XENESANS APPLICATION NOTE
V850E2/ML4 RO1AN1343EJ0100

Rev.1.00
Updating Program Code by Using Flash Self Programming Mar. 01, 2013
with CAN Controller

Abstract

This document describes an example to update program code by reprogramming on-chip flash memory in V850E2/ML4
using flash self programming with CAN communication.

The features of the example to update program code in this Application note are described below.

e Reprograms a program code in the flash memory area using update program file with Intel expanded hex format
received through the CAN communication.

o For the procedure in case of reprogram failure such as reprogram processing is aborted without intention, an error
control register by checksum is included.

Products
V850E2/ML4

When using this application note with other Renesas MCUs, careful evaluation is recommended after making
modifications to comply with the alternate MCU.

RO1AN1343EJ0100 Rev.1.00 Page 1 of 69
Mar. 01, 2013 RENESAS

V850E2/ML4 Updating Program Code by Using Flash Self Programming
with CAN Controller

Contents
S o1 Tox o= 11 o] o 1= TSR R 4
2. Operation Confirmation CONAITIONSoiiiiiiiiiiiiiie et e e s e e aaeee 5
TN = = (=T =T g ot =YY o] o] [Tox=Y i o T AN [0] 1= 6
O L g o1 =T = VI Tox 1 o] o SRR 6
4.1 Terms for Flash Self Programmingcoooeeiioiiiiiiee e 6
4.2 Notes for Flash Self Programming........c.ooicciiiiiiiieoisiiciiiieee e e e e s e s serreee e e e e e s snnnannneeeeeees 7
4.2.1 Setting for LINK DIr€CHIVE FlEuceviiiiiiiiiie et e e e e 8
4.2.2 Setting for Non-use of Prologue/Epilogue Library ... 10
4.2.3 Setting for ROMization of SECtion iN RAM.......ccoi i 11
4.2.4 Setting for Far JUMP FUNCHONcoiiiiiiiiiiieiee e e e e et e e e e s e nnrnee s 12
4.2.5 Setting for StAartup ROULINE.c.uviiiiiiie e e 14
4.2.6 Precautions for Interrupt Generated During Use of FSLccccviiviiee i, 16
T o = 0 11T T = PSPPSR 17
o0 A T Fo 3 U 7= o SRR PPPRPRR 17
LTS 1o 1= | (PR 18
L0 A @ T o 1=T = 1110 ¢ @ A =T V= SRS 18
6.1.1 Setting for SECHON ASSIGNMENT.......uiiiiiiiiiii ettt e e e e e e sbreee e 18
6.1.2 Overview of Reprogramming FIash MEMOIYccevveiiiiiiiiiieieiee e 19
6.1.3 Process from Startup to Normal OPEration...........cceeeveeeiiiiiiiiieeiee e e eciirre e e e e e e e sernrerr e e e e 20
6.1.4 Flash Reprogram Processing after Inputting INTPL INterruptccccoevvvieeeiiiieee e 20
6.1.5 Data RECEIVE PrOCESSING ..uuvvriiiieeeiiiiiiiieii et e e et e e e e e e s s s s e e e e e e s s st ereeee e e s s nnnrreeeeaees 20
6.1.6 Processing after Data Reception/REPrOgraMccuvieeiiiiiiuiirereeeeeiiiirreeeeeeesesssrnneeeeeeeaes 21
6.1.7 Communication CONIOl SEOUENCEuviiiiiiiiie ettt e e e 22
72 1 1= @ o] o 71 1o o PSR PSRSR 23
LSRG T 0 151 = | £ T 24
L Y - YT o] =SSP PPRPPR 26
LSS T U (o1 1o o £ TSP RP 27
6.6 FUNCLION SPECIfICAIONS ...t e e e e s s e e e e e e e s e s anraeeeeeeeeaans 28
LA 10 11 od = 1 £ SR PPRPRR 37
6.7.1 Startup ROULINE PrOCESSING ...veeiiieiiiiiiiiieiiiee e e e seietee e e e e e s s sstaterer e e e s e s snanaeeeeeeesssnnrnaeeeeeeeenn 37
6.7.2 MaIN PrOCESSING ...vvvieiiieeiiiiiiiiiiee e e e e s eeitteeee e e e e s ss ettt re e e e e aesessstetreeeaeeeesastasseeeaeeessssnsrnreeeaaansns 38
6.7.3 Switching Processing for Exception Handler ADAress. ... 39
6.7.4 Checksum Judgment for REProgram AF€ac.uuuueieeeeiiiiiiirieeeeeeessisreeerereeeeessnnrnneeeeeeeaes 40
6.7.5 Initialization of INTPL INTEITUPLccoiiiiieiiee e e e e e e e e e e e e e eee s 41
6.7.6 INTPL INtErruUPt PrOCESSING ...uvveieeiiiiiee ittt ettt ettt et e e et e e e s sabe e e e s snbeeee e e 42
6.7.7 Flash Reprogram PrOCESSINGciccuuuiieiieeeiiiiiiiiieeeeeeessssteterereeessssnsaaareeeeeeessnnnsnseeeeeeeees 43
6.7.8 Initialization of Flash ENVIFONMENT..........cuiiiiiiiiie et nraee e 45
6.7.9 Start Processing for Flash ENVIFONMENtc..ooiiiiiiiiiii e 46
6.7.10 Checking Processing for FLMDO Pin USING FSLcoocoiiiiiiiiiieiriee et e e 47
6.7.11 Erase Processing for Specified BIOCK.............ccciuiiiiiie et 48
6.7.12 Write Processing from Specified ADArESSoooiiiiiiiiiiiiiiciieee e 49
RO1AN1343EJ0100 Rev.1.00 Page 2 of 69

