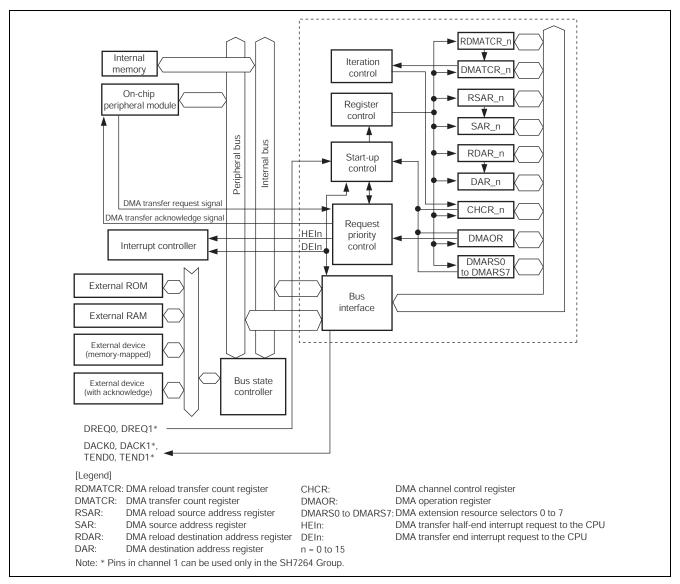


Figure 2 DMAC Block Diagram

2.2 Configuration Procedure

(1) Steps to configure the SCIF

This section describes how to configure the communication in the SH7264 SCIF asynchronous mode. Figure 3 and Figure 4 show flow charts for configuring the transmission/reception in asynchronous mode.

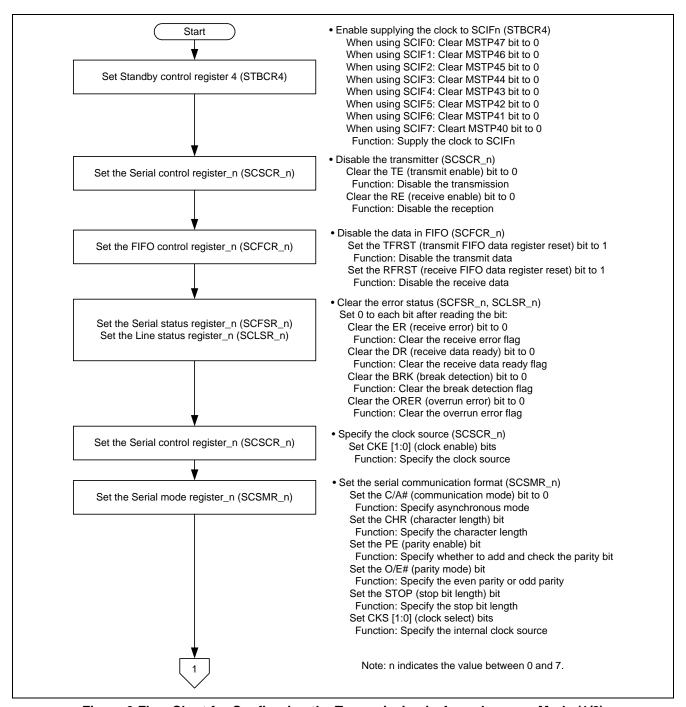


Figure 3 Flow Chart for Configuring the Transmission in Asynchronous Mode (1/2)

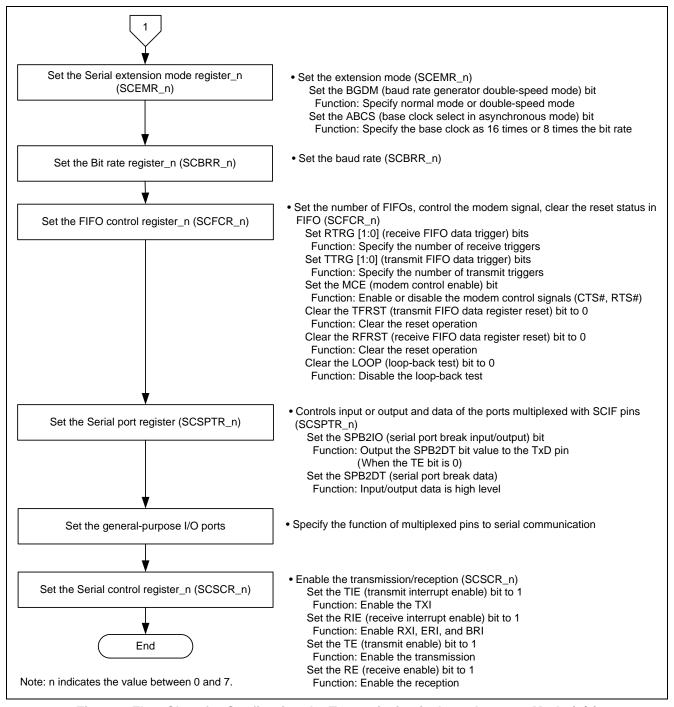


Figure 4 Flow Chart for Configuring the Transmission in Asynchronous Mode (2/2)

R01AN0215EJ0100 Rev. 1.00 Dec. 28, 2010

(2) Steps to configure the DMAC

When using the transmit FIFO data empty interrupt (TXI) or receive FIFO data full interrupt (RXI) of the SCIF as an interrupt source, only cycle steal mode can be specified. Figure 5 shows the flow chart for configuring the DMAC. For more information, refer to the SH7262 Group, SH7264 Group Hardware Manual.

