

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

 APPLICATION NOTE

AN0303007/Rev.1.00 September 2003 Page 1 of 23

PRELIMINARY

H8/300L
Usage of ADC for Temperature Reading (ADC_Temp)

Introduction
This application note aims to explore the A/D converter function of the H8/38024F SLP(Super Low Power) MCU in measuring a
range of temperatures. The characteristics of the temperature sensor are discussed and its corresponding source code implementation
is explained.

Temperature is an analog quantity, but digital systems often use temperature to implement measurement, control and protection
functions. Reading temperature with a microcontroller (MCU) is simple in concept. There are 8-channel; 10-bit ADCs build into the
SLP Microcontroller which can be used to read the output voltage from a temperature sensor (analog-output type).

Various types of sensors can be used to measure temperature. Examples are thermistor, temperature-sensitive resistor. Most
thermistors have a negative temperature coefficient (NTC), meaning the resistance goes up as temperature goes down. Of all passive
temperature measurement sensors, thermistors have the highest sensitivity (resistance change per degree of temperature change).
However, thermistors do not have a linear temperature/resistance curve.

Target Device
H8/300L Super Low Power (SLP) Series – H8/38024F

H8/300L
Usage of ADC for Temperature Reading (ADC_Temp)

AN0303007/Rev.1.00 September 2003 Page 2 of 23

PRELIMINARY

Contents

1. Thermistor Characteristics .. 3
1.1 Thermistor Scaling .. 5
1.2 Tolerance stackup... 6

2. Hardware Overview .. 7

3. Software Overview.. 9

4. Other Considerations .. 20
4.1 System Performance .. 20
4.2 Methods of Analysis.. 20

Reference.. 21

Revision Record.. 22

H8/300L
Usage of ADC for Temperature Reading (ADC_Temp)

AN0303007/Rev.1.00 September 2003 Page 3 of 23

PRELIMINARY

1. Thermistor Characteristics
Data for a typical NTC thermistor family is shown in Table 1. This data is for a BC Components thermistor, a typical NTC
thermistor. The resistance is given as a ratio (R/R25). Many thermistors in a family will have similar characteristics and identical
temperature/resistance curves. A thermistor from this family with a resistance at 25ºC (R25) of 10K would have a resistance of 28.1K
at 0ºC and a resistance of 4.086K at 60ºC. Similarly, a thermistor with R25 of 5K would have a resistance of 14.050K at 0ºC.

Temp ºC R/R25 Temp ºC R/R25

-40 33.210 40 0.5330

-30 17.520 50 0.3605

-20 9.6360 60 0.2490

-10 5.5050 70 0.1753

0 3.2550 80 0.1256

10 1.9870 90 0.0915

20 1.2490 100 0.0677

25 1.0000 110 0.0508

30 0.8059 120 0.0386

Table 1: Typical NTC thermistor data

Figure 1: Ratio RT/R25 Vs Temperature (NTC)

Figure 1 shows this thermistor curve graphically. You can see that the resistance/temperature curve is not linear. While the data for
this thermistor is given in 10-degree increments, some thermistor tables have five-degree or even one-degree increments. In some
cases, the temperature between two points on the table are to be measured. You can estimate this by using the curve, or you can
calculate the resistance directly. The formula for resistance looks like this:

where T is the temperature in degrees Kelvin and A, B, C, and D are constants that depend on the characteristics of the thermistor.
These parameters must be supplied by the thermistor manufacturer.

0

5

10

15

20

25

30

35

-50 0 50 100 150 200
Temperature

Ra
tio

 R
T/

R2
5

⎟
⎠
⎞

⎜
⎝
⎛ +++= 32

25

exp
T
D

T
C

T
BA

R
RT

H8/300L
Usage of ADC for Temperature Reading (ADC_Temp)

AN0303007/Rev.1.00 September 2003 Page 4 of 23

PRELIMINARY

Thermistors have a tolerance that limits their repeatability from one sample to the next. This tolerance typically ranges from 1% to
10%, depending on the specific part used. Some thermistors are designed to be interchangeable in applications where it is impractical
to have an adjustment. Such an application might include an instrument where the user or a field engineer has to replace the
thermistor and has no independent means to calibrate it. These thermistors are much more accurate than ordinary parts, but
considerably more expensive.

