
 APPLICATION NOTE 

R01AN1228EJ0100  Rev.1.00  Page 1 of 39 
Aug. 24, 2012  

V850E2/ML4 
Performance Evaluation Software 

Abstract 
This document describes a sample code that uses timer array unit A (TAUA) of the V850E2/ML4 to evaluate 
performance of the user-created tasks (functions). 

 

Products 
V850E2/ML4 

 
When using this application note with other Renesas MCUs, careful evaluation is recommended after making 
modifications to comply with the alternate MCU. 

R01AN1228EJ0100
Rev.1.00

Aug. 24, 2012



V850E2/ML4 Performance Evaluation Software 

R01AN1228EJ0100  Rev.1.00  Page 2 of 39 
Aug. 24, 2012  

 

Contents 

1. Specifications ..................................................................................................................................... 3 

2. Operation Confirmation Conditions .................................................................................................... 5 

3. Hardware ............................................................................................................................................ 6 
3.1 Pins Used..................................................................................................................................... 6 

4. Software ............................................................................................................................................. 7 
4.1 Operation Overview ..................................................................................................................... 7 
4.2 File Composition .......................................................................................................................... 8 
4.3 Constants ..................................................................................................................................... 9 
4.4 Variables .................................................................................................................................... 10 
4.5 Functions.................................................................................................................................... 11 
4.6 Function Specifications .............................................................................................................. 12 
4.7 Flowcharts.................................................................................................................................. 17 

4.7.1 Main Processing ................................................................................................................. 17 
4.7.2 Execution Processing for Command Line String................................................................ 18 
4.7.3 Split Processing for Command Line String......................................................................... 19 
4.7.4 Analytical Processing for Command String Group ............................................................. 21 
4.7.5 Help Command Processing................................................................................................ 22 
4.7.6 UARTJ0 Initialization .......................................................................................................... 23 
4.7.7 UARTJ0 Receive Interrupt Processing............................................................................... 24 
4.7.8 UARTJ0 Specified Format Serial Output Processing......................................................... 25 
4.7.9 UARTJ0 Line Reading Serial Input Processing.................................................................. 26 
4.7.10 TAUA0 Initialization ........................................................................................................... 27 
4.7.11 TAUA0 Interrupt Processing.............................................................................................. 28 
4.7.12 TAUA0 Timer Counting Operation Start Processing......................................................... 28 
4.7.13 TAUA0 Timer Counting Operation Stop Processing ......................................................... 29 
4.7.14 TAUA0 Timer Counting Acquisition Processing................................................................ 29 
4.7.15 Evaluation Processing for Math Function Library Speed .................................................. 30 
4.7.16 Evaluation Processing for Cosine Calculation Speed ....................................................... 31 
4.7.17 Evaluation Processing for Square Root Calculation Speed.............................................. 32 
4.7.18 Evaluation Processing for User-Created Function Processing Speed.............................. 33 
4.7.19 User-Created Function Processing ................................................................................... 34 

5. Application Example......................................................................................................................... 35 
5.1 Performance Evaluation............................................................................................................. 35 
5.2 Adding A User-Created Task..................................................................................................... 38 

6. Sample Code.................................................................................................................................... 39 

7. Reference Documents...................................................................................................................... 39 
 



V850E2/ML4 Performance Evaluation Software 

R01AN1228EJ0100  Rev.1.00  Page 3 of 39 
Aug. 24, 2012  

 

1. Specifications 
In this application note, the V850E2/ML4 evaluates performance of the user-created tasks (functions). This sample code 
is designed to have the user-created tasks embedded in it to select and activate the user-created tasks from a serial 
terminal. It evaluates the performance by counting the number of cycles taken from start to end of the user-created tasks.  

As shown in Figure 1.2  "Specification Diagram", the V850E2/ML4 CPU board waits a command which specifies the 
processing to be executed from several evaluation processing (evaluation command). When the evaluation command is 
transmitted, it executes a corresponding evaluation processing and transmits the result via serial output. 

When a performance evaluation is executed, an evaluation command is transferred to the V850E2/ML4 CPU board 
from the host PC via the serial cable. For this reason, the host PC is required to install a serial cable and a serial 
communication application soft such as hyper terminal other than the V850E2/ML4 CPU board. Refer to the section 5.1 
"Performance Evaluation" for details. 

 
Table 1.1 lists the Peripheral Functions and Their Applications and Figure 1.1 shows the System Configuration 
Diagram. 

 
Table 1.1   Peripheral Functions and Their Applications 

Peripheral Function Application 
Timer array unit A (TAUA) Measures the time for task processing 
Asynchronous serial interface (UARTJ) Receives an evaluation command from the host PC 

and transmits the evaluation result 
Interrupt function Used for UARTJ receive interrupt and TAUA interrupt
 
 

Serial cable

Serial communication
application soft

> Evaluation
  command 

============
Evaluation result 
displayed
============

Host PC

V850E2/ML4 CPU Board
Model: R0K0F4022C000BR

V850E2/ML4

Evaluation
command

Evaluation
result

Input from 
keyboard etc.

 

Figure 1.1   System Configuration Diagram 



V850E2/ML4 Performance Evaluation Software 

R01AN1228EJ0100  Rev.1.00  Page 4 of 39 
Aug. 24, 2012  

 

Start sample code

> HELP

Output help message
help

> EXIT

Select which evaluation shall be executed 
by the evaluation command 

(Transmit from the host PC using the serial 
communication application)

Initialize module in use

Output starting message

Receive evaluation 
command?

No

Yes

Evaluation command?

> MATH

Output ending message Math function 
evaluation processing

Result output
test_math

> FUNC1

User-created task 
evaluation processing

 (Evaluation for the  
user_func1 function)

Result output
test_user_func1

[Global variations]
int8_t * g_cmd_str[]

: Command table
int32_t (* g_cmdexe[])(int32_t, int8_t **)

: Function table corresponding to command table 
Blue letters and blue lines are added by the user.
The "n" is the integer greater than 3 appropriate to 
implementation.

User-created task xx 
evaluation processing

(Evaluation for the 
user_func2 function etc.)

Result output
g_cmdexe[n]

> g_cmd_str[n]

/* ==== Command table ==== */
int8_t *g_cmd_str[] = 
{
    "HELP",
    /* ---- Evaluation command ---- */
    "MATH",
    "FUNC1",
    /* Add a command to execute evaluation processing for user-
created task */
    NULL
};
/* ==== Function table corresponding to command table  ==== */
int32_t (* g_cmdexe[])(int32_t, int8_t **) = 
{
    help, /* corresponds to "HELP" */
    /* ---- Evaluation function ---- */
    test_math, /* corresponds to "MATH" */
    test_user_func1, /* corresponds to "FUNC1" */
    /* Add a processing function to evaluate user-created task */
    NULL
};

Evaluation for the additional user-created tasks 
(added by the user)

Start evaluation processing for ...

Clear the total

Start counting
Clear counter

End counting

Add counts to the total

Accomplish the number of 
evaluations?

Tasks for evaluation

Display results to the serial output
result => average 

(total/the number of evaluations)

End evaluation processing 
for ...

No

Yes

Count only this range

Repeat to calculate the 
average

When there is more than 
one task for evaluation, 
execute this range within 
the evaluation processing 
function.

: : :

Evaluation 
command

Task for evaluation 
(function)

MATH test_math()
    Internal call
      test_math_cos()
      test_math_sqrt()

cos(),
cosf(),
sqrt(),
sqrtf()

FUNC1 test_user_func1() user_func1()

FUNC2 etc.* test_user_func2() etc.* user_func2() etc.*

Description

Evaluation for math function  
attached to the CX compiler

Example of implementation 
for the user-created task 
evaluation

Created and added by the 
user

* The required numbers should be implemented in the appropriate names.