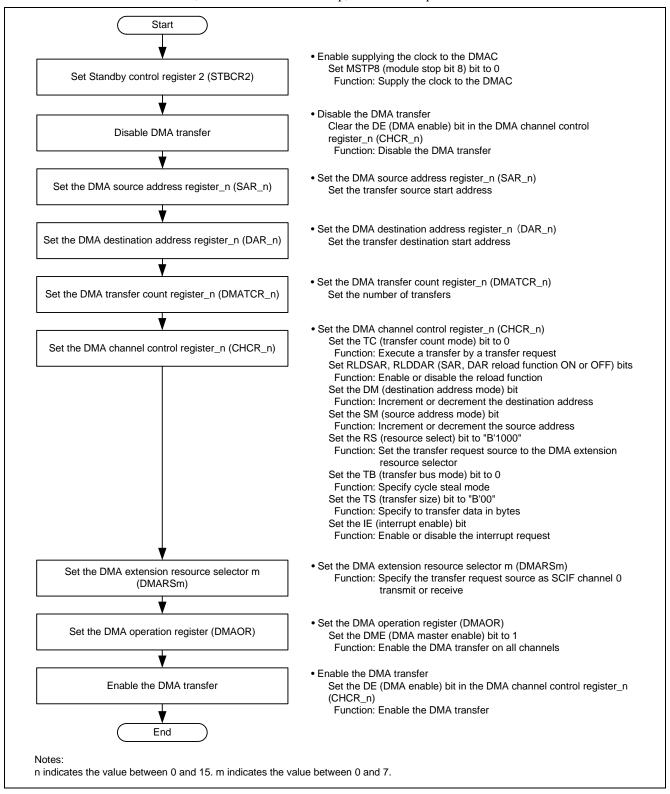


Figure 5 Flow Chart for Configuring the DMAC

2.3 Sample Program Operation

This sample program uses SCIF channel 0 in asynchronous mode to transmit and receive data. It also uses DMAC channel 4 to transfer the transmit data, DMAC channel 5 to transfer the receive data.

Activate the DMAC by the transmit FIFO data empty interrupt (TXI) to transfer the transmit data from the high-speed internal RAM. Note that the interrupt does not occur to the CPU. The transmit FIFO data empty flag (TDFE) is automatically cleared by activating the DMAC. As the state of the transmit end flag (TEND) is undefined, it cannot be use as the transfer end flag.

Activate the DMAC again by the receive FIFO data full or data ready interrupt (RXI) to transfer the receive data to the high-speed internal RAM. Note that the interrupt does not occur to the CPU. The receive FIFO data full flag (RDF) and receive data ready flag (DR) are automatically cleared by activating the DMAC.

When specifying the cache-enabled area as the transfer destination, use the software as appropriate to maintain the coherency between the cache and memory.

Table 3 lists the communication settings in the sample program. Figure 6 and Figure 7 show the operation timing of the sample program.

Table 3 Communication Settings

Communication Format	Description		
Communication mode	Asynchronous mode		
Number of channel to use	Channel 0		
Interrupt	DMAC activated by the transmit FIFO data empty interrupt (TXI)		
	DMAC activated by the receive FIFO data full or data ready interrupt (RXI)		
Baud rate	19200 bps		
Data length	8-bit		
Parity	No parity		
Stop bit	1 stop bit		
Modem control	RTS/CTS functions are disabled		
Bit order	LSB first		
Number of FIFO data triggers	Transmit: 0 (Number of data not transmitted is 0 and the transmit FIFO data empty)		
	Receive: 1 (Number of data received is more than 1 and receive FIFO data full)		