Figure 2: Thermistor circuit

Figure 2 shows a typical circuit that could be used to allow a microprocessor to measure temperature using a thermistor. A resistor
(R1) pulls the thermistor up to a reference voltage. This is typically the same as the ADC reference, so Vref would be 5V if the ADC
reference were 5V. The thermistor/resistor combination makes a voltage divider, and the varying thermistor resistance results in a
varying voltage at the junction. The accuracy of this circuit depends on the thermistor tolerance, resistor tolerance, and reference
accuracy. Since a thermistor is a resistor, passing current through it will generate some heat. The circuit designer must ensure that the
pull-up resistor is large enough to prevent excessive self-heating, or the system will end up measuring the thermistor dissipation
instead of the ambient temperature. The amount of power that the thermistor has to dissipate to affect the temperature is called the
dissipation constant, and is the number of milliwatts needed to raise the thermistor temperature 1ºC above ambient. The dissipation
constant varies with the package in which the thermistor is provided, the lead gauge (if a leaded device), type of encapsulating
material (if the thermistor is encapsulated), and other factors.

The amount of self-heating allowed, and, therefore, the size of the limiting resistor, depends on the measurement accuracy needed. A
system that require an accuracy of ±5ºC can tolerate more thermistor self-heating than a system that must be accurate to ±0.1ºC.
Note that the pull-up resistor must be calculated to limit self-heating dissipation over the entire measurement temperature range. For
a given resistor, the thermistor dissipation will change at different temperatures because the thermistor resistance changes.

Vo to ADC input

Thermistor

H8/300L
Usage of ADC for Temperature Reading (ADC_Temp)

AN0303007/Rev.1.00 September 2003 Page 5 of 23

PRELIMINARY

1.1 Thermistor Scaling

Figure 3: Thermistor scaling

Sometimes you need to scale a thermistor input to get the proper resolution. Figure 3 shows a typical circuit that expands the 10-
40ºC range to span the 0-3.3V input of the ADC. The formula for the output of the op amp is as follows:

Once you have a thermistor scaled (if needed), you can make a chart showing the actual resistance vs. temperature values. You need
the chart because the thermistor isn't linear, so the software needs to know what ADC value to expect for each given temperature.
The accuracy of the table-one-degree increments or five-degree increments-depends on the accuracy your application requires.

h

fr

h

f

l

f
o R

RV
R
R

R
R

VV −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++= 11

H8/300L
Usage of ADC for Temperature Reading (ADC_Temp)

AN0303007/Rev.1.00 September 2003 Page 6 of 23

PRELIMINARY

1.2 Tolerance stackup
In any thermistor application, you have to select the sensor and any other components in the input circuit to match your required
accuracy. Some applications may only need 1% resistors, but others may require 0.1% resistors. In any event, you should make a
spreadsheet showing the effects of tolerance stackup in all the components, including the resistors and references, and the thermistor
itself.

If you need more accuracy than you can get with affordable components, you may have to calibrate the system after it is built. In
some applications, this is not an option since the circuit boards and/or thermistor must be field-replaceable. However, in cases where
the equipment is not field-replaceable, or where the field technicians have an independent means to monitor the temperature, it is
possible to let the software build a table of temperature vs. ADC values. There must be some means to input the actual temperature
(measured with the independent tool) so the software can construct the table. In some systems, where the thermistor must be field-
replaceable, you may be able to calibrate the replaceable component (sensor or entire analog front end) at the factory and provide the
calibration data on disk or other storage media. Of course, the software must provide a means to apply the calibration data when the
components are changed. In general, thermistors provide a cost-effective means to measure temperature, while still remaining easy to
use. Depending on situation, users may opt for RTD and thermocouple sensors as shown below.

 Thermistor RTD Thermocouple

Temperature Range -100°C to 450°C -250°C to 900°C -270°C to 1800°C

Sensitivity Several Ω/Ω/°C 0.00385 Ω/Ω/°C 10s of µV/°C

Accuracy ± 0.1°C ± 0.01°C ± 0.5°C

Linearity Require at least 3rd order
polynomial or equivalent
look up table

Require at least 2nd order
polynomial or equivalent
look up table

Require at least 4th order
polynomial or equivalent
look up table

Ruggedness Various encasements
solution. Not easily affected
by vibration of shock

Vulnerable to vibration More rugged and more
sturdy with good
insulation material

Responsiveness 1 to 5 secs 1 to 10 secs Less than 1 sec

Excitation Voltage source Current source None

Output Form Resistance Resistance Voltage

Physical Size 0.1 x 0.1 inch 0.25 x 0.25 inch Bead ∅ = 5 x wire ∅

Price $2 to $10 $25 to $1000 $1 to $50

Table 2: Characteristics of various temperature sensors

H8/300L
Usage of ADC for Temperature Reading (ADC_Temp)