Evaluation processing 
(evaluation and 
function which outputs 
the result)

 

Figure 1.2   Specification Diagram 



V850E2/ML4 Performance Evaluation Software 

R01AN1228EJ0100  Rev.1.00  Page 5 of 39 
Aug. 24, 2012  

 

2. Operation Confirmation Conditions 
The sample code accompanying this application note has been run and confirmed under the conditions below. 

 
Table 2.1   Operation Confirmation Conditions 

Item Contents 
MCU used V850E2/ML4 
Operating frequency Internal system clock (fCLK) : 200MHz 

P bus clock (fPCLK) : 66.667MHz 
Operating voltage Vcc: 3.3V 
Integrated development 
environment 

Renesas Electronics Corporation 
CubeSuite+ Ver.1.02.01 
Renesas Electronics Corporation 
CX compiler package Ver.1.21 

C compiler 

Compile option 
-C f4022 -o DefaultBuild\v850e2ml4_eval.lmf 
-Xobj_path=Defaultbuild -g -l%ProjectDir%\inc -Xdef_ver +Xide 
-Xmap=DefaultBuild\v850e2ml4_eval.map 
-Xhex=DefaultBuild\v850e2ml4_eval.hex 

Operating mode Normal operating mode 
Sample code version 1.00 
Board used R0K0F4022C000BR 
Tool used Serial communication application 
 
 



V850E2/ML4 Performance Evaluation Software 

R01AN1228EJ0100  Rev.1.00  Page 6 of 39 
Aug. 24, 2012  

 

3. Hardware 

3.1 Pins Used 
Table 3.1 lists the Pins Used and Their Functions. 

 
Table 3.1   Pins Used and Their Functions 

Pin Name I/O Function 
P2_13/TXD0F Output Used as output to the serial port 
P2_12/RXD0F Input Used as input from the serial port 
 



V850E2/ML4 Performance Evaluation Software 

R01AN1228EJ0100  Rev.1.00  Page 7 of 39 
Aug. 24, 2012  

 

4. Software 

4.1 Operation Overview 
This sample code uses the timer array unite A (TAUA) to evaluate user-created tasks (functions).  

The evaluation command is transferred to the performance evaluation software in which had the user-created tasks 
embedded from the serial communication application (serial terminal) of the host PC to execute evaluation. During 
execution of the user-created tasks, the number of PCLK cycles required for the TAUA is counted, and the number of 
CPU clock cycles is calculated to evaluate the performance. The result of the performance evaluation will be displayed 
in the serial terminal by transmitting from the serial output.  

 
Figure 4.1 shows the Performance Evaluation Diagram. 

V850E2/ML4

Start

Task 1

Task 2

Serial terminal

TAUA

Task 1

Task 2

EndCreated and added  
by the user

task selection and 
activation 

xxx (cycle)

yyy (cycle)

Evaluation 
command

Evaluation 
result

Evaluation 
result

Performance evaluation 
software

.
    .
        .

  .
      .

.
    .
        .

  .
      .

  .
      .

.
    .
        .

 

Figure 4.1   Performance Evaluation Diagram 



V850E2/ML4 Performance Evaluation Software 

R01AN1228EJ0100  Rev.1.00  Page 8 of 39 
Aug. 24, 2012  

 

4.2 File Composition 
Table 4.1 lists the Files Used in the Sample Code. Files not generated by the integrated development environment 
should not be listed in this table. 

 
Table 4.1   Files Used in the Sample Code 

File Name Outline Remarks 
main.c Main processing module  
io_taua0_timer.c Timer processing module  
io_uartj0_stdio.c Serial I/O processing module  
test_math.c Math functions evaluation module  
test_user.c User-created task evaluation module  
user_func1.c User-created function module  
io_taua0_timer.h Timer processing header  
io_uartj0_stdio.h Serial I/O processing header  
user_func1.h User-created function module header  
r_typedefs.h Fixed width integral types definition header  
 



V850E2/ML4 Performance Evaluation Software 

R01AN1228EJ0100  Rev.1.00  Page 9 of 39 
Aug. 24, 2012  

 

4.3 Constants 
Table 4.2 lists the Constants Used in the Sample Code. 

 
Table 4.2   Constants Used in the Sample Code 

Constant Name Setting Value Contents 
MAX_ARGNUM 8 Maximum number of arguments 
MAX_ARGLENGTH 256 Maximum length of argument characters 
BUF_SIZE_WAIT 256 Buffer size waiting for string input 
BUF_SIZE_UARTJ0_STDOUT 512 Output buffer size 
BUF_SIZE_UARTJ0_STDIN 256 Input buffer size 
PI 3.141592653589 Pi 
EVAL_NUM 256 Number of evaluations executed for MATH command 

processing  
EVAL_TIMES 10 Number of evaluations executed for FUNC1 command 

processing 
LOOP_TIMES 100 Number of empty loops executed during the user-

created task processing 
 



V850E2/ML4 Performance Evaluation Software 

R01AN1228EJ0100  Rev.1.00  Page 10 of 39 
Aug. 24, 2012  

 

4.4 Variables 
Table 4.3 lists the Global Variables.  

 
Table 4.3   Global Variables 

Type Variable Name Contents Function Used 
int8_t g_buf_wait[WAIT_BUF_SIZE] Buffer waiting for string 

input 
Main, 
cmdline_pars 

int8_t g_arg 
[MAX_ARGNUM][MAX_ARGLENGTH]

Storage area for command 
string group 

command_exe, 
cmdline_split, 
cmdline_pars 

int8_t ∗ g_cmd_str[] Command table cmdline_pars 
int32_t (∗ g_cmdexe[])(int32_t, int8_t ∗∗) Processing function table 

corresponding to command 
table 

cmdline_pars 

double g_buf_double_result[EVAL_NUM] Storage buffer for 
calculation result of cos 
function and sqrt function 

test_math, 
test_math_cos, 
test_math_sqrt 

float g_buf_float_result[EVAL_NUM] Storage buffer for 
calculation result of cosf 
function and sqrtf function 

test_math, 
test_math_cos, 
test_math_sqrt 

uint32_t g_cnt_int_taua0 Counter for measuring the 
number of interrupt 
processing executions 

io_int_taua0_count_time,
io_taua0_start_timer, 
io_taua0_get_counter 

uint8_t g_buf_uartj0_stdout 
[UARTJ0_STDOUT_BUF_SIZE] 

Output data buffer io_uartj0_printf 

uint8_t g_buf_uartj0_stdin 
[UARTJ0_STDIN_BUF_SIZE] 

Input data buffer io_int_uartj0_recv, 
io_uartj0_fgets 

int32_t g_cnt_uartj0_stdin Counter for the number of 
input data 

io_int_uartj0_recv, 
io_uartj0_fgets 

 
 



V850E2/ML4 Performance Evaluation Software 

R01AN1228EJ0100  Rev.1.00  Page 11 of 39 
Aug. 24, 2012  

 

4.5 Functions 
Table 4.4 lists the Functions. 

 
Table 4.4   Functions 

Function Name Outline 
Main Main processing  
command_exe Execution processing for command line string 
cmdline_split Split processing for command line string 
cmdline_pars Analytical processing for command string group 
Help Help command processing 
io_init_uartj0 UARTJ0 initialization 
io_int_uartj0_recv UARTJ0 receive interrupt processing 
io_uartj0_printf UARTJ0 specified format serial output processing 
io_uartj0_fgets UARTJ0 line reading serial input processing 
io_init_taua0 TAUA0 initialization 
io_int_taua0_count_timer TAUA0 interrupt processing 
io_taua0_start_timer TAUA0 timer counting operation start processing 
io_taua0_stop_timer TAUA0 timer counting operation stop processing  
io_taua0_get_counter TAUA0 timer counting acquisition processing 
test_math Evaluation processing for math function library speed 
test_math_cos Evaluation processing for cosine calculation speed 
test_math_sqrt Evaluation processing for square root calculation speed 
test_user_func1 Evaluation processing for user-created function processing speed 
user_func1 User-created function processing 
 



V850E2/ML4 Performance Evaluation Software 

R01AN1228EJ0100  Rev.1.00  Page 12 of 39 
Aug. 24, 2012  

 

4.6 Function Specifications 
The following tables list the sample code function specifications. 

 
Main 

Outline Main processing 
Header  

Declaration void main(void) 
Description After initialization, waits and executes the command input by calling the 

command_exe function. 
Arguments None  

Return Value None 
 
 
command_exe 

Outline Execution processing for command line string 
Header  

Declaration int32_t command_exe(int8_t ∗ buf) 
Description Executes a processing which corresponds to the command line string specified by 

the argument. Execute the split processing of the command line string by calling the 
cmdline_split function, and stores the string into the command string and the string-
array (command string group) which includes more than one argument string. Then 
analyzes the command string group by calling the cmdline_pars function. 