R01AN0215EJ0100 Rev. 1.00

Dec. 28, 2010

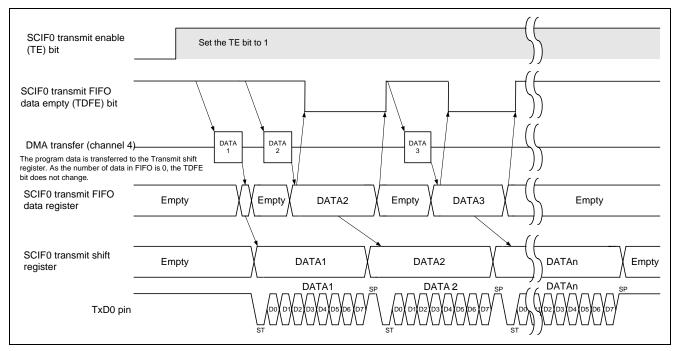


Figure 6 Transmission Timing in the Sample Program

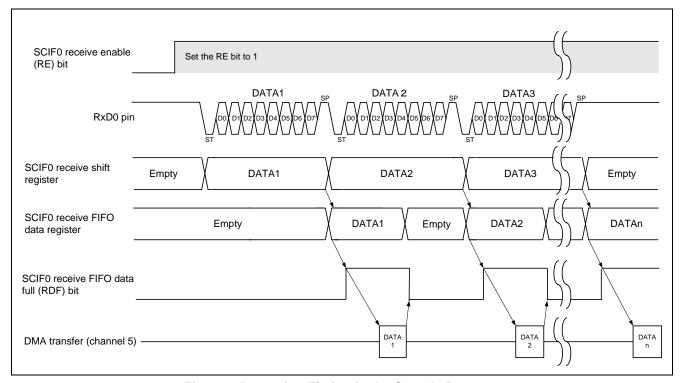


Figure 7 Reception Timing in the Sample Program

2.4 Sample Program Procedure

The sample program initializes SCIF channel 0, DMAC channels 4 and 5. After initialized, DMAC channel 4 transfers the transmit data in unit of 1-byte, and DMAC channel 5 transfers the receive data. Total number of bytes of transmit and receive data is 16 bytes.

Table 4 lists SCIF channel 0 register setting in the sample program. Table 5 and Table 6 list DMAC channels 4 and 5 register settings. Figure 8 shows the sample program flow chart.

Table 4 SCIF Register Setting

Register Name	Address	Setting	Description
Standby control register 4 (STBCR4)	H'FFFE 040C	H'00	MSTP47 = "0": SCIF0 is operating (supplies the clock)
Port J control register	H'FFFE 390E	H'0044	PJ0MD = "B'100": TxD0 output (SCIF0)
0 (PJCR0)			PJ1MD = "B'100": RxD0 output (SCIF0)
Serial control	H'FFFE 8008	H'0000	TE = "0": Disables the transmission
register_0 (SCSCR_0)			 RE = "0" Disables the reception
			 CKE [1:0] = "B'00": Internal clock/SCK pin is an input pin
		H'00F0	TIE = "1": Enables the TXI
			 RIE = "1": Enables the RXI, ERI, and BRI
			 TE = "1": Enables the transmission
			RE = "1": Enables the reception
FIFO control	H'FFFE 8018	H'0006	TFRST = "1": Enables to reset the transmit FIFO data
register_0 (SCFCR_0)			register
			 RFRST = "1": Enables to reset the receive FIFO data register
		H'0030	RTRG [1:0] = "B'00": Sets the RDF flag when the number of data in the receive FIFO is equal to or more than 1
			• TTRG [1:0] = "B'11": Sets the TDFE flag when the number of data in the transmit FIFO is equal to or less than 0
			MCE = "0": Disables the modem signal
			TFRST = "0": Disables to reset the transmit FIFO data register.
			registerRFRST = "0": Disables to reset the receive FIFO data
			register
			 LOOP = "0": Disables the loop-back test
Serial mode register_0	H'FFFE 8000	H'0000	• C/A# = "0": Asynchronous mode
(SCSMR_0)			• CHR = "0": 8-bit data
			 PE = "0": Disables the parity bit
			• STOP = "0": 1 stop bit
			CKS [1:0] = "B'00": Peripheral clock (no division)
Serial extension mode	H'FFFE 8028	H'0000	 BGDM = "0": Normal mode
register_0 (SCEMR_0)			 ABCS = "0": Base clock frequency is 16 times the bit rate
Bit rate register_0 (SCBRR_0)	H'FFFE 8004	H'3A	 Sets the bit rate to 19200 bps (Error: -0.69% when Pφ is 36 MHz)
Serial port register_0	H'FFFE 8020	H'0053	SPB2IO = "1": Outputs the SPB2DT bit value to the TxD pin
(SCSPTR_0)			SPB2DT = "1": Input/output data is at high level