Mar. 01, 2013 RENESAS

V850E2/ML4

Updating Program Code by Using Flash Self Programming
with CAN Controller

6.7.13 Internal Verification of Specified BIOCKccciiiiiiiiii e 50
6.7.14 Termination Processing for Flash Environment.............coccoiiiiiiiiiiic e 51
6.7.15 Setting for FLMDO PiN LEVEI ..ccovieiiiiieeieee ettt e s e e e e e st nen e e e 52
6.7.16 Store Processing for RECEIVE DAtaceiiieiiiiiiiiiiiiiic e 53
6.7.17 Text Binary CONVErSiON PrOCESSING.......c.uutieiiiiiieiiiiieeeitiieeesiaeeeesstbeeeesstbeeeessibeeeessraeeeeans 55
6.7.18 TAUAO Initialization for LED Flash with Fixed-Cycle (Sample Function in Reprogram Area

= Lo I IR oF= LI AN =Y) USRS 56
6.7.19 TAUAO Interval Timer INterrupt ProCESSINGcccoiurieiiiiiieeeiiiiee e iiieee et et sreeee e 57
6.7.20 Initialization of CAN Controller Channel 0 (FCNO)oocciviieiieeee e e 58
6.7.21 Initialization Of FCNO POIt.........oiiiiiiiies ittt e e et aee e e s snbeee e s snbaeeeeans 59
6.7.22 Initialization of FCNO Message BUFfer ... 60
6.7.23 FCNO Message TranSmit PrOCESSINGiiuiiiirciiiieireeeeesiiiiieeeeeeesssssneeeereeessssnnsnneeeeeeeees 62
6.7.24 FCNO TranSMit PrOCESSING ..vveveiieeiiiiiiiiiiieee e s sicitiieeee e e e e s s s ststreereeeeesssanabeereeaeessannrnraeeeaaesens 63
6.7.25 FCNO RECEIVE PrOCESSINGveeeeiiiiiieieiiiiteeaitteee e sttt e e ettt ettt e e sbbe e e e s ssbe e e e s sabeeeessbneeeeaaes 64
6.7.26 Interrupt Processing for FCNO Receive Processing Completionccccceeevvvicvviieenneeennn. 65
6.7.27 FCNO Error INterrupt PrOoCESSINGcccuuvviiiiie e iiiiiiiie e e e st e e e e e e s et ae e e e e e e s sanraeeeeeee s 66

7. OPEIALION OVEIVIEW ... viiiei ittt ettt ettt e ettt e e ettt e e e ea bt e e e aa b bt e e e s ba e e e e st bt e e e abbe e e e e anbe e e e s anbneeanbeeeeannee 67
TS Y- 11 4] o] (=3 o Lo = PRSP 69
1S 0= (= =T ot B o oW 1T | PSPPSR 69
RO1AN1343EJ0100 Rev.1.00 Page 3 of 69

Mar. 01, 2013

RENESAS

V850E2/ML4

Updating Program Code by Using Flash Self Programming
with CAN Controller

1. Specifications

In this Application note, a program code update is performed by reprogramming on-chip flash memory using flash self

programming.

The CAN communication with an arbitrary device enables to receive a program file data for update with Intel expanded
hex format type and reprogram a program code in the on-chip flash memory area.

Table 1.1 lists the Peripheral Functions and Their Applications and Figure 1.1 shows the System Configuration.

Table 1.1 Peripheral Functions and Their Applications

Peripheral Function

Application

Flash memory (on-chip flash memory)

Program store area

Flash macro service

Reprogram flash memory

CAN controller (FCN)

Reprogram data/message communication

CAN
communication
Host device

CAN
communication

Program data

V850E2/ML4 CPU board
(Type: ROKOF4022C000BR)

V850E2/ML4

Operate

Flash macro service

P

Flash memory

Execute flash function

Message

CAN controller
CAN (FCN)
Transceiver IC

P2_14/CANORXD
M P2_15/CANOTXD

Readout

A 4

A

FSL*

On-chip RAM

Store receive data
for flash reprogram

*FSL : Flash Self Programming Library

Figure 1.1 System Configuration

RO1AN1343EJO0100 Rev.1.00
Mar. 01, 2013

RENESAS

Page 4 of 69

V850E2/ML4

Updating Program Code by Using Flash Self Programming
with CAN Controller

2. Operation Confirmation Conditions

The sample code accompanying this application note has been run and confirmed under the conditions below.