AN0303007/Rev.1.00 September 2003 Page 7 of 23

PRELIMINARY

2. Hardware Overview

Figure 4: Hardware Block Diagram

Basically, there are 3 components in the temperature sensor circuit:

a. Micro-controller - used to read temperature sensor voltage via build-in ADC port

b. Temperature Sensor - used to convert temperature to voltage

c. LCD Panel - used to display ADC conversion result

Figure 5: Actual Hardware Implementation

Te
m

pe
ra

tu
re

Se
ns

or

H8/38024F

MCU

AN0

Thermistor &
Thermometer
sensor

Fluke Thermometer

H8/300L SLP series
Application Board

H8/300L
Usage of ADC for Temperature Reading (ADC_Temp)

AN0303007/Rev.1.00 September 2003 Page 8 of 23

PRELIMINARY

HARDWARE CIRCUIT (Resistor -Thermistor voltage divider):

Figure 6: Schematic Diagram for Temperature Reader using Resister-Thermistor voltage divider

Figure 6 shows the schematic diagram for a simple temperature reader. Referring to the figure, towards the left, we can see the
circuit for the thermistor/resistor voltage divider. The changing thermistor’s resistance, according to ambience temperature, will
cause the junction voltage to change also. The ADC input channel zero (AN0) will then capture this junction voltage. AVCC and
AVSS, to be used by the A/D converter, refer to the analog power supply and analog ground respectively (please refer to the
H8/38024 hardware manual for details).

In the middle, it shows the schematic of the H8/38024 MCU with the necessary connections required for our application. Firstly,
AN0 is a multiplexed pin with Port B pin 0. Port B is an 8-bit input-only port configured for the in-built A/D converter 8 input
channels. At the bottom, from left to right, you see the sub-clock generator, system-clock generator and the system reset circuits.
Ports 5, 6, 7, 8 (SEG0 to SEG32) and Port A (COM1 to COM4) are used for interfacing with the 32x4 LCD display segments and
common pins.

On the left, you see the detailed LCD panel connections and below, the boosters circuit to drive the LCD. To display Alphanumeric
characters, users are required to write word value to the LCD RAM (address H’F740 to H’F74F) to turn on a particular segment. The
booster circuit is required when we need to drive such a large panel, as the on-chip power supply capacity is insufficient.