R01AN0215EJ0100 Rev. 1.00 Dec. 28, 2010

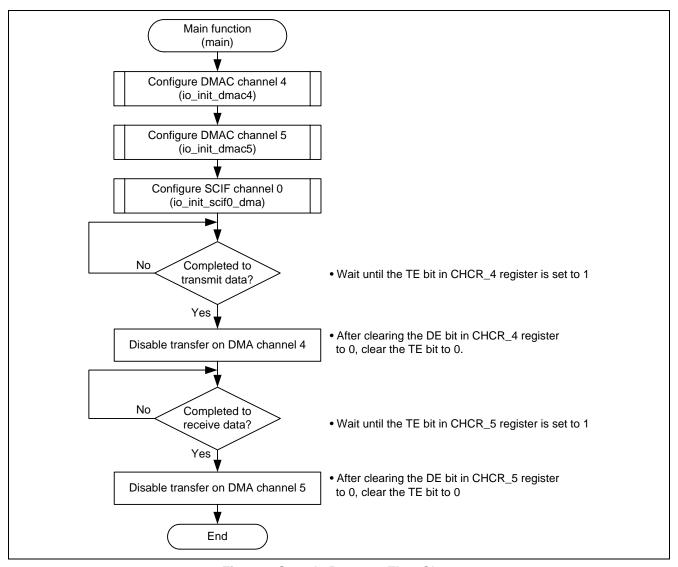

Table 5 DMAC Channel 4 Register Setting

Table 3 DinA Griatine 4 Register Setting			
Register Name	Address	Setting	Description
Standby control register 2 (STBCR2)	H'FFFE 0018	H'00	MSTP8 = "0": DMAC is operating
DMA source address register_4 (SAR_4)	H'FFFE 1040	&snd_data[0]	 Transfer source start address: high-speed internal RAM
DMA destination address register_4 (DAR_4)	H'FFFE 1044	H'FFFE 800C	 Transfer destination start address: transmit FIFO data register_0
DMA transfer count register_4 (DMATCR_4)	H'FFFE 1048	H'0000 0010	Number of transfers: 16
DMA channel	H'FFFE 104C	H'0000 0000	 DE = "0": Disables the DMA transfer
control register_4 (CHCR_4)		H'0000 1800	 TC = "0": Executes a transfer by a DMA transfer request RLDSAR = "0": Disables the source address reload function RLDDAR = "0": Disables the destination address reload function DM = "B'00": Destination address is fixed SM = "B'01: Increments the source address RS = "B'1000": Specifies the extension resource selector as the transfer request source TB = "0": Specifies cycle steal mode TS = "B'00": Specifies to transfer data in bytes IE = "0": Disables the interrupt request
DMA extension resource selector 2 (DMARS2)	H'FFFE 1308	H'0000 1801 H'8281	 DE = "1": Enables the DMA transfer Channel 4 transfer request source is the transmission at SCIF0
DMA operation register (DMAOR)	H'FFFE 1200	H'0001	DME = "1": Enables the DMA transfer on all channels

Page 14 of 28

Table 6 DMAC Channel 5 Register Setting

Register Name	Address	Setting	Description
Standby control register 2 (STBCR2)	H'FFFE 0018	H'00	 MSTP8 = "0": DMAC is operating
DMA source address register_5 (SAR_5)	H'FFFE 1050	H'FFFE 8014	Transfer source start address: receive FIFO data register_0
DMA destination address register_5 (DAR_5)	H'FFFE 1054	&rcv_data[0]	 Transfer destination start address: high-speed internal RAM
DMA transfer count register_5 (DMATCR_5)	H'FFFE 1058	H'0000 0010	Number of transfers: 16
DMA channel	H'FFFE 105C	H'0000 0000	 DE = "0": Disables the DMA transfer
control register_5 (CHCR_5)		H'0000 4800	 TC = "0": Executes a transfer by a DMA transfer request RLDSAR = "0": Disables the source address reload function RLDDAR = "0": Disables the destination address reload function DM = "B'01": Increments the destination address SM = "B'01: Source address is fixed RS = "B'1000": Specifies the extension resource selector as the transfer request source TB = "0": Specifies cycle steal mode TS = "B'00": Specifies to transfer data in bytes IE = "0": Disables the interrupt request DE = "1": Enables the DMA transfer
DMA extension resource selector 2 (DMARS2)	H'FFFE 1308	H'8281	Channel 5 transfer request source is the reception at SCIF0
DMA operation register (DMAOR)	H'FFFE 1200	H'0001	DME = "1": Enables the DMA transfer on all channels

Figure 8 Sample Program Flow Chart

3. Sample Program Listing

3.1 Supplement to the Sample Program

As the capacity of the SH7264 large-capacity internal RAM varies as 1 MB or 640 KB, depending on the MCU type, the section alignment and register setting must be partly altered. To support both MCU types, this application note provides two types of sample programs (workspaces) for 1-MB RAM and 640-KB RAM.

As the MCU with 640-KB RAM must be write-enabled before writing data in the data-retention RAM, the System control register 5 (SYSCR5) is set to write-enable the RAM in the sample program for 640-KB RAM.

Review your product and use the appropriate workspace.