Table 2.1 Operation Confirmation Conditions

Item

Contents

MCU used

V850E2/ML4

Operating frequency

Internal system clock (fcik) : 200MHz
P bus clock (frcik) : 66.667MHz

Operating voltage

Positive power supply for external pins (EVpp) : 3.3V
Positive power supply for internal units (IVpp) : 1.2V

Integrated development
environment

Renesas Electronics Corporation
CubeSuite+ Ver.1.02.01

C compiler

Renesas Electronics Corporation
CX compiler package Ver.1.21

Compile options

-Cf4022 -oDefaultBuild\v850e2ml4_flash_update_can.Imf
-Xobj_path=DefaultBuild -g -Xpro_epi_runtime=off
-IC:\WorkSpace\v850e2ml4_flash_update can\inc
-IC:\WorkSpace\v850e2ml4_flash_update_can\FSL -Xdef var
-Xfar_jump=v850e2ml4 _flash_update can.fjp
-Xlink_directive=v850e2ml4_flash_update_can.dir
-Xstartup=DefaultBuild\cstart.obj +Xide
-Xmap=DefaultBuild\v850e2ml4_flash_update_can.map -Xsymbol_dump
-IFSL_T05_REC_R32 -LC:\WorkSpace\v850e2ml4_flash_update_can\FSL\lib
-Xrompsec_text=FSL_CODE.text
-Xrompsec_text=FSL_CODE_ROMRAM.text
-Xrompsec_text=FSL_CODE_RAM.text
-Xrompsec_text=FSL_CODE_RAM_USRINT.text
-Xrompsec_text=FSL_CODE_RAM_USR.text
-Xrompsec_text=FSL_CODE_RAM_EX_PROT.text
-Xrompsec_text=INTP1RAM.text -Xrompsec_text=INTTAUAOIORAM.text
-Xrompsec_text=INTFCNOIERRRAM.text
-Xrompsec_text=INTFCNOIRECRAM.text
-Xhex=DefaultBuild\v850e2ml4_flash_update_can.hex

Operating mode

Normal operating mode
(will be changed to flash memory programming mode at the time of reprogram)

Sample code version

1.00

Board used

ROKOF4022C000BR

Device used

CAN communication host device

RO1AN1343EJO0100 Rev.1.00

Mar. 01, 2013

Page 5 of 69
RENESAS

V850E2/ML4 Updating Program Code by Using Flash Self Programming
with CAN Controller

3. Reference Application Notes
For additional information associated with this document, refer to the following application notes.
e V850 Microcontrollers Flash Self Programming Library Type05 (RO1ANO661EJ)

4. Peripheral Functions

This chapter provides supplementary information on the flash self programming library which is required to reprogram
the flash memory using the software operated on the V850E2/MLA4. Refer to the "V850E2/ML4 User's Manual
(Hardware)" and the V850 Microcontroller Flash Self Programming Library Type05" for basic information.

4.1 Terms for Flash Self Programming
The terms for flash self programming used in this Application note are described as follows.

e Flash macro service
This refers to functions for manipulating the flash memory in devices.

e Flash environment

This refers to the state in which the code flash can be operated by using the flash macro service. There are
special restrictions different from execution of normal programs. A transition to other environment cannot occur
unless the flash environment is ended.

o Flash function
This refers to the individual functions comprising the self-library. They can be used with the C language.

e Internal verification

This refers to the action of internally checking the signal level and verifying that the signal can be read normally
following write to flash memory.

RO1AN1343EJ0100 Rev.1.00 Page 6 of 69
Mar. 01, 2013 RENESAS

V850E2/ML4 Updating Program Code by Using Flash Self Programming
with CAN Controller

4.2 Notes for Flash Self Programming

The V850E2/ML4 has the flash macro service which operates the flash memory. This sample program describes how
to reprogram a program code using the flash self programing library (FSL) which enables to use the flash macro service
with C language. The following notes are provided to use this library.

e The program allocation in RAM executed during the flash environment (including runtime library)

— Setting for a section to allocate the program in RAM
Creation and setting for the link directive file is required to set a section. Refer to "4.2.1 Setting for Link
Directive File" for more details.

— Setting for non-use or allocation in RAM for the functional prologue/epilogue runtime library
This sample program runs the non-use setting of the prologue/epilogue runtime library. Refer to "4.2.2 Setting
for Non-use of Prologue/Epilogue Library" for more details.

— Setting for the exception handler address switching function when using interrupts
The setting for the exception handler address switching function is executed by the software. Refer to "6.7.3
Switching Processing for Exception Handler Address" for more details.

— Initialization of the program area in the RAM allocation destination
When allocating a program to RAM on the V850E2/ML4, the 16-byte boundary area (H'xxxx_xxx0 to
H'xxxx_xxxF) including the program area in the allocation destination is required to be initialized (cleared to
zero). In this sample program, the initialization is executed during the startup routine. Refer to "4.2.5 Setting for
Startup Routine™ for its change, and "6.7.1 Startup Routine Processing” for its details.