TEMPERATURE
SENSOR
CIRCUIT

COM4

AN0

C7
0.1u

SEG10

SEG1

SEG17

SEG4

SEG20

SEG15

SEG25

COM3

SEG21

SEG8

SEG11

SEG16

V2

SEG2

SEG31

X1

SEG12

SEG16

SEG5

SEG18
SEG24

R1
4.7k, 1%

X2

SEG9

H8/38024F MCU
 CIRCUIT

AVSS

SEG21

SEG1

SEG32
LCD PANEL

SEG12

SEG8

SEG29

SEG2

SEG26

SEG11

AVCC

SEG5

COM2

COM2

LCD PANEL
 CIRCUIT

V3

V
1

SEG20

SEG22

SEG17

SEG22

 LCD
BOOSTER CIRCUIT

SEG7

SEG13

X1

AVCC

3.3V

Varitronix Ltd
VIM-828-DP-6-LV-RC

AN0

AVCC

R4
100K

SEG30

SEG7

SEG27

Crystal 32.7680KHz
Cylinder 2x6
P/N:XC-05181-0

SEG30

SEG13
SEG14

V1

SEG18

SEG23

COM4

R3
100K

SEG6

SEG9

SEG14

AVCC

SEG29

R5
10K

Crystal 9.8304MHz
HC49-U-S
P/N:XC-06709-0

COM1

COM3

SEG23

SEG32

V
2

SEG3

t

RT1
THERMISTOR

1

2

3.3V

C6
0.1u

R7
100K

3.3V

SEG3

R2
22K

Y2

9.8304MHz

COM1

Y1

32.768KHz

X2

C2 15p

SEG28

C8
0.1u

S1

SP
ST
 S

W

R6
1M

C3 15p

SEG19

SEG24

SEG27

C5

12p R8
100K

SEG4

SEG6

U2 VIM-828-DP

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18 19

20
21
22
23
24
25
26
27

28
29
30
31
32
33
34
35
36COM4

8_FED
8IJKN
7_FED
7IJKN
6_FED
6IJKN
5_FED
5IJKN

4_FED
4IJKN
3_FED
3IJKN
2_FED
2IJKN
1_FED
1IJKN
COM3 COM1

1ABCDP
1HGLM

2ABCDP
2HGLM

3ABCDP
3HGLM

4ABCDP
4HGLM

5ABCDP
5HGLM

6ABCDP
6HGLM

7ABCDP
7HGLM

8ABCDP
8HGLM
COM2

SEG10

SEG15

AVSS

C4

12p

V
3

SEG28

C1

0.1u

SEG19

U1 H8/38024

1

41

2

42

3

43

4

44

5

45

6

46

7

47

8

48

9

49

10

50

11

51

12

52

13

53

14

54

15

55

16

56

17

57

18

58

19

59

20

60

21
22
23
24
25
26
27
28
29

31
30

32
33
34
35
36
37
38
39
4061

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

A
V
C
C

P
84

P
13

P
85

P
14

P
86

P
16

P
87

P
17

P
A
3

X
1

P
A2

X
2

P
A1

A
V
SS

P
A
0

O
S
C
2

V
3

O
S
C
1

V2

T
E
ST

V1

R
E
S
_N

V
C
C

P
50

V
SS

P
51

P
90

P
52

P
91

P
53

P
92

P
54

P
93

P
55

P
94

P
56

P
95

P
57

IR
Q
AE
C

P60
P61
P62
P63
P64
P65
P66
P67
P70

P72
P71

P73
P74
P75
P76
P77
P80
P81
P82
P83P30

P31
P32
P33
P34
P35
P36
P37
P40
P41
P42
P43
PB0
PB1
PB2
PB3
PB4
PB5
PB6
PB7

SEG31

SEG25
SEG26

AVSS

H8/300L
Usage of ADC for Temperature Reading (ADC_Temp)

AN0303007/Rev.1.00 September 2003 Page 9 of 23

PRELIMINARY

3. Software Overview
With the appropriate connections made, we are now ready to write our application’s code. Firstly, we will need to generate a lookup
table for decoding each ADC values. The thermistor values are extracted , from the thermistor data sheet, in steps of 5°C. Next,
Table 3 is generated for temperatures ranging from 0°C to 20°C for fixed RT1 & AVcc values. Vin (voltage at AN0) is calculated
using voltage-divider rules and the corresponding ADC value is thus obtained (mapping 0V to 010 & 3.3V to 102310).

Temp

(°C)

Thermistor R1

(Ohms)

RT1

(Ohms)

AVcc

(V)

Vin at AN0

(V)

ADC value

(decimal)

ADC value (round off)

0 15300 4700 3.3 2.524500 783.36 783

5 11910 4700 3.3 2.366225 734.24684 734

10 9340 4700 3.3 2.195299 681.20798 681

15 7378 4700 3.3 2.015847 625.52343 626

20 5869 4700 3.3 1.832501 568.63052 569

Table 3: Temperatures Mapping to ADC value

H8/300L
Usage of ADC for Temperature Reading (ADC_Temp)

AN0303007/Rev.1.00 September 2003 Page 10 of 23

PRELIMINARY

However, we are more interested in 1°C measurement than a lump 5°C. In order to obtain a closer-to-actual estimate, we need to
distribute the intermediate difference between these ADC values to that of 1°C reading. What we are doing here is called linear
interpolation. And this you will get:

Temp

(°C)

Thermistor R1

(Ohms)

RT1

(Ohms)

AVcc

(V)

Vin at AN0

(V)

ADC value

(decimal)

ADC value (round off)

0 15300 4700 3.3 2.524500 783.36 783

1 773.53737 774

2 763.71474 764

3 753.8921 754

4 744.06947 744

5 11910 4700 3.3 2.366225 734.24684 734

6 723.63907 724

7 713.03129 713

8 702.42352 702

9 691.81575 692

10 9340 4700 3.3 2.195299 681.20798 681

11 670.07107 670

12 658.93416 659

13 647.79725 648

14 636.66034 637

15 7378 4700 3.3 2.015847 625.52343 626

16 614.14485 614

17 602.76627 603

18 591.38769 591

19 580.0091 580

20 5869 4700 3.3 1.832501 568.63052 569

Table 4: Expanded temperature mapping

H8/300L
Usage of ADC for Temperature Reading (ADC_Temp)

AN0303007/Rev.1.00 September 2003 Page 11 of 23

PRELIMINARY

Figure 7 shows the beginning of our application source codes. We have implemented the above lookup table into an array called
temperature[](100 elements), with its array’s index as the actual temperature in °C and its element as the corresponding
converted ADC value. The rest are function prototypes and variables declaration. Some of them are self-describing and whereas the
rest will become clearer as we introduce the rest of the codes. As you can see, all the variables are initialized to hold zero first to
prevent garbage values.