R01AN0215EJ0100 Rev. 1.00 Dec. 28, 2010

3.2 Sample Program List "main.c" (1/9)

```
2
        DISCLAIMER
3
        This software is supplied by Renesas Electronics Corporation and is only
5
        intended for use with Renesas products. No other uses are authorized.
6
        This software is owned by Renesas Electronics Corporation and is protected under
7
        all applicable laws, including copyright laws.
        THIS SOFTWARE IS PROVIDED "AS IS" AND RENESAS MAKES NO WARRANTIES
10
         REGARDING THIS SOFTWARE, WHETHER EXPRESS, IMPLIED OR STATUTORY,
         INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
12
        PARTICULAR PURPOSE AND NON-INFRINGEMENT. ALL SUCH WARRANTIES ARE EXPRESSLY
13
14
        DISCLAIMED.
15
     * TO THE MAXIMUM EXTENT PERMITTED NOT PROHIBITED BY LAW, NEITHER RENESAS
16
     * ELECTRONICS CORPORATION NOR ANY OF ITS AFFILIATED COMPANIES SHALL BE LIABLE
17
        FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
18
19
        FOR ANY REASON RELATED TO THIS SOFTWARE, EVEN IF RENESAS OR ITS
        AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
2.0
21
        Renesas reserves the right, without notice, to make changes to this
        software and to discontinue the availability of this software.
23
     * By using this software, you agree to the additional terms and
24
25
         conditions found by accessing the following link:
26
        http://www.renesas.com/disclaimer
2.7
28
        Copyright (C) 2010 Renesas Electronics Corporation. All rights reserved.
29
     *""FILE COMMENT""******* Technical reference data *******************************
     * System Name : SH7264 Sample Program
30
     * File Name : main.c
31
32
                    : Configuring Asynchronous Mode Using the Serial Communication
33
                    : Interface with FIFO and Direct Memory Access Controller
     * Version : 1.00.00
34
35
        Device
                   : SH7262/SH7264
     * Tool-Chain : High-performance Embedded Workshop (Ver.4.07.00).
37
                   : C/C++ compiler package for the SuperH RISC engine family
38
                                               (Ver.9.03 Release00).
     * OS
39
                   : None
        H/W Platform: M3A-HS64G50(CPU board)
41
        Description :
42
43
     * History
                   : Sep.06,2010 ver.1.00.00
     44
     #include "iodefine.h"
                              /* SH7264 iodefine */
45
46
47
     /* ==== Prototype declaration ==== */
48
     void main(void);
49
     void io_init_scif0_dma(int bps);
50
     void io_init_dmac4(void *src, void *dst, int count);
     void io_init_dmac5(void *src, void *dst, int count);
52
```

3.3 Sample Program List "main.c" (2/9)

```
/* ==== Type definition ==== */
53
54
     /* SCIF baud rate setting */
     typedef struct {
      unsigned char scbrr; /* SCBRR register setting */
56
      unsigned short scsmr; /* SCSMR register setting */
57
58
     } SH7264_BAUD_SET;
59
     /* ---- Baud rate specified value ---- */
60
61
     enum{
62
      CBR_1200,
63
       CBR 2400,
      CBR_4800,
64
65
      CBR_9600,
66
      CBR_19200,
67
      CBR_31250,
68
      CBR_38400,
69
       CBR_57600,
70
       CBR_115200
     };
71
72
     /* ==== Register setting table (P clock = 36 MHz) ==== */
74
     static SH7264_BAUD_SET scif_baud[] = {
      {233, 1}, /* 1200 bps (error: 0.16%) */
75
                  /* 2400 bps (error: 0.16%) */
76
       {116, 1},
                  /* 4800 bps (error: 0.16%) */
       {233, 0},
       {116, 0},
78
                  /* 9600 bps (error: 0.16%) */
                  /* 19200 bps (error: -0.69%) */
       { 58, 0},
79
       { 35, 0},
                  /* 31250 bps (error: 0.00%) */
       { 28, 0}, /* 38400 bps (error: 1.02%) */
81
                  /* 57600 bps (error: -2.34%) */
       { 19, 0},
82
83
       { 9, 0}
                   /*115200 bps (error: -2.34%) */
84
     };
85
86
     /* ==== Data buffer ==== */
87
     unsigned char snd_data[16] = "0123456789abcdef";
88
     unsigned char rcv_data[16];
89
```

R01AN0215EJ0100 Rev. 1.00 Dec. 28, 2010

3.4 Sample Program List "main.c" (3/9)

```
90
91
    * ID :
     * Outline
              : Sample program main
93
94
     * Include
95
96
     * Declaration : void main(void);
     *-----
97
     * Description : Initializes SCIFO in predefined communication format and
98
99
                : operating mode, and transmits/receives 16-byte data, using
100
                : DMA transfer.
     *-----
101
102
               : void
103
     * Return Value : void
104
105
           : None
106
     107
108
    void main(void)
109
     /* ==== Initializes the DMAC ==== */
110
     io_init_dmac4( snd_data, &SCIF0.SCFTDR.BYTE, 16);
111
     io_init_dmac5( &SCIF0.SCFRDR.BYTE, rcv_data, 16);
112
113
114
     /* ==== Initializes SCIF0 in asynchronous mode (enable transmission/reception) ==== */
     io_init_scif0_dma(CBR_19200); /* Specifies the bit rate as 19200 bps */
115
116
117
     /* ==== Waits until transmission is completed ==== */
118
     while(DMAC.CHCR4.BIT.TE == 0) {
119
       /* wait */
120
     121
122
     DMAC.CHCR4.BIT.TE = 0;
                         /* Clears the TE flag */
123
124
     /* ==== Waits until reception is completed ==== */
125
     while(DMAC.CHCR5.BIT.TE == 0) {
      /* wait */
126
127
                       /* Disables the transfer */
     DMAC.CHCR5.BIT.DE = 0;
128
129
     DMAC.CHCR5.BIT.TE = 0;
                          /* Clears the TE flag */
130
131
    while (1) {
      /* Program end */
133
    }
134
135
```