— Setting for ROMization of the section to expand the program in RAM

Regarding to the setting for ROMizaton on the CubeSuite+, refer to "4.2.3 Setting for ROMuization of Section in
RAM".

e The execution of the flash functions are disabled in the interrupt handler

e The far jump specification for the CX compiler when calling function allocated to the address separated more than 2
MB
In this sample program, the far jump option is specified to the function allocated in RAM which is called from
the flash memory. Refer to "4.2.4 Setting for Far Jump Function" for more details.

e Saving, setting and restoring the gp register and the ep register when accessing to the global variables with C
language in the interrupt handler
The above mentioned operations might be required when accessing to the data section in the interrupt handler.
Refer to "4.2.6 Precautions for Interrupt Generated During Use of FSL" for more details.

In regard to the function specification and the system configuration of the FSL, refer to reference application note,
"V850 Microcontroller Flash Self Programming Library Type05".

In regard to section specification to the CX compiler, allocation address setting, ROMization, and far jump option
specification on the CubeSuite+, refer to "CubeSuite+ V1.03.00 Integrated Development Environment User's manual:
Build (CX compiler)".

In regard to switching the exception handler address, refer to "\V850E2 User's manual: Architecture".

RO1AN1343EJ0100 Rev.1.00 Page 7 of 69
Mar. 01, 2013 RENESAS

V850E2/ML4 Updating Program Code by Using Flash Self Programming

with CAN Controller

4.2.1 Setting for Link Directive File

The link directive file creation and the CubeSuite+ setting are required to change the section assignment. When creating
the link directive file using text editor without the CubeSuite+ menu, the Cube Suite+ setting is required. Drag the link
directive file from explore, and drop it in blank area, the bottom part of the Project Tree. In the CubeSuite+, the file
which has extension of "dir" or "dr" is considered as the link directive file. Select "CX (Build Tool)" under the Project
Tree, and click "Link Options" tab in the Property. Open "Input File" to check "Using link directive file". Refer to
"CubeSuite+ VV1.03.00 Integrated Development Environment User's manual: Coding (CX compiler)" for more details.

When creating the link directive file, in this sample program,the reprogram area section (MasterPRG.text), the spare
area section (SparePRG.text), and the FSL area (FSL.CONST) should be created in the flash memory other than the
default area. In addition, the FSL use area and user program area sections (FSL_DATA.bss, FSL_CODE text,
FSL_CODE_ROMRAM .text, FSL_CODE_RAM.text, FSL_CODE_RAM_USRINT.text,
FSL_CODE_RAM_USR.text, and FSL_CODE_RAM_EX_PROT .text), and exception handler address sections

(INTP1RAM.text, INTTAUAOIORAM.text, INTFCNOIERRRAM.text, and INTFCNOIRECRAM .text) should be
created in RAM.

In this sample program, the start address of the MasterPRG.text section is assumed to be H'0000 8000. Also the start

address of the exception handler address section is assumed to be the address that adds the respective interrupt handler
address to the transfer destination base address H'FEDF E000

Figure 4.1 shows the Location of Link Directive File.

Figure 4.2 shows the Example of Creation and Section Setting for Link Directive File.

File Edit “iew Project Build Debug Tool Window Help

st A ¥ D@0 o [HE R W@ e @® "M =g
& B A

o

Project Tree ;u; F‘erer‘tv).j' —
4\ Cx Property
= T ¥850e2ml4 fash update Debug Informabion

¥ _LPOIIF4N22 Micocontro |B] InputEile — — — — — —— —— == == = —_—— -
A, C#[Buid Taal] Lsing link directive file wB50E2mid_flash_update e dir>
H — e w== = MM Muinut Eille, ™ e oo o o s oo o s— c—
5 VESTE? ETUTAR) (Debug E_‘;"’“‘F“E -
ibrar;
g F'.mgram.-’-‘n.nal}lza [Analyze Link I-:'ap I
—ri]' File Symbol Information |
Others |
Uszing link directive hle I
Thiz iz the link. directive file to be used for linking.

Thiz option comesponds to the <ink_directive option of the cx cumm'and.

g— — 1
Cormrnon Options /{ Campile Options ﬁLink Options I RdMize Options ‘/i Hes Qukput Options /
—

Output

Drag the link directive file which has "dir" or "dr"
for its extension from explore etc. and drop it in
the blank area under the Project Tree to register.

Check here

Figure 4.1 Location of Link Directive File

RO1AN1343EJ0100 Rev.1.00

Page 8 of 69
Mar. 01, 2013 RENESAS

V850E2/ML4 Updating Program Code by Using Flash Self Programming
with CAN Controller

SCONST:ILOAD ?R {
.sconst = $PROGBITS ?A .sconst ;

}:
CONST:ILOAD ?R VOx00001100 {

= ROGBITS 2?A_.const
FSL_CONST.const = $PROGBITS ?A FSL_CONST.const ; # FSL use area)4— Create section for FSL use area on the ROM

}:

TEXT:ILOAD ?RX {

.pro_epi_runtime = $PROGBITS ?AX .pro_epi_runtime ;
.text = $PROGBITS ?AX .text ;