Arguments int8_t ∗ buf : Command line string 
Return Value >0 : Depends on command processing  

0 : Normal end 
-1 : Detects EXIT command 

 
 
cmdline_split 

Outline Split processing for command line string 
Header  

Declaration int32_t cmdline_split(int8_t ∗ cmdline, int8_t ∗ argv[]) 
Description Splits the command line string specified by the cmdline with a space, and the split 

command string and argument string can be stored into the array argv up to the 
number of MAX_ARGNUM. When the beginning of the command line string specified 
by the cmdline has '>', split processing will be started from the character secondary 
to the '>'. When there are more than two consecutive spaces during split processing, 
the spaces shall be considered as one space. But if the string is surrounded by 
double quotes, it is considered as a single string. Also, returns the number of stored 
strings. 

Arguments int8_t ∗ cmdline : Command line string 
 int8_t ∗ argv[] : Address to store the split result (command string group) 

Return Value Number of strings in the command string group 
 



V850E2/ML4 Performance Evaluation Software 

R01AN1228EJ0100  Rev.1.00  Page 13 of 39 
Aug. 24, 2012  

 
cmdline_pars 

Outline Analytical processing for command string group 
Header  

Declaration int32_t cmdline_pars(int32_t argc, int8_t ∗ argv[]) 
Description Analyzes the command string specified by the argument argv and executes 

corresponding command processing function. The command to be executed is 
registered in the command table g_cmd_str[]. When adding or deleting a command, 
change the command table g_cmd_str[] and the function table g_cmdexe[] 
corresponding to the command table. 

Arguments int32_t argc : Number of strings in the command string group 
 int8_t ∗ argv[] : Command string group 

Return Value >0 : Depends on command processing  
0 : Normal end other than command table 
-1 : Detects EXIT command 

 
 
Help 

Outline Help command processing 
Header  

Declaration int32_t help(int32_t argc, int8_t ∗∗ argv) 
Description Describes the evaluation command using the UARTJ0 serial output. 
Arguments int32_t argc : Number of strings in the command string group 

 int8_t ∗∗ argv : Command string group 
Return Value 0 : Normal end  

-1 : Error 
 
 
io_init_uartj0 

Outline UARTJ0 initialization 
Header  

Declaration void io_init_uartj0(void) 
Description Initializes the UARTJ0 to set it for the serial I/O. 
Arguments None  

Return Value None 
 
 



V850E2/ML4 Performance Evaluation Software 

R01AN1228EJ0100  Rev.1.00  Page 14 of 39 
Aug. 24, 2012  

 
io_int_uartj0_recv 

Outline UARTJ0 receive interrupt processing 
Header  

Declaration void io_int_uartj0_recv(void) 
Description Stores the UARTJ0 received data to the receive data buffer. 
Arguments None  

Return Value None 
 
 
io_uartj0_printf 

Outline UARTJ0 specified format serial output processing 
Header  

Declaration int32_t io_uartj0_printf(const int8_t format[], ...) 
Description Executes serial output using the UARTJ0 according to the format specified by the 

argument. 
Arguments const int8_t format[], ... : Output format string and data based on the format 

Return Value Number of output bytes 
 
 
io_uartj0_fgets 

Outline UARTJ0 line reading serial input processing 
Header  

Declaration int8_t ∗ io_uartj0_fgets(int8_t ∗ s, int32_t n, FILE ∗ stream) 
Description Reads a string one line by the UARTJ0 serial input. 
Arguments int8_t ∗ s : Address to store the read data 

 int32_t n : Designation of  the read size 
 FILE ∗ stream : File pointer (stdin fixed) 

Return Value NULL                      : End without doing anything when the value of argument stream 
is not stdin. 

Other than NULL : The value of arguments (Normal end) 
 
 
io_init_taua0 

Outline TAUA0 initialization 
Header  

Declaration void io_init_taua0(void) 
Description Initializes the TAUA0 to use it as the measurement timer for the PCLK clock cycle 

counts. 
Arguments None  

Return Value None 
 



V850E2/ML4 Performance Evaluation Software 

R01AN1228EJ0100  Rev.1.00  Page 15 of 39 
Aug. 24, 2012  

 
io_int_taua0_count_timer 

Outline TAUA0 interrupt processing 
Header  

Declaration void io_int_taua0_count_timer(void) 
Description Increments the measurement counter for the number of interrupt processing 

executions. 
Arguments None  

Return Value None 
 
 
io_taua0_start_timer 

Outline TAUA0 timer counting operation start processing 
Header  

Declaration void io_taua0_start_timer(void) 
Description Clears the measurement counter for the number of interrupt processing executions, 

and starts the TAUA0 timer counting operation. 
Arguments None  

Return Value None 
 
 
io_taua0_stop_timer 

Outline TAUA0 timer counting operation stop processing 
Header  

Declaration void io_taua0_stop_timer(void) 
Description Stops the TAUA0 timer counting operation. 
Arguments None  

Return Value None 
 
 
io_taua0_get_counter 

Outline TAUA0 timer counting acquisition processing 
Header  

Declaration uint32_t io_taua0_get_counter(void) 
Description Calculates the number of CPU clock cycles counted by the measurement counter for 

the number of interrupt processing execution and the TAUAT0 register during the 
timer counting operation. 

Arguments None  
Return Value Number of cycles counted during the timer counting 

 
 
test_math 

Outline Evaluation processing for math function library speed 
Header  

Declaration int32_t test_math (int32_t argc, int8_t ∗∗ argv) 
Description Evaluates the math function library speed. Calls the evaluation processing function 

for cosine calculating speed and the evaluation processing function for square root 
calculation speed.  

Arguments int32_t argc : Number of strings in the command string group 
 int8_t ∗∗ argv : Command string group 

Return Value 1 
 



V850E2/ML4 Performance Evaluation Software 

R01AN1228EJ0100  Rev.1.00  Page 16 of 39 
Aug. 24, 2012  

 
test_math_cos 

Outline Evaluation processing for cosine calculation speed 
Header  

Declaration void test_math_cos (void) 
Description Evaluates the cosine calculating speed. Executes the cos function and cosf function 

of the MATH library for 256 times, and calculates the average of processing time 
every time being measured by the TAUA (CPU clock cycles). Outputs the calculation 
results by calling the io_uartj0_printf function. 

Arguments None  
Return Value None 

 
 
test_math_sqrt 

Outline Evaluation processing for square root calculation speed 
Header  

Declaration void test_math_sqrt (void) 
Description Evaluates the square root calculation speed. Executes the sqrt function and sqrtf 

function of the MATH library for 256 times, and calculates the average of processing 
time every time being measured by the TAUA (CPU clock cycles). Outputs the 
calculation results by calling the io_uartj0_printf function. 