3.5 Sample Program List "main.c" (4/9)

```
136
137
     * ID :
     * Outline : SCIFO configuration
138
139
140
     * Include
                 : iodefine.h
     *_____
141
142
     * Declaration : void io_init_scif0_dma(int bps);
     *-----
143
     * Description : Configures SCIFO as the UART module.
144
                  : Sets it in asynchronous mode (UART), 8-bit, no parity,
                  : 1 stop bit, and RTS/CTS disabled.
146
                 : Specifies the baud rate by the argument "bps".
147
148
     *_____
149
     * Argument
                 : int bps ; I : Baud rate specified value (table index)
150
151
     * Return Value : void
153
                  : The above baud rate specified value is applicable when using
154
                 : the peripheral clock (operating frequency for the peripheral
155
                 : module using the internal clock) is 36 MHz. Alter the baud rate
156
                 : setting when using other clocks.
157
     158
   void io_init_scif0_dma(int bps)
159
160
      /* ==== Wakes up the MCU from power-down mode ==== */
      /* ---- Sets Standby control register 4 (STBCR4) ---- */
161
      CPG.STBCR4.BIT.MSTP47 = 0;
162
                              /* Starts to supplying clock to SCIFO */
163
164
     /* ==== Configures SCIFO ==== */
      /* ---- Sets the Serial control register (SCSCRi) ---- */
165
166
      SCIF0.SCSCR.WORD = 0x0000; /* SCIF0 stops transmission/reception */
     /* ---- Sets the FIFO control register (SCFCRi) ---- */
168
169
      SCIF0.SCFCR.BIT.TFRST = 1; /* Resets the transmit FIFO */
170
     SCIFO.SCFCR.BIT.RFRST = 1;
                              /* Resets the receive FIFO */
171
      /* ---- Sets the Serial status register (SCFSRi) ---- */
172
173
      SCIFO.SCFSR.WORD &= 0xff6eu;/* Clears bits ER, BRK, and DR */
174
175
      /* ---- Sets the Line status register (SCLSRi) ---- */
176
      SCIFO.SCLSR.BIT.ORER = 0; /* Clears the ORER bit */
177
178
      /* ---- Sets the Serial control register (SCSCRi) ---- */
      SCIFO.SCSCR.BIT.CKE = 0x0; /* B'00: internal clock */
179
180
```

3.6 Sample Program List "main.c" (5/9)

```
/* ---- Sets the Serial mode register (SCSMRi) ---- */
181
182
        SCIF0.SCSMR.WORD = scif_baud[bps].scsmr;
                                    /* Communication mode, 0: Asynchronous mode */
                                    /* Character length, 0: 8-bit data */
184
185
                                    /* Parity enable, */
186
                                    /*
                                        0: Disables to add and check parity */
187
                                    /* Parity mode, 0: Even parity */
                                    /* Stop bit length, 0: 1 stop bit */
188
189
                                    /* Clock select: Setting in table */
190
191
        /* ---- Sets the Serial extension mode register (SCEMRi) ---- */
       SCIF0.SCEMR.WORD = 0x0000; /* Baud rate generator double-speed mode, */
192
                                    /* 0: Normal mode */
193
                                    /* Base clock select in asynchronous mode, */
194
195
                                    /* 0: Base clock is 16 times the bit rate */
196
197
        /* ---- Sets the Bit rate register (SCBRRi) ---- */
198
       SCIF0.SCBRR.BYTE = scif_baud[bps].scbrr;
199
200
        /* ---- Sets the FIFO control register (SCFCRi) ---- */
       SCIF0.SCFCR.WORD = 0x0030; /* RTS output active trigger: default */
201
202
                                    /* Number of the receive FIFO data trigger: 1 */
                                    /\,{}^\star Number of the transmit FIFO data trigger: 0 \,{}^\star/\,
203
204
                                    /* Modem control enable: Disabled */
205
                                    /* Transmit FIFO data register reset: Disabled */
206
                                    /* Receive FIFO data register reset: Disabled */
207
                                    /* Loop-back test: Disabled */
208
209
        /* ---- Sets the Serial port register (SCSPTRi) ---- */
       SCIF0.SCSPTR.WORD = 0x0053; /* Serial port break input/output, */
210
                                    /* 1: Outputs the SPB2DT */
211
212
                                    /* value to the TxD pin */
213
                                    /* Serial port break data, */
214
                                        1: Input/output data is high level */
215
216
       /* ==== Sets the General-purpose I/O ports ==== */
       PORT.PJCRO.BIT.PJOMD = 4; /* Specifies TxDO pin */
217
218
       PORT.PJCR0.BIT.PJ1MD = 4;
                                       /* Specifies RxD0 pin */
219
220
       /* ---- Sets the Serial control register (SCSCRi) ---- */
221
       SCIF0.SCSCR.WORD |= 0x00F0; /* Enables SCIF0 to transmit/receive data */
222
                                   /* Enables the TXI request */
223
                                    /* Enables RXI, ERI, BRI requests */
224 }
```