#include "iodefine.h"

#include "lcd.h"

#include <machine.h>

/**/

/* Function define */

/**/

void init_adc(unsigned char, char, char);

void init_lcd(void);

void display_number(unsigned char, unsigned char, unsigned char);

void taint(void);

void init_timerA(unsigned char);

/**/

/* RAM define */

/**/

// Temperature vs ADC-value lookup table

const unsigned short temperature[101] =

{783,774,764,754,744,734,724,713,702,692,

 681,670,659,648,637,626,614,603,591,580,

 569,557,546,535,523,512,501,490,479,468,

 457,447,436,426,415,405,395,385,376,366,

 356,347,338,329,320,312,303,295,287,279,

 271,264,257,250,243,236,229,223,217,210,

 204,199,193,188,182,177,172,167,162,158,

 153,149,144,140,136,132,129,125,121,118,

 114,111,108,105,102,99,96,94,91,89,

 86,84,81,79,77,75,73,71,69,67,

 65}; // 10x10 table

unsigned char goRead=0; //Global variable goRead is use by main() and taint()

Figure 7: Function Prototypes & Declarations

H8/300L
Usage of ADC for Temperature Reading (ADC_Temp)

AN0303007/Rev.1.00 September 2003 Page 12 of 23

PRELIMINARY

void main(void)

{

unsigned short ADC_value=0;

unsigned char temp1=0, temp2=0, temp3=0, deg=0, i=0, near1=0, near2=0;

 init_lcd(); // Intialize LCD display

 init_adc(0,0,0); // Intialize ADC

 init_timerA(0x18); // Intitialize TimerA, default interrupt

 while(1)

 {

 while (goRead == 0); // Wait for status to start reading temp

 while (P_AD.ADSR.BYTE & 0x80); // If ADSR = 1, A/D conversion in progress

 ADC_value = P_AD.ADRR >> 6; // Capture the ADC value

 goRead=0;

 for (i=0; i<101; i++) // loop through the whole table, linear search

 {

 // within range?

 if((temperature[i]>=ADC_value) && (ADC_value>=temperature[i+1]))

 {

 near1 = temperature[i]-ADC_value; // Calculate to the nearest deg

 near2 = ADC_value-temperature[i+1];

 if(near1<near2) deg=i; // Round off to the nearest deg

 else deg=i+1;

 }

 }

 if(deg==100) {temp1=1;} // check if reading==100 deg

 else if(deg<100 && deg>9) {temp2=deg/10; temp3=deg%10;}

 else if(deg<10 && deg>=0) temp3=deg;

 else {temp1=16; temp2=29; temp3=29;} // display 'ERR' if out of range

 display_number(2, temp1, 0); // Display 100th digit

 display_number(1, temp2, 0); // Display 10th digit

 display_number(0, temp3, 0); // Display lowest digit

 temp1=0;temp2=0;temp3=0; // Reset all

 }

}

Figure 8: Function ‘main()’

Figure 8 shows the main() function where LCD, ADC and Timer A are initialized. Since we are using Timer A to achieve
periodic reading of temperatures, due to its overflow timing, we have to calculate the number of loops to do in order to achieve the
time period. This is carried out by function nloopTA(). In our application, we are using a time period of 1 second because the
thermistor requires about 1 second to stabilize. Since our focus here is not about using Timers, by default, Timer A uses interrupt
request for overflow.

H8/300L
Usage of ADC for Temperature Reading (ADC_Temp)

AN0303007/Rev.1.00 September 2003 Page 13 of 23

PRELIMINARY

A status flag goRead is used to signal the start of temperature reading at every 1 seconds. The status flag goRead is set in the
Timer A interrupt service routine taint() (Figure 10), when the predetermined looping number has been reached. And at the
same time, start_adc() is called to start the ADC conversion. Then while during its conversion, the statement

while (P_AD.ADSR.BYTE & 0x80);

tests for ADSF flag to clear to signify end of conversion by using bitwise AND operator (&). ‘0x80’ is a hexadecimal representation
of decimal value 128 which is bit-7 (MSB) of ADSR register. Next, the ADC value is stored in variable ADC_value, by
performing a logical left-shift by 6 positions of the ADRRH & ADRRL register value.

Next, the ‘for’ loop will search the whole array for the temperature range for which the captured ADC value falls in and thus round it
off to the nearest degree celsius (array index). Then proper formatting is carried out to display the temperature onto the LCD display.

void init_adc(unsigned char conv_period, char Ext_TRG, char Input_CH)

{

 //conv_period = 0 => fast (but OSC1 <= 10MHz)

 //conv_period = 1 => slow (but OSC1 <> 10MHz)

 //Ext_TRG = 0 => Disable start of A/D conversion by external trigger

 //Ext_TRG = 1 => Enable start of A/D conversion by external trigger

 //Input_CH = 0-7 => select ADC input channel

 conv_period = (conv_period & 0x01)<<7;

 Ext_TRG = (Ext_TRG & 0x01) << 6;

 Input_CH = (Input_CH & 0x07) + 4;

 P_AD.AMR.BYTE = conv_period | Ext_TRG | Input_CH;

}

Figure 9: Function ‘init_adc()’

Figure 9 shows the function init_adc() with a three parameter list, conv_period for clock selection, Ext_TRG for
enabling/disabling of start of A/D conversion by external trigger signal and Input_CH for selecting the 8 channels. Then they are
all logically ORed together and set into register AMR. For details, please refer to the H8/38024 hardware manual.