Arguments None  
Return Value None 

 
 
test_user_func1 

Outline Evaluation processing for user-created function processing speed 
Header  

Declaration int32_t test_user_func1 (int32_t argc, int8_t ∗ argv[]) 
Description Executes the user_func1 function for ten times, and calculates the average of 

processing time every time being measured by the TAUA (CPU clock cycles). 
Outputs the calculation results by calling the io_uartj0_printf function. 

Arguments int32_t argc : Number of strings in the command string group 
 int8_t ∗∗ argv : Command string group 

Return Value 1 
 
 
user_func1 

Outline User-created function processing 
Header  

Declaration void user_func1(void) 
Description Example of implementation for the user-created function. In the sample code, the 

empty loop will be executed for 100 times. 
Arguments None  

Return Value None 
 
 
 
 
 
 



V850E2/ML4 Performance Evaluation Software 

R01AN1228EJ0100  Rev.1.00  Page 17 of 39 
Aug. 24, 2012  

 

4.7 Flowcharts 
4.7.1 Main Processing 
Figure 4.2 shows the Main Processing. 

main

Yes

Yes

TAUA0 instrument timer initialization
io_init_taua0

UARTJ0 serial output initialization
io_init_uartj0

String input error?

Serial output processing
io_uartj0_printf

Serial output processing
io_uartj0_printf

Wait for serial string input 
io_uartj0_fgets

Command execution processing
command_exe

Serial output processing
io_uartj0_printf

End?

Serial output processing
io_uartj0_printf

No

No

 
 =======================================================================
 V850E2/ML4 Evaluation Program. Ver.1.00.00
 Copyright (C) 2012 Renesas Electronics Corporation. ALL rights reserved
 and Renesas Solutions Corporation. ALL rights reserved
 =======================================================================

 > 

Output startup message

Wait for input

 end command input operation
 please stop debugger

Output ending message

 error: gets error
Output error message

Interrupt allowed
__EI

 

Figure 4.2   Main Processing 



V850E2/ML4 Performance Evaluation Software 

R01AN1228EJ0100  Rev.1.00  Page 18 of 39 
Aug. 24, 2012  

 

4.7.2 Execution Processing for Command Line String 
Figure 4.3 shows the Execution Processing for Command Line String. 

command_exe

argc==0?

Yes

No

Split processing for 
command line string

cmdline_split

Copy argument into 
local variable

[Global variable]
int8_t g_arg[MAX_ARGNUM][MAX_ARGLENGTH]

: Storage area for command string group 
[Local variables]
int8_t * argv[MAX_ARGNUM]

: Command string group
int32_t argc

: Number of strings in command string group

Copy argument for the cmdline_pars function call
argv[] <- g_arg[]

The argc and the argv will be delivered to the first 
argument and the second argument, respectively.

Analytical execution processing for 
command string group

cmdline_pars

return (0) return (return value of cmdline_pars)

Split command line string
Store split result into g_arg[]
argc <- return value of the cmdline_split function

[Argument]
int8_t * buf   : Command line string

The number of split strings, argc, is a return value of 
the cmdline_split function.

 

Figure 4.3   Execution Processing for Command Line String  



V850E2/ML4 Performance Evaluation Software 

R01AN1228EJ0100  Rev.1.00  Page 19 of 39 
Aug. 24, 2012  

 

4.7.3 Split Processing for Command Line String 
Figure 4.4 and Figure 4.5 show the Split Processing for Command Line String 

cmdline_split

[Global variable]
int8_t g_arg[MAX_ARGNUM][MAX_ARGLENGTH] 

: Storage area for command string group
[Local variables]
int32_t i : Counter for the number of strings
int32_t argc : Number of strings in command string group
int8_t * s : Character position for processing
int8_t * ptr : Character position for processing result

Initialization of character string 
g_arg[]

The beginning of command line 
character string is '>'

s++
('>' at the beginning of command-line string is ignored)

Loop2 (for statement)
argc = 0; argc < MAX_ARGNUM; 

Loop1 (for statement)
i = 0; i < MAX_ARGNUM; i++

[Arguments]
int8_t * cmdline : Command line string
int8_t * argv[] : Address to store split result 

  (command string group)

Loop2 (for statement) End

return (argc)

The character pointed by s 
indicates space or terminal 

character?

i == 0?

argc--

Loop1 (for statement) End

argc++

Yes
Yes

No

No

A

B

Yes

No

Repeat the processing for one 
array to reach the maximum 
argument using for statement

Initialization of character position
s <- cmdline

 

Figure 4.4   Split Processing for Command Line String 



V850E2/ML4 Performance Evaluation Software 

R01AN1228EJ0100  Rev.1.00  Page 20 of 39 
Aug. 24, 2012  

 

Serial output processing
io_uartj0_printf

Go to double quotation or 
terminal character

[Arguments]
int8_t * cmdline : Command line string
int8_t * argv[] : Address to store split result 

  (command string group)
[Global variables]
int8_t g_arg[MAX_ARGNUM][MAX_ARGLENGTH] 

: Storage area for command string group
[Local variables]
int32_t i : Counter for the number of strings
int32_t argc : Number of strings in command string group
int8_t * s : Character position for processing
int8_t * ptr : Character position for processing result

Other than double quotation and 
terminal character?

Termination character 
or space?

Delete space in front of a string

Any character other than 
termination character and space?

Double quotation?

Update pointer and the number of 
characters

i >= MAX_ARGLENGTH?

return (0)

Yes

No s++

s++

No

Yes

*ptr <- *s
*ptr++
*s++
i++

command line is too long

When the number of characters exceeds 
the maximum argument, output error 
message to end.

Delete space in front of a string

Update pointer and the number of 
characters

*ptr <- *s
*ptr++
*s++
i++

i >= MAX_ARGLENGTH?

Serial output processing
io_uartj0_printf

return (0)
command line is too long

When the number of characters exceeds 
the maximum argument, output error 
message to end.

Yes

No

No

Yes

A

B

i = 0

 

Figure 4.5   Split Processing for Command Line String 



V850E2/ML4 Performance Evaluation Software 

R01AN1228EJ0100  Rev.1.00  Page 21 of 39 
Aug. 24, 2012  

 

4.7.4 Analytical Processing for Command String Group 
Figure 4.6 shows the Analytical Processing for Command String Group. 

cmdline_pars

for loop1
s = argv[0]; s != 0; s++

for loop1 End

argv[0] is "EXIT"?

for loop2
i = argv1; i<argc; i++

Option first character?
Uppercase conversion

toupper

for loop3
s = argv[i]; *s != '\0'; s++

for loop3 End

for loop4
i = argv1; i<argc; i++

Match with command string?

Call corresponding function
g_cmdexe[i] registered function

argv[0] is "ECHO"?

argv[0] is "PAUSE"?

return (-1)

return (g_cmdexe[i] return value of 
registered function)

return (0)

When the command shows EXIT, 
return the completion detection.

Option string uppercase conversion
Convert option (string starting with /, + or - 
after the second argument) to uppercase

Execute command processing function
When the command matches with the 
corresponding string, execute appropriate 
function to end.

The following processing will be executed 
when a corresponding command is given.

When the command shows ECHO, 
return without doing anything.

When the command shows PAUSE, 
wait until something is input and return.

Wait for serial string input
io_uartj0_fgets

Serial output processing
io_uartj0_printf

When none of the above applies, 
output error message to end.