3.7 Sample Program List "main.c" (6/9)

```
225
226
     * Outline : DMAC setting
227
228
229
     * Include
                 : iodefine.h
     *_____
230
231
     * Declaration : void io_init_dmac4(void *src, void *dst, int count);
232
     * Description : Configures the Direct Memory Access Controller (DMAC) channel 4.
233
234
                 : Uses the on-chip peripheral module request (TXIO) to transfer
235
                 : the transmit data to SCIFO. Reload function is not used.
     *-----
236
237
     * Argument : void *src ; I : Transfer source address
238
                 : void *dst ; 0 : Transfer destination address
                 : int count ; I : Number of transfers
239
240
241
     * Return Value : void
242
     * Note
243
     244
    void io_init_dmac4(void *src, void *dst, int count)
245
246
247
      /* ==== Sets Standby control register 2 ==== */
248
     CPG.STBCR2.BIT.MSTP8 = 0;
                                     /* Clears the DMAC module standby */
249
     /* ==== Disables transfer on DMA_channel 4 ==== */
250
251
     DMAC.CHCR4.BIT.DE = 0 \times 0;
                           /* Disables the DMA transfer */
252
253
     /* ==== Sets DMA source address register_4 (SAR_4) ==== */
      DMAC.SAR4.LONG = (unsigned long)src;
254
255
256
      /* ==== Sets DMA destination address register_4 (DAR_4) ==== */
257
      DMAC.DAR4.LONG = (unsigned long)dst;
258
259
      /* ==== Sets DMA transfer count register_4 (DMATCR_4) ==== */
260
      DMAC.DMATCR4.LONG = count;
261
```

3.8 Sample Program List "main.c" (7/9)

```
/* ==== Sets DMA channel control register_4 (CHCR_4) ==== */
262
263
      DMAC.CHCR4.LONG = 0 \times 00001800;
265
           bit 31 : TC DMATCR transfer: 0---- Executes a transfer by
266
                                           a DMA transfer request
           bit 30 : reserve 0
267
268
           bit 29
                  : RLDSAR ON : 0----- Disables the reload function (RSAR)
           bit 28
                  : RLDDAR ON : 0----- Disables the reload function (RDAR)
269
270
           bit 27
                   : reserve 0
271
           bit 26
                    : DAF : 0----- Not used
272
           bit 25
                    : SAF : 0----- Not used
           bit 24 : reserve 0
273
274
           bit 23 : DO over run0 : 0----- Not used
          bit 22 : TL TEND low active : 0---- Not used
275
276
          bit 21 : reserve 0
           bit 20 : TEMASK :0----- Not used
2.77
                    : HE :0----- Not used
278
           bit 19
                    : HIE :0----- Not used
279
           bit 18
                    : AM :0----- Not used
280
          bit 17
281
          bit 16
                    : AL :0----- Not used
          bits 15, 14: DM1:0 DM0:0----- Destination address is fixed
282
          bits 13, 12: SM1:0 SM0:1----- Increments the source address
283
           bits 11 to 8: RS: B'1000----- Transfer request is from
284
285
                                            the extension resource selector
286
           bit 7
                   : DL : DREQ level : 0 ----- Not used
                 : DS : DREQ select : 0 Low level Not used
287
           bit 6
288
           bit 5
                   : TB :cycle :0----- Cycle steal mode
289
           bits 4, 3 : TS : transfer size: B'00--- Transfers data in bytes
290
           bit 2 : IE : interrupt enable: 0--- Disables interrupt
                   : TE : transfer end: 0----- Clears the TE flag
291
           bit 1
292
                                              (Clear the flag to 0 after
293
                                              reading 1)
294
                   : DE : DMA enable bit: 0---- Disables the DMA transfer
           bit 0
295
296
      /* ==== Sets DMA extension resource selector 2 (DMARS2) ==== */
297
      DMAC.DMARS2.BYTE.CH4 = 0x81; /* SCIF0 transmission */
298
299
       /* ---- Sets the DMA operation register (DMAOR)---- */
      DMAC.DMAOR.WORD = 0 \times 0007;
300
                                   /* Sets the DME bit. To avoid clearing */
301
                                     /* address error and NMI flags, wrote 1 */
302
                                      /* to the AE bit and NMIF flag */
303
      /* ====== Enables transfer on DMA_channel 4 ====== */
      DMAC.CHCR4.BIT.DE = 0x1;
304
305 }
```

3.9 Sample Program List "main.c " (8/9)

```
306
307
     * Outline : DMAC setting
308
309
310
     * Include
                 : iodefine.h
     *_____
311
312
     * Declaration : void io_init_dmac5(void *src, void *dst, int count);
313
     * Description : Configures the Direct Memory Access Controller (DMAC) channel 5.
314
315
                 : Uses the on-chip peripheral module request (RXIO) to transfer
316
                 : the receive data from SCIFO. Reload function is not used.
317
     *-----
318
     * Argument : void *src ; I : Transfer source address
319
                 : void *dst ; 0 : Transfer destination address
                 : int count ; I : Number of transfers
320
321
322
     * Return Value : void
323
     * Note
324
     325
    void io_init_dmac5(void *src, void *dst, int count)
326
327
      /* ==== Sets Standby control register 2 ==== */
328
329
     CPG.STBCR2.BIT.MSTP8 = 0;
                                     /* Clears the DMAC module standby */
330
      /* ==== Disables transfer on DMA_channel 5 ==== */
331
332
     DMAC.CHCR5.BIT.DE = 0 \times 0;
                           /* Disables the DMA transfer */
333
334
     /* ==== Sets DMA source address register_5 (SAR_5) ==== */
      DMAC.SAR5.LONG = (unsigned long)src;
335
336
337
      /* ==== Sets DMA destination address register_5 (DAR_5) ==== */
338
      DMAC.DAR5.LONG = (unsigned long)dst;
339
340
      /* ==== Sets DMA transfer count register_5 (DMATCR_5) ==== */
341
      DMAC.DMATCR5.LONG = count;
342
```