}:

Spare area .
SparePRG: ILOAD ?RX VOx00006000 { <+— Create segment and section for spare area on the ROM
SparePRG.text = $PROGBITS ?AX VOx00006000 SparePRG.text ;

Reprogram area

MasterPRG: ILOAD ?RX VOx00008000 { <«— Create segment and section for reprogram area on the ROM
MasterPRG.text = $PROGBITS ?AX VOx00008000 MasterPRG.text ;

DATA:ILOAD ?RW VOxFfedf0000 {
.data = $PROGBITS ?AW .data ;
.sdata = $PROGBITS ?AWG .sdata ;
.sbss = $NOBITS ?AWG .sbss ;
(FSL_DATA.bss = $NOBITS ?AW FSL_DATA.bss ; # FSL use area)4— Create section for FSL use area on the RAM
_bss = SNOBITS 7AW .bss ;

};

SEDATA:ILOAD ?RW {

.sedata = $PROGBITS ?AW .sedata ;
.sebss = $NOBITS ?AW .sebss ;

}:

SIDATA:ILOAD ?RW {

-tidata.byte = $PROGBITS ?AW .tidata.byte ;
.tibss.byte = $NOBITS ?AW .tibss.byte ;

.tidata.word = $PROGBITS ?AW .tidata.word ;
_tibss.word = $NOBITS ?AW .tibss.word ;
.tidata = $PROGBITS ?AW .tidata ;

.tibss = $NOBITS ?AW .tibss ;

.sidata = $PROGBITS ?AW .sidata ;

.sibss = $NOBITS ?AW .sibss ;

Program area allocated in RAM \ .
RAM_PROG: 1LOAD ?RX VOxfedfc000 { «— Create segment and section for FSL area
FSL_CODE.text = $PROGBITS ?AX FSL_CODE.text ; and user program area on the RAM
FSL_CODE_ROMRAM.text = $PROGBITS ?AX FSL_CODE_ROMRAM.text ;
FSL_CODE_RAM.text = $PROGBITS ?AX FSL_CODE_RAM.text ;
FSL_CODE_RAM_USRINT.text = $PROGBITS ?AX FSL_CODE_RAM_USRINT.text ;
FSL_CODE_RAM_USR.text = $PROGBITS ?AX FSL_CODE_RAM USR.text ;
FSL_CODE_RAM_EX_PROT.text = $PROGBITS ?AX FSL_CODE_RAM_EX_PROT.text ;

\J: J
ﬁException handler area allocated in RAM

INTRAM: ILOAD ?RX VOxfedfe000 LOx00001080 {

INTP1RAM. text = $PROGBITS ?AX VOxfedfel70 HOx0000000a INTP1RAM.text ;
INTTAUAOIORAM. text = $PROGBITS ?AX VOxfedfe3b0 HOx0000000a INTTAUAOIORAM.text ;
INTFCNOIERRRAM. text $PROGBITS ?AX VOxfedfeb30 HOx0000000a INTFCNOIERRRAM.text ;
INTFCNOIRECRAM. text $PROGBITS ?AX VOxfedfeb40 HOx0000000a INTFCNOIRECRAM.text ;

\J: J
__tp_TEXT@ %TP_SYMBOL ;

—_gp_DATA@ %GP_SYMBOL & tp_TEXT { DATA } ;

__ep_DATA@ %EP_SYMBOL ;

<+— Create segment and section
for exception handler on the RAM

Figure 4.2 Example of Creation and Section Setting for Link Directive File

RO1AN1343EJ0100 Rev.1.00 Page 9 of 69
Mar. 01, 2013 RENESAS

V850E2/ML4 Updating Program Code by Using Flash Self Programming
with CAN Controller

4.2.2 Setting for Non-use of Prologue/Epilogue Library

The CubeSuite+ executes setting for non-use of the prologue/epilogue library. Select "CX (Build Tool)" under the
Project Tree, and click "Compile Options™ tab in the Property. Select "No (-Xpro_epi_runtime=off)" for "Use
prologue/epilogue library™ in "Optimization (Details)".

Figure 4.3 shows the Location of Setting Non-Use of Prologue/Epilogue Library.

File Edit %iew Project Buld Debug Tool “Window Help

ot | @ ¥ B0 | B/ER i EBA A ERN @M

an Prope@j mairn.c
Ao ¥ Property

Debug Informabon

. UPDOFOF4022 [Microcontro Optimization

E Dptimization[Detals)

£ WBAOEZ E1TAG] [Debug Sart e:-:te.mfal \-'arlal:ules_ Mo
Perform inline expansion of strepy/strempdmemcpy/memset Mo

'\. ' Program Analyzer [Analyze

) |Jze prologue/epilogue libramy

—rﬂ-]' File Prohibit the operation that changes memony access size Mo
Perform inline expansion of lbrary e
Merge zting literalz Ma

Preprocess
CLanguage

Usze prologue/epilogue Byary
Specifiez whether to process the prologues and epilogues of functions through runtime library calls.
Thiz option cormesponds to the <pro_epi_runtime option of the cx command.