[Arguments]
int32_t argc    : Number of strings in the command string group
int8_t * argv[]  : Command string group

Uppercase conversion
toupper

for loop2 End

for loop4 End

Yes

Yes

Yes

No

No

No

Yes

No

 error: %s is unsupport command

[Local variables]
int8_t * s  : Pointer for character position
int32_t i  : Loop counter

Command string (the first string) uppercase conversion

 

Figure 4.6   Analytical Processing for Command String Group 



V850E2/ML4 Performance Evaluation Software 

R01AN1228EJ0100  Rev.1.00  Page 22 of 39 
Aug. 24, 2012  

 

4.7.5 Help Command Processing 
Figure 4.7 shows the Help Command Processing. 

help

No

Serial output processing
io_uartj0_printf

Argument error?

Serial output processing
io_uartj0_printf

return (-1)

 commands help
 MATH : math function test
 FUNC1 : user task(=func1) test

Yes

 help error
Output error message

Output help message

return (0)

When there are several argument strings, and 
the second string does not have "/H", it is an argument error.

 

Figure 4.7   Help Command Processing 



V850E2/ML4 Performance Evaluation Software 

R01AN1228EJ0100  Rev.1.00  Page 23 of 39 
Aug. 24, 2012  

 

4.7.6 UARTJ0 Initialization 
Figure 4.8 shows the UARTJ0 Initialization. 

io_init_uartj0

UARTJ0IR interrupt allowed

PFC2 register setting

PFCE2 register setting

PMC2 register setting 

PM2 register setting 

return

PFC2 |= H'3000  

PIBC2 register setting

PIS2 register setting

PISE2 register setting

PISA2 register setting

URTJ0CTL1 register setting

URTJ0CTL2 register setting

URTJ0CTL1 register setting 

PFCE2 |= H'3000  

PMC2 |= H'3000  

PM2 |= H'1000  
PM2 &= ~H'2000  

PIBC2 |= H'1000  

PFC2 |= H'1000  

PISE2 &= ~H'1000  

PISA2 &= ~H'1000  

URTJ0CTL2 <- H'0D90 : Baudrate = 9600bps

URTJ0CTL1 <- H'5102 : Data = 8 bits, No parity, LSB first

URTJ0CTL0 |= H'E0 : UARTJ0 module enable

Interrupt level control
__set_il

Set the necessary bit for 
P2_13 TXD0F output setting 
and 
P2_12 RXD0F input setting

[Local variable]
uint32_t set_pdsc2 : PDSC2 register setting value

PDSC2 register protect cancellation 
procedure 1

Write H'A5 to PPCMD2 register

PDSC2  <- set_pdsc2 
 

PDSC2 register setting value 
calculation 

PDSC2 register setting value : Set the present value of 13 bits to 0
set_pdsc2 <- PDSC2 & (~0x2000)

 

PDSC2 register protect cancellation 
procedure 2

Write the setting value to PDSC2 register

PPCMD2 <- H'A5
 

PDSC2  <- set_pdsc2 
 

PDSC2 register protect cancellation 
procedure 4

Write the setting value to PDSC2 register

PDSC2 register protect cancellation 
procedure 3

Write the reversal value to PDSC2 register

PDSC2  <- ~set_pdsc2 
 

PDSC2 is a register subject to protection.
The procedures are required to change.

 

Figure 4.8   UARTJ0 Initialization 



V850E2/ML4 Performance Evaluation Software 

R01AN1228EJ0100  Rev.1.00  Page 24 of 39 
Aug. 24, 2012  

 

4.7.7 UARTJ0 Receive Interrupt Processing 
Figure 4.9 shows the UARTJ0 Receive Interrupt Processing. 

io_int_uartj0_recv

Store received data into input buffer

[Global variables]
uint8_t g_buf_uartj0_stdin[UARTJ0_STDIN_BUF_SIZE] : Input data buffer
int32_t g_cnt_uartj0_stdin : Counter for the number of input data

g_cnt_uartj0_stdin++Update counter for 
the number of input data

Clear counter for 
the number of input data

return

Yes

g_buf_uartj0_stdin[g_cnt_uartj0_stdin] <- URTJ0FRX

Buffer over?

No g_cnt_uartj0_stdin <- 0

: g_cnt_uartj0_stdin >= UARTJ0_STDIN_BUF_SIZE ?

 

Figure 4.9   UARTJ0 Receive Interrupt Processing 

 



V850E2/ML4 Performance Evaluation Software 

R01AN1228EJ0100  Rev.1.00  Page 25 of 39 
Aug. 24, 2012  

 

4.7.8 UARTJ0 Specified Format Serial Output Processing 
Figure 4.10 shows the UARTJ0 Specified Format Serial Output Processing. 

io_uartj0_printf

[Global variable]
uint8_t 
g_buf_uartj0_stdout[UARTJ0_STDOUT_BUF_SIZE]

: Output data buffer
[Local variables]
int32_t cnt : Output characters 
int8_t * pt : Current processing position
int8_t * pt_out : Writing position of output data buffer
int8_t * pt_buf : Compiled processing position
int32_t cnt_buf : Number of compiled processing
int32_t i : Loop counter

Loop1 (for statement)
i=0; i<(UARTJ0_STDOUT_BUF_SIZE-5); i++

Loop1 (for statement)  End

*pt_buf == termination 
character?No

Yes

*pt_buf == line feed?

*pt_buf == '%' ?

*pt_buf == termination 
character?

Update variables

Output string
io_uartj0_serial_output

Output termination character setting

*pt == termination character?

Line feed code processing

Format conversion

Initialize variables

Initialize variable for 
argument list scanning

va_start

return (cnt)

No

Yes

No

Yes

Yes

Yes

No

No

*pt_out++ <- *pt_buf++
cnt_buf++

[Argument]
uint8_t format[], ... : Output format string and data according to the format

Initialize variable for 
argument list scanning

va_start

Initialize variables cnt <- 0
pt <- format

Output position setting
pt_buf <- pt
pt_out <- g_buf_uartj0_stdout
cnt_buf <- 0

*pt_out <- '\0'
pt += cnt_buf

 

Figure 4.10   UARTJ0 Specified Format Serial Output Processing 



V850E2/ML4 Performance Evaluation Software 

R01AN1228EJ0100  Rev.1.00  Page 26 of 39 
Aug. 24, 2012  

 

4.7.9 UARTJ0 Line Reading Serial Input Processing 
Figure 4.11 shows the UARTJ0 Line Reading Serial Input Processing. 

io_uartj0_fgets

Make line feed?

No

Yes

Copy input
s[i] <- g_buf_uartj0_stdin[i]

When exceed the specified size,

Subtract for the size copied
g_cnt_uartj0_stdin <- g_cnt_uartj0_stdin - i

Loop1 (for statement)
i = 0; i < (n - 2); i++

Loop1 (for statement) End

input stream is standard input?

Exceed the input size?