3.10 Sample Program List "main.c" (9/9)

```
/* ==== Sets DMA channel control register_5 (CHCR_5) ==== */
343
344
      DMAC.CHCR5.LONG = 0 \times 00004800;
346
           bit 31 : TC DMATCR transfer:1---- Executes a transfer by
347
                                           a DMA transfer request
           bit 30 : reserve 0
348
349
           bit 29
                  : RLDSAR ON : 0----- Disables the reload function (RSAR)
           bit 28
                  : RLDDAR ON : 0----- Disables the reload function (RDAR)
350
                  : reserve 0
351
           bit 27
352
           bit 26
                    : DAF : 0----- Not used
353
           bit 25
                    : SAF : 0----- Not used
           bit 24 : reserve 0
354
355
          bit 23 : DO over run0 : 0----- Not used
          bit 22 : TL TEND low active : 0---- Not used
356
          bit 21 : reserve 0
357
          bit 20 : TEMASK :0----- Not used
358
                    : HE :0----- Not used
           bit 19
359
                    : HIE :0----- Not used
360
           bit 18
                    : AM :0----- Not used
361
          bit 17
362
          bit 16 : AL :0----- Not used
          bits 15, 14: DM1:0 DM0:1----- Increments the destination address
          bits 13, 12: SM1:0 SM0:0----- Source address is fixed
364
           bits 11 to 8: RS: B'1000----- Transfer request is from
365
366
                                           the extension resource selector
367
           bit 7
                  : DL : DREQ level : 0 ----- Not used
                 : DS : DREQ select : 0 Low level Not used
           bit 6
368
           bit 5
369
                  : TB :cycle :0----- Cycle steal mode
370
           bits 4, 3 : TS : transfer size: B'00-- Transfers data in words
                 : IE : interrupt enable: 0-- Disables interrupt
371
           bit 2
                  : TE : transfer end: 0----- Clears the TE flag
372
           bit 1
373
                                              (Clear the flag to 0 after
374
                                              reading 1)
375
                  : DE : DMA enable bit: 0---- Disables the DMA transfer
           bit0
376
377
      /* ==== Sets DMA extension resource selector 2 (DMARS2) ==== */
378
      DMAC.DMARS2.BYTE.CH5 = 0x82; /* SCIFO reception */
379
380
       /* ---- Sets the DMA operation register (DMAOR)---- */
      DMAC.DMAOR.WORD = 0 \times 0007;
381
                                   /* Sets the DME bit. To avoid clearing */
382
                                     /* address error and NMI flags, write 1 */
383
                                      /* to the AE bit and NMIF flag*/
384
      /* ====== Enables transfer on DMA_channel 5 ====== */
385
      DMAC.CHCR5.BIT.DE = 0x1;
386
     }
     /* End of File */
387
```

4. References

• Software Manual

SH-2A/SH2A-FPU Software Manual Rev.3.00

The latest version of the software manual can be downloaded from the Renesas Electronics website.

Hardware Manual

SH7262 Group, SH7264 Group Hardware manual Rev.2.00

The latest version of the hardware manual can be downloaded from the Renesas Electronics website.

R01AN0215EJ0100 Rev. 1.00

Page 27 of 28

Website and Support

Renesas Electronics Website http://www.renesas.com/

Inquiries

http://www.renesas.com/inquiry

All trademarks and registered trademarks are the property of their respective owners.

Dec. 28, 2010

R01AN0215EJ0100 Rev. 1.00

Revision Record

Description

Rev.	Date	Page	Summary
1.00	Dec.28.10	_	First edition issued

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

— The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

- The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
 In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.
 In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.
- 3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

The reserved addresses are provided for the possible future expansion of functions. Do not access
these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.
- 5. Differences between Products

Before changing from one product to another, i.e. to one with a different type number, confirm that the change will not lead to problems.

— The characteristics of MPU/MCU in the same group but having different type numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different type numbers, implement a system-evaluation test for each of the products.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- 2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically
- Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life
- You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information

Renesas Electronics America Inc. 2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada

1 Nicholson Hoad, Newmarket, Ontario L3 +1-905-898-5441, Fax: +1-905-898-3220

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-565-109, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898

Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044

Renesas Electronics Taiwan Co., Ltd.
7F, No. 363 Fu Shing North Road Taipei, Taiwan, R.O.C.
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd. 1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632 Tel: +65-6213-0200, Fax: +65-6278-8001

Renesas Electronics Malaysia Sdn.Bhd.

Unit 906, Block B, Menara Ámcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics Korea Co., Ltd. 11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea Tel: +82-2-558-3737, Fax: +82-2-558-5141

© 2010 Renesas Electronics Corporation, All rights reserved