H8/300L
Usage of ADC for Temperature Reading (ADC_Temp)

AN0303007/Rev.1.00 September 2003 Page 14 of 23

PRELIMINARY

void init_lcd(void)

{

 unsigned char temp_a;

 unsigned char *dest;

 dest = (unsigned char *)0xF740;

 for (temp_a=0 ; temp_a<16 ; temp_a++){*dest++ = 0;}

 P_LCD.LPCR.BYTE = 0xC8; //1/4 duty cycle

 P_LCD.LCR.BYTE = 0xFF; //display is faint

 P_LCD.LCR2.BYTE = 0x60;

}

Figure 10: Function ‘init_lcd()’

Figure 10 shows the function init_lcd() to initialize the LCD panel for display. It takes in no parameters. Pointer *dest is
set to point to the starting address of the LCD RAM. The ‘for’ loop is used to clear the LCD RAM memory. For details on the LCD,
please refer to the application board manual APPBD-3800 and H8/38024 hardware manual.

void taint(void)

{

 P_SYSCR.IRR1.BIT.IRRTA = 0; // Clear IRRTA flag

 goRead =1; // Set status to start to read temp

 start_adc(1); // start ADC conversion

}

Figure 11: Function ‘taint()’

Figure 11 shows the interrupt service routine taint(), defined inside the same file together with the main() . This subroutine
is necessary when using interrupts with Timer A because whenever Timer A overflows, this subroutine will be called. First of all, the
interrupt request flag IRRTA is clear. nOVF counts the number of overflows that had occurred and compares with the calculated
loop (count) required, then if necessary, status flag goRead is set and A/D conversion is started. In fact, already there has been
allocated a file for all interrupt service routine implementation. This file is intprg.c. Thus if we are to define the interrupt
service routine outside of this file, you will need to add these two lines of code to this file as shown in Figure 12.

H8/300L
Usage of ADC for Temperature Reading (ADC_Temp)

AN0303007/Rev.1.00 September 2003 Page 15 of 23

PRELIMINARY

#include <machine.h>

#pragma section IntPRG

extern void taint (void); // Add this line

 :

 :

 :

 :

// vector 11 Timer A Overflow

__interrupt(vect=11) void INT_TimerA(void)

{

 taint(); // Add this line

}

Figure 12: Implementation of Interrupt Service Routines

void start_adc(unsigned char start)

{

 //start = 1 , start ADC

 //start = 0 , stop ADC

 if(start==1) P_AD.ADSR.BYTE |= 0x80; //Set ADSF : start A/D conversion

 else P_AD.ADSR.BYTE &= 0x7F; //Set ADSF : stop A/D conversion

}

Figure 13: Function ‘start_adc()’

Figure 13 shows the function start_adc() when called by function taint() , will start the A/D conversion by setting ADSF
or otherwise clears it to stop the conversion.

intprg.c file

H8/300L
Usage of ADC for Temperature Reading (ADC_Temp)

AN0303007/Rev.1.00 September 2003 Page 16 of 23

PRELIMINARY

void init_timerA(unsigned char clkSel)

{

 set_imask_ccr(1); // Interrupt Disable

 //TMA : |---|---|---|---|TMA3|TMA2|TMA1|TMA0|

 //Bits 7 to 5 are reserved; only 0 can be written to these bits

 //Bit 4 is reserved; it is always read as 1 and cannot be modified

 //Bits 3 to 0 : TMA3 to TMA0 : Internal Clock Select

 P_TMRA.TMA.BYTE = clkSel;

 // 0x18, 1 sec

 // 0x19, 0.5 sec

 // 0x1A, 0.25 sec

 // 0x1B, 0.03125 sec

 P_SYSCR.IRR1.BIT.IRRTA = 0; // Clear IRRTA flag

 P_SYSCR.IENR1.BIT.IENTA = 1; // Timer A Interrupt, 1-Enable, 0-Disable

 set_imask_ccr(0); // Interrupt,0-Enable,1-Disable

 // set_imask_ccr() comes as a pair

}

Figure 14: Function ‘init_timerA()’

Figure 14 shows the function init_timerA() to initialize Timer A to make use of the available subclock timings (i.e. 1sec,
0.5sec, 0.25sec, 31.25msec) as we deem it is most appropriate for our application. Please remember to enable the interrupt request
for Timer A to be taken by setting bit IENTA in register IENR1 (please refer to the H8/38024 hardware manual). Function

set_imask_ccr() is provided by default in the machine.h library, so you do not need to define it. It actually helps to
temporary disable/mask any system interrupts while you are modifying/enabling any interrupt flags. If not, any system interrupts
may interrupt you before you actually enable an interrupt and therefore set off a chain of interrupt reactions. This may cause system
unstability and data inconsistency.