Update input buffer counter

Substitute termination character

return (s)

return (NULL)

Initialize variable

Loop2 (for statement)
i = 0; i < (g_cnt_uartj0_stdin- 1); i++

Loop2 (for statement) End

Clear input buffer counter

Substitute termination character

return (s)

Yes

No

No

Yes

[Global variables]
uint8_t g_buf_uartj0_stdin[UARTJ0_STDIN_BUF_SIZE]

: Received data buffer
int32_t g_cnt_uartj0_stdin

: Counter for the number of received data
[Local variable]
int32_t i : Loop counter

End without doing 
anything if standard 
input is not used

Store termination character in the last position of the 
data storage area
s[n-1] <- '\0'

Loop by for statement and copy input data 
until just before the last position in the data storage area
s[i] <- g_buf_uartj0_stdin[i]

When make the line feed, 

Clear the counter after all input was copied.
g_cnt_uartj0_stdin <- 0

Store termination character in the last position of the 
data storage area
s[i] <- '\0'

Loop by for statement and copy input data
until just before the line feed in the data storage area
s[i] <- g_buf_uartj0_stdin[i]Wait for interrupt using 

infinite loop until a line feed 
or specified size is input

[Arguments]
uint8_t *s : Address to store read data
int32_t n : Specified read size
FILE * stream : Input stream stdin fixed

 

Figure 4.11   UARTJ0 Line Reading Serial Input Processing 



V850E2/ML4 Performance Evaluation Software 

R01AN1228EJ0100  Rev.1.00  Page 27 of 39 
Aug. 24, 2012  

 

4.7.10 TAUA0 Initialization 
Figure 4.12 shows the TAUA0 Initialization. 

io_init_taua0

Set TAUA0 (ch0) interrupt priority level to 0

TAUA0CMOR0 <- H'0000
  TAUA0CKS bit <- B'00 : Operating clock selection CK0
  TAUA0STS bit <- B'000 : Software trigger
  TAUA0MD bit <- B'0000 : Interval timer mode,

  INTTAUA0Im cannot be output

TAUA0CMOR0 register setting

TAUA0TPS register setting

TAUA0CDR0 register setting

TAUA0 (ch0) interrupt
Mask bit (EIMK) clear

return

TAUA0TPS0 <- H'F<-FF0
  TAUA0PRS0 bit <- B'0000 : CK0 clock division ratio specified PCLK/2^0

TAUA0CDR0 <- H'FFFF : Compare value setting

MKTAUA0I0 <- 0 : Clear TAUA0 (ch0) interrupt mask bit (EIMK)

Interrupt level control
__set_il

 

Figure 4.12   TAUA0 Initialization 



V850E2/ML4 Performance Evaluation Software 

R01AN1228EJ0100  Rev.1.00  Page 28 of 39 
Aug. 24, 2012  

 

4.7.11 TAUA0 Interrupt Processing 
Figure 4.13 shows the TAUA0 Interrupt Processing. 

io_int_taua0_count_timer

Increment counter

return

g_cnt_int_taua0++

[Global variable]
uint32_t g_cnt_int_taua0

: Counter for measuring the number of interrupt processing executions 

 

Figure 4.13   TAUA0 Interrupt Processing 

 
 

4.7.12 TAUA0 Timer Counting Operation Start Processing 
Figure 4.14 shows the TAUA0 Timer Counting Operation Start Processing. 

io_taua0_start_timer

Clear measured value for the number 
of TAUA0 interrupts 

TAUA0TS <- 1Start TAUA0 timer counting 
operation 

return

g_cnt_int_taua0 <- 0

[Global variable]
uint32_t g_cnt_int_taua0

: Counter for measuring the number of interrupt processing executions

 

Figure 4.14   TAUA0 Timer Counting Operation Start Processing 

 



V850E2/ML4 Performance Evaluation Software 

R01AN1228EJ0100  Rev.1.00  Page 29 of 39 
Aug. 24, 2012  

 

4.7.13 TAUA0 Timer Counting Operation Stop Processing 
Figure 4.15 shows the TAUA0 Timer Counting Operation Stop Processing. 

io_taua0_stop_timer

return

Stop TAUA0 timer counting operation TAUA0TT <- 1

 

Figure 4.15   TAUA0 Timer Counting Operation Stop Processing 

 
 

4.7.14 TAUA0 Timer Counting Acquisition Processing 
Figure 4.16 shows the TAUA0 Timer Counting Acquisition Processing. 

io_taua0_get_counter

Number of PCLK cycles
 The lower 16 bits calculation

Number of PCLK cycles
The upper 16 bits calculation

Calculate the number of CPU clock 
cycles from the number of PCLK cycles

return (result)

result <- (H'FFFF - TAUA0CNT0) : Number of PCLK cycles
  Substitute the lower 16 bits
  Read from TAUA0CNT0 register to calculate

result |= (g_cnt_int_taua0 << 16u) : Number of PCLK cycles
  Substitute the upper 16 bits
  Calculate from g_cnt_int_taua0

result *= 3 : CPU clock = 200MHz, PCLK = 66.667MHz

[Global variable]
uint32_t g_cnt_int_taua0 : Counter for measuring the number of 

   interrupt processing executions
[Local variable]
result : Counter for calculating the return value

 

Figure 4.16   TAUA0 Timer Counting Acquisition Processing 

 



V850E2/ML4 Performance Evaluation Software 

R01AN1228EJ0100  Rev.1.00  Page 30 of 39 
Aug. 24, 2012  

 

4.7.15 Evaluation Processing for Math Function Library Speed 
Figure 4.17 shows the Evaluation Processing for Math Function Library Speed. 

test_math

Evaluation processing for 
cosine calculation speed

test_math_cos

Evaluation processing for 
square root calculation speed

test_math_sqrt

return (1)
 

Figure 4.17   Evaluation Processing for Math Function Library Speed 

 



V850E2/ML4 Performance Evaluation Software 

R01AN1228EJ0100  Rev.1.00  Page 31 of 39 
Aug. 24, 2012  

 

4.7.16 Evaluation Processing for Cosine Calculation Speed 
Figure 4.18 shows the Evaluation Processing for Cosine Calculation Speed. 

test_math_cos

Achieve the number of speed 
evaluation?No

Yes

cyc_float <- 0
cyc_double <- 0

Serial output processing
io_uartj0_printf

Initialize total cycles

Measure the timer for double floating point cosine calculation processing
(PCLK cycles)

[Local variables]
uint32_t cyc_float : Total cycles required for the cosf function
uint32_t cyc_double  : Total cycles required for the cos function

TAUA0 timer counting operation
stop processing

io_taua0_stop_timer

Serial output processing
io_uartj0_printf

Double floating point cosine 
calculationcos

TAUA0 timer counting operation 
start processing

io_taua0_start_timer

return

TAUA0 timer counting
acquisition processing
io_taua0_get_counter

Add total cycles

 
============ Start cosine calculation =========================== 

 Evaluation Result: Number Of Data = XXX
 
 Renesas V850 Double Calculation Cycles (XXX point average) = YYY
 
 Renesas V850 Float Calculation Cycles (XXX point average) = ZZZ
 ============ End cosine calculation ============================= 

Output processing starting message

Output the number of evaluations, average cycles and processing ending message
(XXX indicates EVAL_NUM, YYY indicates cyc_double/EVAL_NUM, and  ZZZ 
indicates cyc_float/EVAL_NUM)

cyc_double += time for double floating point cosine calculation processing
(CPU clock cycles)

Argument calculation of cosine

Achieve the number of speed 
evaluation?No

Yes

Measure the time for floating point cosine calculation processing
(PCLK cycles)

TAUA0 timer counting operation
stop processing

io_taua0_stop_timer

Floating point cosine calculation
cosf

TAUA0 timer counting operation 
start processing

io_taua0_start_timer

TAUA0 timer counting
acquisition processing
io_taua0_get_counter

Add total cycles
cyc_float += time for floating point cosine calculation processing
(CPU clock cycles)

Argument calculation of cosine

Convert the measured PCLK cycles into CPU clock cycles

Convert the measured PCLK cycles into CPU clock cycles

Repeat until the number of times defined by the EVAL_NUM will be reached

Repeat until the number of times defined by the EVAL_NUM will be reached

 

Figure 4.18   Evaluation Processing for Cosine Calculation Speed 

 



V850E2/ML4 Performance Evaluation Software 

R01AN1228EJ0100  Rev.1.00  Page 32 of 39 
Aug. 24, 2012  

 

4.7.17 Evaluation Processing for Square Root Calculation Speed 
Figure 4.19 shows the Evaluation Processing for Square Root Calculation Speed. 

test_math_sqrt

Achieve the number of speed 
evaluation?