Carmrnon Opkions @pile Dp@(Link Options /{ ROMize Options /{ Hez: Qukpuk Opkions /

Figure 4.3 Location of Setting Non-Use of Prologue/Epilogue Library

RO1AN1343EJ0100 Rev.1.00 Page 10 of 69
Mar. 01, 2013 RENESAS

V850E2/ML4 Updating Program Code by Using Flash Self Programming
with CAN Controller

4.2.3 Setting for ROMization of Section in RAM

The setting for CubeSuite+ is required for ROMization to expand the section in RAM. Select "CX (Built Tool)" under
the Project Tree, and click "ROMize Options" tab in the "Property”. From "Text sections included rompsec section”,
specify the section required for ROMization out of the sections to be assigned in RAM. Write the section names (one
section per line) in the "Text Edit" window shown by clicking the "..." button on the right.

Figure 4.4 shows the Setting for Romization of Section in RAM.

File Edit “iew Project Buld Debug Tool “Window Help

Dot | DBy DBEOC BRE S HE fERMN @® 0" ==

[
&
& :

L= .
Eg‘ Prnp@j’ mair.c - X
4_ i Property B

Output File
Input File
B Section

Start symbal of rompsec section

Generate load module file has rompsec section only | Mo
D ata zections included in romnsec section Data zections included in rompsec section[0]
: cluded inrom i PText zections included in rompsec section[10]
[o0] FSL_CODE. text

| v

¢ I
@, % [Build Tool
= WES0E2 E1(JTAG) [Debug
1 Program Analyzer [Analyze

(3] File

0] FSL_CODE_ROMRBAM.test
[02] FSL_CODE_RAM.bext
03] FSL_CODE_RAM_USHIATEt

[04] b-TS R et [
[05] _RaAM_Ex_PROT text

[06] FTPRAM text

[07] IMTTAUADIORAM text -

Text sections includedin ro
Specifies the text sectiom-ricluded in the rompzec section.

Clutput

Text Edit
Text
FSL_CODE test =]

F5L_CODE_ROMRAM.text
FSL_CODE_RaM test
FSL_CODE_RaM_USRIMT text
FSL_CODE_Rak_USH.text
FSL_CODE_RaM_EX_PROT text
INTP1RAM. text
INTTAUADIOR A0, bext

IMNT teut

|4 _'ILI
Ok I Cancel | Help |

o

Figure 4.4 Setting for Romization of Section in RAM

RO1AN1343EJ0100 Rev.1.00 Page 11 of 69
Mar. 01, 2013 RENESAS

V850E2/ML4 Updating Program Code by Using Flash Self Programming
with CAN Controller

4.2.4 Setting for Far Jump Function

In the V850E2/ML4, the end address of the flash memory and the start address of the on-chip RAM are separated more
than 2MB. In the CX compiler, when jumping to the area more than +2MBs away at the time of function call, the far
jump option should be specified to the call destination function. In this sample code, the far jump option is specified to
the functions called from the ones on the flash memory out of the functions allocated in the on-chip RAM and all
interrupt handlers to be used.

To specify the far jump option, create the file which lists the functions to be specified (far jump calling function list file)
and specify the file name in the compile option "-Xfar_jump". To set in the CubeSuite+, select "CX (Built Tool)" under
the Project Tree, and click "Compile Options™ tab in the Property. Click "..." button shown on the right side of "Far
Jump file names" in "Output Code", and write the path of the created far jump calling function list file. (Note that ".fjp"
is recommended for the extension of the far jump calling function list file.)

In the far jump calling function list file, write one function name per line. The function name should have *_
(underscore)™ at the beginning of the function name with C language. Note that if "{all_interrupt}" is written, all
interrupt handler functions are subject for the far jump calling functions. For creation of far jump calling function file,
refer to "3.3.3 far jump function™ in "CubeSuite+ V1.03.00 Integrated Development Environment User's manual:
Coding (CX compiler)"

Figure 4.5 shows the Location of Far Jump Calling Function File.

Figure 4.6 shows the Example of Creation of Far Jump Calling Function File.

RO1AN1343EJ0100 Rev.1.00 Page 12 of 69
Mar. 01, 2013 RENESAS

V850E2/ML4 Updating Program Code by Using Flash Self Programming
with CAN Controller