H8/300L
Usage of ADC for Temperature Reading (ADC_Temp)

AN0303007/Rev.1.00 September 2003 Page 17 of 23

PRELIMINARY

void display_number(unsigned char digit, unsigned char number, unsigned char decimal_point)

{

 unsigned short *dest;

 switch(digit)

 { case 0:

 dest = (unsigned short *)0xF740; break;

 case 1:

 dest = (unsigned short *)0xF742; break;

 case 2:

 dest = (unsigned short *)0xF744; break;

 case 3:

 dest = (unsigned short *)0xF746; break;

 case 4:

 dest = (unsigned short *)0xF748; break;

 case 5:

 dest = (unsigned short *)0xF74A; break;

 case 6:

 dest = (unsigned short *)0xF74C; break;

 case 7:

 dest = (unsigned short *)0xF74E; break;

 }

 if (decimal_point)

 *dest = (unsigned short)(lcd_number_data[number] | 0x0800);

 else

 *dest = lcd_number_data[number];

Figure 15: Function ‘display_number()’

On previous page, Figure 15 shows the function display_number(). This function requires 3 parameters, digit to select
which display segment (not the hardware pins) to turn on, number contains the character to be displayed and decimal_point
to enable or disable that particular segment’s decimal point. Firstly, pointer *dest will point to the respective LCD RAM’s
location according to the segment number contained in digit. Then if decimal_point is a positive non-zero integer, that
segment’s decimal point will be displayed together with the character contained in array lcd_number_data[]. Array
lcd_number_data[] is a global variable defined in the file lcd.h as in our application. These values are worked out
according to the LCD’s specification, so you are required to search through hardware datasheet in case you want to know how they
are derived. You’ll need to create on your own a new file and named it as lcd.h and add the section in Figure 16 to this file.
Remember to update all dependencies after you have added this file to the workspace directory.

H8/300L
Usage of ADC for Temperature Reading (ADC_Temp)

AN0303007/Rev.1.00 September 2003 Page 18 of 23

PRELIMINARY

const short lcd_number_data[39] = {0xE724, //0. '0' : ABCDEF

 0x0600, //1. '1' : BC

 0xC342, //2. '2' : ABDEGK

 0x8742, //3. '3' : ABCDGK

 0x2642, //4. '4' : BCFGK

 0xA542, //5. '5' : ACDFGK

 0xE542, //6. '6' : ACDEFGK

 0x0700, //7. '7' : ABC

 0xE742, //8. '8' : ABCDEFGK

 0x2742, //9. '9' : ABCFGK

 0x00E7, //10. '*' : GHJKLN

 0x0000, //11. Blank: All segments OFF

 0x6742, //12. 'A' :

 0xE442, //13 'B' :CDEFGK

 0xE100, //14. 'C'

 0xC642, //15. 'D'

 0xE142, //16. 'E'

 0x6142, //17. 'F'

 0xE540, //18. 'G'

 0x6642, //19. 'H'

 0x8118, //20. 'I'

 0xC600, //21. 'J'

 0x60A2, //22. 'K'

 0xE000, //23. 'L'

 0x6621, //24. 'M'

 0x6681, //25. 'N'

 0xE700, //26. 'O'

 0x6342, //27. 'P'

 0xE780, //28. 'Q'

 0x63C2, //29. 'R'

 };

Figure 16: LCD values decode

H8/300L
Usage of ADC for Temperature Reading (ADC_Temp)

AN0303007/Rev.1.00 September 2003 Page 19 of 23

PRELIMINARY

Software Operation

Below is a flowchart showing the flow of operation implemented by the code when the application is running.

START

Initialise LCD, ADC and TimerA

End of AD
conversion?

Read ADC value from AD register

Search lookup table for the nearest match to
the captured value and its corresponding

degree celsius

Timer A overflow?

YES

YES

NO

NO

Display temperature value on LCD panel

Timer A

Interrupt

Clear interrupt request flag

Set Timer A overflow flag

Start AD conversion

 Return from

Interrupt

H8/300L
Usage of ADC for Temperature Reading (ADC_Temp)

AN0303007/Rev.1.00 September 2003 Page 20 of 23

PRELIMINARY

4. Other Considerations

4.1 System Performance

One of the seroius considerations of any measurement system is the overall system error contributed by the various sources of errors.
Let us start by establishing our overall system-performance requirements. Each component in the system will have an associated
error, but it is to kept to a minimum within a certain limit. Since the ADC is a key component in the signal path, therefore necessary
to consider errors contributed by the ADC. For the ADC, let's assume that the conversion-rate, interface, power-supply, power-
dissipation, input-range, and channel-count requirements are acceptable before we embark on our analysis of the overall system
performance.