No
Yes

cyc_float <- 0
cyc_double <- 0

Serial output processing
io_uartj0_printf

Initialize total cycles

Measure the time for double floating point square root calculation processing 
(PCLK cycles)

TAUA0 timer counting operation
stop processing

io_taua0_stop_timer

Serial output processing
io_uartj0_printf

Double floating point square root 
calculation

sqrt

TAUA0 tiemr counting operation 
start processing

io_taua0_start_timer

return

TAUA0 timer counting 
acquisition processing
io_taua0_get_counter

Add total cycles

============ Start square root calculation ======================

Evaluation Result: Number Of Data = XXX

Renesas V850 Double Calculation Cycles (XXX point average) = YYY

Renesas V850 Float Calculation Cycles (XXX point average) = ZZZ
============ End square root calculation ========================

Output processing starting message

Output the number of evaluations, average cycles and processing ending message
(XXX indicates EVAL_NUM, YYY indicates cyc_double/EVAL_NUM, and ZZZ 
indicates cyc_float/EVAL_NUM)

cyc_double += time for double floating point square root calculation processing
(CPU clock cycles)

Argument calculation of
square root

Achieve the number of 
speed evaluation?No

Yes

Measure the timer for floating point square root calculation processing 
(PCLK cycles)

TAUA0 timer counting operation
stop processing

io_taua0_stop_timer

Floating point square root calculation
sqrtf

TAUA0 timer counting operation
start processing

io_taua0_start_timer

TAUA0 timer counting 
acquisition processing
io_taua0_get_counter

Add total cycles
cyc_float += time for floating point square root calculation processing 
(CPU clock cycles)

Argument calculation of
square root

[Local variables]
uint32_t cyc_float : Total cycles required for the sqrtf function
uint32_t cyc_double  : Total cycles required for the sqrt function

Convert the measured PCLK cycles into CPU clock cycles

Convert the measured PCLK cycles into CPU clock cycles

Repeat until the number of times defined by the EVAL_NUM will be reached

Repeat until the number of timer defined by the EVAL_NUM will be reached

 

Figure 4.19   Evaluation Processing for Square Root Calculation Speed 



V850E2/ML4 Performance Evaluation Software 

R01AN1228EJ0100  Rev.1.00  Page 33 of 39 
Aug. 24, 2012  

 

4.7.18 Evaluation Processing for User-Created Function Processing Speed 
Figure 4.20 shows the Evaluation Processing for User-Created Function Processing Speed. 

test_user_func1

Achieve the number of 
speed evaluation?No

Yes

cyc_func1 <- 0

Serial output processing
io_uartj0_printf

Initialize total cycles

Measure the time for user-created function1 calculation processing 
(PCLK cycles)

[Local variable]
cyc_func1 : Total cycles

TAUA0 timer counting operation 
stop processing

io_taua0_stop_timer

Serial output processing
io_uartj0_printf

User-created function1 
processing
user_func1

TAUA0 timer counting operation 
start processing

io_taua0_start_timer

return (1)

TAUA0 timer counting 
acquisition processing
io_taua0_get_counter

Add total cycles

======== Start user task(=func1) operation =====================

Evaluation Result: Number Of Evaluation Times = XXX

User Task(=func1) Operation Cycles (YYY times average
============ End user task(=func1) operation =====================

Output processing starting message

Output the number of evaluations, average cycles and processing ending message
(XXX indicates EVAL_NUM, and YYY indicates cyc_func1/EVAL_NUM)

cyc_func1 += time for user-created funcion1 calculation processing 
(CPU clock cycles)

Convert the measured PCLK cycles into the CPU clock cycles

Repeat until the number of times defined by the EVAL_TIMES will be reached

 

Figure 4.20   Evaluation Processing for User-Created Function Processing Speed 

 
 



V850E2/ML4 Performance Evaluation Software 

R01AN1228EJ0100  Rev.1.00  Page 34 of 39 
Aug. 24, 2012  

 

4.7.19 User-Created Function Processing 
Figure 4.21 shows the User-Created Function Processing. 

user_func1

Achieved the number of loops?
No

Yes

Number of loops defined by the LOOP_TIMES
Empty loop

This is an example of implementation.
The user needs to implement a processing to have speed evaluation.

return
 

Figure 4.21   User-Created Function Processing 

 
 



V850E2/ML4 Performance Evaluation Software 

R01AN1228EJ0100  Rev.1.00  Page 35 of 39 
Aug. 24, 2012  

 

5. Application Example 
This chapter describes the performance evaluation method using sample code and how to add a user-creased task. 

5.1 Performance Evaluation 
This section describes the procedure for the evaluation. 

1. Connect the host CP and the V850E2/ML4 CPU board with the serial cable. If the PC does not have a serial 
port, a USB serial convertible cable can be used. 

2. Activate the serial communication application in the host PC and make communication setting as follows. 

  Transfer rate 9600bps, Data length 8, No parity, 1 stop bit, Flow control Xon/Xoff 

3. Load and execute the program. 

4. After executing the program, the following log will be displayed on the serial communication application. 

======================================================================= 
V850E2/ML4 Evaluation Program. Ver.1.00.00 
Copyright (C) 2012 Renesas Electronics Corporation. ALL rights reserved 
and Renesas Solutions Corporation. ALL rights reserved 
======================================================================= 
> 

Figure 5.1 Performance Evaluation Activation Log 

 
5. When input "HELP" in the console of the serial communication application, the evaluation command type will 

be displayed. The following is a display example when 100 times loop processing (=user_func1) are embedded 
for the math function calculation included in the sample code and the user-created task. Any task the user desires 
to evaluate and its corresponding command can be added as may be necessary.  

> HELP 
commands help 
MATH : math function test 
FUNC1 : user task(=func1) test 
> 

Figure 5.2 Performance Evaluation HELP Log 



V850E2/ML4 Performance Evaluation Software 

R01AN1228EJ0100  Rev.1.00  Page 36 of 39 
Aug. 24, 2012  

 
6. When input "MATH" in the console of the serial communication application, it executes the math function 

calculation using the V850 embedded library (=math.h) included in the sample code, and the number of cycles 
required for the calculation will be displayed. The following shows the average value when repeating the math 
function calculation for 256 times using the V850 embedded library. 

> MATH 
============ Start cosine calculation ===========================  
Evaluation Result: Number Of Data = 256 
 
Renesas V850 Double Calculation Cycles (256 point average) = 341 
 
Renesas V850 Float Calculation Cycles (256 point average) = 75 
============ End cosine calculation =============================  
 
============ Start square root calculation ====================== 
Evaluation Result: Number Of Data = 256 
 
Renesas V850 Double Calculation Cycles (256 point average) = 56 
 
Renesas V850 Float Calculation Cycles (256 point average) = 38 
============ End square root calculation ======================== 
> 

Figure 5.3 Performance Evaluation MATH Log 

 
7. When input "FUNC1" in the console of the serial communication application, it executes 100 times loop 

processing included in the sample code as a user-created task example, and the number of cycles required for the 
processing will be displayed.  The following shows the average value when repeating 100 times loop processing 
for ten times. 

> FUNC1 
======== Start user task(=func1) operation =====================  
Evaluation Result: Number Of Evaluation Times = 10 
 
User Task(=func1) Operation Cycles (10 times average) = 1221 
============ End user task(=func1) operation =====================  
> 

Figure 5.4 Performance Evaluation FUNC1 Log 

 
[Note]  Precaution for Evaluation 

The measurement in the sample code is executed by the timer, but the number of cycles is required for the 
CPU timer start processing and end processing. Therefore, it is necessary to measure the number of cycles 
when the task is not executed and deduct it from the number of cycles when the task is executed.  

For example, if the EMPTY_LOOP of the test_math.c is validated (comment out #undef EMPTY_LOOP) in 
the sample code math function calculation, the number of cycles when the task is not executed can be 
measured. 