Fil= Edit “iew Project Buld Debug Tool Window Help

Wotat | Al X B9 |BER @A @SN @O ===
A= Prope@j’ TM&in.C > X
4\ 4 Property -+
= | 1% ¥v850e2ml4 flash update D ebug Information -
uPDFOF4022 [Microconto Dptimizal!un
[3¢ [Build Toal Optimization[D etads)
S VEGOEZ E10TAG) Debug [|2 Freprocess
o p Al bl C Language
s _rc-gram nalyzer [Analyze Character Encoding
—Fi]' File E Dutput Code
[E-81) Startup Shucture packing No
Output code of switch statement Auta[Mone]
dﬂ wBE0e2mld_flash_upd: Label size of switch table 2 bytez[Mone]
an except_handler_rai Size threshold of sdatafshes section allocation(Bphes)
U main. ¢ Size .thresh.old of sccmt section allocation[Bytes]
"ﬂ flash.c Floatlng-pm.nt cfalcglatlng t_.l,lpe Auto[Mone]
& Generate div/divu instructions Mo
-4 taual_led_sample. | ;.. b bianch instuiction Mo | |
U intpl.c =1 Far Jump file names Far Jump file names[1] /@
ﬂ fenl_can.c vBa0e2mld_flash_update_can.fip _ ~
OutputFile -~ il
Far Jump file names -
Specifies the Far Jump file name. The Far Jump file outputs the code that uses the jmp irpbuﬁEnNSEDE!ES core] or jarl32
instruction and 32 instruction¥850E2 core/VBS0E2Y3 architecture) for branch instugéons of funchions described in the file. If
the furction itzelf iz in a range [+/-2Mbyte or more] where branching iz not possible”with the jarl or jr instruction, and the cx
command outputz an error, compile processing iz done again using this Eglimehe extenzion is fp.
This option comesponds to the +far_jump option of the cx command,
Path Edit x|
Cornrnon Options Compile Options Lir Eathifine path per one line): Q
ez T e]

=
il

(] I Cancel | Help |

Browsze... |

S

Figure 4.5 Location of Far Jump Calling Function File

fcno can tx ms . Because the fcn0_tx_msg function on RAM is also called from the main function on ROM,
- — _tX_Msg L far jump specification is required.

_Fflash_reprogram 41_4‘/7 Because the flash_reprogram function on RAM is also called from the main function on ROM,
X far jump specification is required.

The interrupt hander is allocated on RAM, but far jump specification is required

{all_interrupt} Lfﬁ All interrupt handler functions are subject for far jump specification.
L because the exception vector table is allocated on RAM with default (pre-change base address)

Figure 4.6 Example of Creation of Far Jump Calling Function File

RO1AN1343EJ0100 Rev.1.00 Page 13 of 69
Mar. 01, 2013 RENESAS

V850E2/ML4 Updating Program Code by Using Flash Self Programming
with CAN Controller

4.2.5 Setting for Startup Routine

The stack used in this sample program requires larger area than the stack size (512 bytes) which is set in the standard
startup routine. In the standard startup routine, the function "_rcopy" (ROMize processing) is executed to develop the
data with initial value and the program allocated in RAM. However, when executing the ROMize processing for the
program area, initialize (clear to 0) the 16-byte boundary area of program destination before executing "_rcopy". In this
sample program, the initialization processing for the stack size change and the 16-byte boundary area of program
destination is added for the assembler source file "cstart.asm™ in which the standard startup routine is written.

When switching the standard startup routine, create the user-created assembler source file in which the startup routine is
written to register on the CubeSuite+ project. Right click "startup” in "file" under the Project tree, then the menu will
appear to add the startup routine source file.

Figure 4.7 shows the Location of Startup Routine.

Figure 4.8 shows the Example of Startup Routine Preparation (Excerpt from cstart.asm) .

File Edit “iew Project Build Debug Tool ‘Window Help
&35 Start | | h‘:ﬂ ‘a iy (| v O l,;ﬁ'_';‘l _':_.‘.‘. _'%.\.‘|>
S S g B

Praoject Tree

I|j main.c - X

2 @8 5|} Startup Property -+
= 7% ¥B50e2ml4 flash update [|E CategoryInformation

.. UPD70F4022 Microconto Category name Startup

=i, WBBDEZ E1[JTAG] [Debug

1 Program Analyzer [Analyze | Category name

E:ﬂ] File This iz the name of thiz categorny. The category name can be between 1 and 200 characters.
= c Alzo, the category name colored in gray is fised.

b
Cadd D ’ Add File... -

_____ i D | SETTTRI—

ot | = Fiemove from Projsct Shift+Crel "1 AddNew File...

""" =l -

..... ﬂ Copy Chl+C ! Add New Category

""" U Paste Crl+

..... e

_____ U a8 Rename F2

""" & | Property

Figure 4.7 Location of Startup Routine

RO1AN1343EJ0100 Rev.1.00 Page 14 of 69
Mar. 01, 2013 RENESAS

V850E2/ML4 Updating Program Code by Using Flash Self Programming
with CAN Controller

: (Excerpt from cstart.asm)

3
system stack
ey,
(STACKSIZE .set 0x500) «——— Change the stack size to execute FSL and user program
.dseg bss
.align 4
__stack: .ds (STACKSIZE)
-
RESET vector
e ———————————————————————————————_——————