Accuracy of the ADC is dependent on several key specs, which include integral nonlinearity error (INL), offset and gain errors, and
the accuracy of the voltage reference, temperature effects, and AC performance. Since we are not involved in AC sources, AC
performance is not our concern here. The DC performance will commonly be better than the AC performance.

4.2 Methods of Analysis
There are two popular methods for determining the overall system error. They are the root-sum-square (RSS) method and the worst-
case method. In the RSS method, the error terms are individually squared, added, and then the square root is taken. The RSS error
budget is given by:

Total system error = sqrt(E1
2 + E2

2 + E3
2 + . . .+ EN

2)

where EN represents the term for a particular circuit component or parameter. To achieve higher accuracy for this method, all error
terms should be uncorrelated (no constant relation), which may or may not always be the case. In the worst-case error analysis, all
error terms add. This method will achieve worst case error possible and guarantees the actual error will never exceed a this limit. The
actual error is always less than this value. The measured error will most probably lies somewhere between the values given by these
two methods, but is often closer to the RSS value.

Ultimately, it is up to the designer's error budget, typical or worst-case values for the error terms can be used. There are many factors
to consider, the importance of that particular parameter, the standard deviation of the measurement value, the size of the error in
relation to other errors, etc. So there really aren't standard rules that must be obeyed. For our case, we will use RSS method will
suffice.

The overall system will have a total-error budget based on the summation of error terms for each circuit component in the signal path.
Assumptions we make about the input of ADC(output of sensor) are that we are measuring a slow-changing, DC-type signal, and our
operating temperature range is 0°C to 70°C with performance guaranteed from -20°C to 75°C and Avcc 2.7 to 5.5V for ADC(from
specs). Therefore,

Total system error = sqrt[(ADC overall error)2 + (pullup resistor error)2 + (thermistor error)2]

= sqrt((0.78%)2 + (5%)2 + (5%)2)

 = 7.11 %

H8/300L
Usage of ADC for Temperature Reading (ADC_Temp)

AN0303007/Rev.1.00 September 2003 Page 21 of 23

PRELIMINARY

Reference
1. H8/38024 Series, H8/38024F-ZTAT Hardware Manual

H8/300L
Usage of ADC for Temperature Reading (ADC_Temp)

AN0303007/Rev.1.00 September 2003 Page 22 of 23

PRELIMINARY

Revision Record
Description

Rev.

Date Page Summary

1.00 Sep.03 - First edition issued

H8/300L
Usage of ADC for Temperature Reading (ADC_Temp)

AN0303007/Rev.1.00 September 2003 Page 23 of 23

PRELIMINARY

1. These materials are intended as a reference to assist our customers in the selection of the Renesas
Technology Corporation product best suited to the customer's application; they do not convey any
license under any intellectual property rights, or any other rights, belonging to Renesas Technology
Corporation or a third party.

2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any
third-party's rights, originating in the use of any product data, diagrams, charts, programs,
algorithms, or circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts, programs and
algorithms represents information on products at the time of publication of these materials, and are
subject to change by Renesas Technology Corporation without notice due to product improvements
or other reasons. It is therefore recommended that customers contact Renesas Technology
Corporation or an authorized Renesas Technology Corporation product distributor for the latest
product information before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss
rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corporation by various
means, including the Renesas Technology Corporation Semiconductor home page
(http://www.renesas.com).

4. When using any or all of the information contained in these materials, including product data,
diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total
system before making a final decision on the applicability of the information and products. Renesas
Technology Corporation assumes no responsibility for any damage, liability or other loss resulting
from the information contained herein.

5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a
device or system that is used under circumstances in which human life is potentially at stake.
Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation
product distributor when considering the use of a product contained herein for any specific
purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear,
or undersea repeater use.

6. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce
in whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions, they must
be exported under a license from the Japanese government and cannot be imported into a country
other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the
country of destination is prohibited.

8. Please contact Renesas Technology Corporation for further details on these materials or the
products contained therein.

1. Renesas Technology Corporation puts the maximum effort into making semiconductor products
better and more reliable, but there is always the possibility that trouble may occur with them. Trouble
with semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or
(iii) prevention against any malfunction or mishap.

Keep safety first in your circuit designs!

Notes regarding these materials