V850E2/ML4 Performance Evaluation Software 

R01AN1228EJ0100  Rev.1.00  Page 37 of 39 
Aug. 24, 2012  

/* ---- Empty loop calculation ---- */ 

/* Calculation result will be derived by subtraction from empty loop calculation result */ 

#define EMPTY_LOOP 

//#undef EMPTY_LOOP /* Empty loop calculation will be executed when comment out this line */ 

Figure 5.5 Example of Implementation for Empty loop 



V850E2/ML4 Performance Evaluation Software 

R01AN1228EJ0100  Rev.1.00  Page 38 of 39 
Aug. 24, 2012  

 

5.2 Adding A User-Created Task 
This section describes how to add a user-created task. 
1. Create a task to be added as a function with C language (hereinafter called user_func2). 

2. Embed the user_func2 into the test_user.c , along with the user_func1 in the test_user_func1, by executing the 
io_taua0_start_timer function before the user_func2, and also executing the io_taua0_stop_timer function after the 
user_func2, which  

 for (i = 0; i < EVAL_TIMES; i++) 

 { 

  io_taua0_start_timer(); 

#ifndef EMPTY_LOOP 

  user_func2(); 

#endif 

  io_taua0_stop_timer(); 

   

  cyc_func1 += io_taua0_get_counter(); 

 } 

Figure 5.6 Example of Adding A User-Created Task 

 
 



V850E2/ML4 Performance Evaluation Software 

R01AN1228EJ0100  Rev.1.00  Page 39 of 39 
Aug. 24, 2012  

 

6. Sample Code 
Sample code can be downloaded from the Renesas Electronics website. 

 
 

7. Reference Documents 
User's Manual: Hardware 

V850E2/ML4  User's Manual: Hardware (R01UH0262EJ) 
The latest version can be downloaded from the Renesas Electronics website. 

 
Technical Update/Technical News 

The latest information can be downloaded from the Renesas Electronics website. 
 
User's Manual: Development Tools 

CubeSuite+ V1.00.00 Integrated development environment User's Manual: Coding (CX compiler) 
(R20UT0554EJ) 
CubeSuite+ V1.00.00 Integrated development environment User's Manual: Build (CX compiler) 
(R20UT0558EJ) 
The latest version can be downloaded from the Renesas Electronics website. 

 
 
 

Website and Support 
 
Renesas Electronics website 

http://www.renesas.com 
 
Inquiries 

http://www.renesas.com/contact/ 
 
 

http://www.renesas.com/
http://www.renesas.com/contact/


 

A-1 

REVISION HISTORY V850E2/ML4 Application Note Performance Evaluation Software

 
Description Rev. Date 

Page Summary 
1.00 Aug. 24, 2012 — First edition issued 

    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    

All trademarks and registered trademarks are the property of their respective owners. 



 

 

General Precautions in the Handling of MPU/MCU Products 
The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the 
products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General 
Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the 
description in the body of the manual takes precedence. 

1. Handling of Unused Pins 
Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual. 
⎯ The input pins of CMOS products are generally in the high-impedance state. In operation with an 

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an 
associated shoot-through current flows internally, and malfunctions occur due to the false 
recognition of the pin state as an input signal become possible. Unused pins should be handled as 
described under Handling of Unused Pins in the manual. 

2. Processing at Power-on 
The state of the product is undefined at the moment when power is supplied. 
⎯ The states of internal circuits in the LSI are indeterminate and the states of register settings and 

pins are undefined at the moment when power is supplied. 
In a finished product where the reset signal is applied to the external reset pin, the states of pins 
are not guaranteed from the moment when power is supplied until the reset process is completed. 
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function 
are not guaranteed from the moment when power is supplied until the power reaches the level at 
which resetting has been specified. 

3. Prohibition of Access to Reserved Addresses 
Access to reserved addresses is prohibited. 
⎯ The reserved addresses are provided for the possible future expansion of functions. Do not access 

these addresses; the correct operation of LSI is not guaranteed if they are accessed. 
4. Clock Signals 

After applying a reset, only release the reset line after the operating clock signal has become stable. 
When switching the clock signal during program execution, wait until the target clock signal has 
stabilized. 
⎯ When the clock signal is generated with an external resonator (or from an external oscillator) 

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. 
Moreover, when switching to a clock signal produced with an external resonator (or by an external 
oscillator) while program execution is in progress, wait until the target clock signal is stable. 

5. Differences between Products 
Before changing from one product to another, i.e. to one with a different type number, confirm that the 
change will not lead to problems. 
⎯ The characteristics of MPU/MCU in the same group but having different type numbers may differ 

because of the differences in internal memory capacity and layout pattern. When changing to 
products of different type numbers, implement a system-evaluation test for each of the products. 



 

 

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples.  You are fully responsible for 

the incorporation of these circuits, software, and information in the design of your equipment.  Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the 

use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free.  Renesas Electronics 

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or 

technical information described in this document.  No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or 

others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.  Renesas Electronics assumes no responsibility for any losses incurred by you or 

third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality".  The recommended applications for each Renesas Electronics product depends on 

the product's quality grade, as indicated below. 

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic 

equipment; and industrial robots etc. 

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc. 

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical 

implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.).  You must check the quality grade of each Renesas Electronics product before using it 

in a particular application.  You may not use any Renesas Electronics product for any application for which it is not intended.  Renesas Electronics shall not be in any way liable for any damages or losses 

incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage 

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics.  Renesas Electronics shall have no liability for malfunctions or damages arising out of the 

use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and 

malfunctions under certain use conditions.  Further, Renesas Electronics products are not subject to radiation resistance design.  Please be sure to implement safety measures to guard them against the 

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to 

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures.  Because the evaluation of microcomputer software alone is very difficult, 

please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product.  Please use Renesas Electronics 

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive.  Renesas Electronics assumes 

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or 

regulations.  You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the 

development of weapons of mass destruction.  When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and 

regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the 

contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics 

products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1)  "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2)  "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel:  +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany   
Tel: +49-211-65030, Fax: +49-211-6503-1327 
Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China 
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China 
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898 
Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd. 
1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632
Tel: +65-6213-0200, Fax: +65-6278-8001
Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics Korea Co., Ltd.
11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2012 Renesas Electronics Corporation. All rights reserved.
Colophon 2.0 


	1. Specifications
	2. Operation Confirmation Conditions
	3. Hardware
	3.1 Pins Used

	4. Software
	4.1 Operation Overview
	4.2 File Composition
	4.3 Constants
	4.4 Variables
	4.5 Functions
	4.6 Function Specifications
	4.7 Flowcharts
	4.7.1 Main Processing
	4.7.2 Execution Processing for Command Line String
	4.7.3 Split Processing for Command Line String
	4.7.4 Analytical Processing for Command String Group
	4.7.5 Help Command Processing
	4.7.6 UARTJ0 Initialization
	4.7.7 UARTJ0 Receive Interrupt Processing
	4.7.8 UARTJ0 Specified Format Serial Output Processing
	4.7.9 UARTJ0 Line Reading Serial Input Processing
	4.7.10 TAUA0 Initialization
	4.7.11 TAUA0 Interrupt Processing
	4.7.12 TAUA0 Timer Counting Operation Start Processing
	4.7.13 TAUA0 Timer Counting Operation Stop Processing
	4.7.14 TAUA0 Timer Counting Acquisition Processing
	4.7.15 Evaluation Processing for Math Function Library Speed
	4.7.16 Evaluation Processing for Cosine Calculation Speed
	4.7.17 Evaluation Processing for Square Root Calculation Speed
	4.7.18 Evaluation Processing for User-Created Function Processing Speed
	4.7.19 User-Created Function Processing


	5. Application Example
	5.1 Performance Evaluation
	5.2 Adding A User-Created Task

	6. Sample Code
	7. Reference Documents