RESET .cseg text
jr __start

.cseg text

.align 4
__start:
mov32 #__ tp_TEXT, tp ; set tp register
mov32 #__gp_DATA, gp ; set gp register offset
add tp, gp ; set gp register
mov32 #__stack+STACKSIZE, sp ; set sp register
mov32 #__ep_DATA, ep ; set ep register
mov32 # PROLOG_TABLE, rl12 ; Tor prologue/epilogue runtime
ldsr rl2, 20 ; set CTBP (CALLT base pointer)
jarl _hdwinit, Ip ; Initialize hardware
mov32 # _ ssbss, r6 ; clear sbss section
mov32 #__esbss, r7
jarl __zeroclrw, Ip
mov32 #__sbss, r6 ; clear bss section (Clear periphery of the area to be used as a program
mov32 #__ebss, r7 on RAM to zero before executing"_rcopy"
jarl __zeroclrw, Ip l
mov32 Oxfedfc000, r6 ; clear ram_prog section for e2core prefetch processing
mov32 OxfedffFfff, r7
jarl __zeroclrw, Ip
: (Continue)

Figure 4.8 Example of Startup Routine Preparation (Excerpt from cstart.asm)

RO1AN1343EJ0100 Rev.1.00 Page 15 of 69
Mar. 01, 2013 RENESAS

V850E2/ML4 Updating Program Code by Using Flash Self Programming
with CAN Controller

4.2.6 Precautions for Interrupt Generated During Use of FSL
When accessing to the data using the gp register or the ep register in the interrupt processing generated during the use of
the FSL, set appropriate values to the gp register or the ep register before accessing to the data. The saving process for
the gp register or the ep register is required before setting the appropriate values to the registers. Furthermore, the
restoring process for the gp register or the ep register is required before returning from the interrupt processing. If the
said measures are not executed, the data access using the gp register or the ep register cannot be operated properly.
e Sections when accessing to the gp register as a base address:

(The created global variables without section specification will be allocated to .sdata or .sbss.)

— .data

— .bss

— .sdata

— Sbss

e Sections when accessing to the ep register as a base address:
— .sedata
— .sebss
— .sidata
— .sibss
— .tidata.byte
— .tibss.byte
— .tidata.word
— .tibss.word

This sample program does not use a section which accesses to the ep register as a base address and therefore the saving,
setting, and restoring processes for the ep register are not executed in the interrupt processing. The V850E2/ML4 does
not require the saving, setting, and restoring of the gp register when using the FSL.

When changing the microcomputer or using the above sections, the saving, setting, and restoring of the gp register or ep
register may be necessary in the interrupt processing. Cautions are required when applying.

RO1AN1343EJ0100 Rev.1.00 Page 16 of 69
Mar. 01, 2013 RENESAS

V850E2/ML4 Updating Program Code by Using Flash Self Programming
with CAN Controller

5. Hardware

51 Pins Used
Table 5.1 lists the Pins Used and Their Functions.

Table 5.1 Pins Used and Their Functions

Pin Name 1/0 Function
P2_14/CANORXD Input CANO receive data input
P2_15/CANOTXD Output CANO transmit data output
P2_3/INTP1 Input INTP1 interrupt
RO1AN1343EJ0100 Rev.1.00 Page 17 of 69

Mar. 01, 2013 RENESAS

V850E2/ML4

Updating Program Code by Using Flash Self Programming

with CAN Controller

6. Software

6.1

Operation Overview

This sample program receives a program file data for update with Intel expanded hex format using the CAN
communication, and reprograms the program in the flash memory area. This section describes its operation overview.

6.1.1

Setting for Section Assignment

The access to the flash memory is prohibited while the flash memory is reprogrammed. All programs that are used
during the reprogram of flash memory should be transferred to the area except flash memory. This sample program sets
section assignment to transfer all the sections used during the reprogram to the on-chip RAM.

Table 6.1 lists the Sections Used During Flash Memory Reprogram.

Table 6.1 Sections Used During Flash Memory Reprogram

Section name

Program detalil

Function name

FSL_CODE_ROMRAM.text,
FSL_CODE_RAM.text,
FSL_CODE_RAM_EX_PROT.text

FSL area

Flash function

FSL_CODE_RAM_USRINT.text

User program interrupt section for
RAM

fcnO_can_rx_isr,
fcnO_can_error_isr,
flash_store_can_data, hex2bin,
intpl_isr,
taua0_chO_interval_timer_isr

FSL_CODE_RAM_USR.text

User program section for RAM

fcn0_can_tx_msg, fcn0_can_tx,
fcn0_can_rx, flash_reprogram,
flash_init, flash_activate,
flash_modecheck, flash_erase,
flash_write, flash_iverify,
flash_end, flash_set flmdO

INTP1RAM.text,
INTTAUAOIORAM.text,
INTFCNOITRXRAM.text,
INTFCNOIRECRAM.text

Jump instruction to interrupt
handler function

None

This sample program additionally assigns a section area to store a spare program as a solution when the flash memory
reprogram processing failed to reprogram properly such as abort without any intention. For the reprogram area and the
spare area before receiving data (initial state), the programs which have the same processing are stored in respective

area.

Table 6.2 lists the Functions and Sections Specifying Addresses on Flash Memory.

Table 6.2 Functions and Sections Specifying Addresses on Flash Memory

ltem Start address (block number) Store function name ROM section name
Reprogram area H'0000 8000 (8) taua0_led_sample MasterPRG.text
Spare area H'0000 6000 (6) tauaO_led_spare SparePRG.text

RO1AN1343EJO0100 Rev.1.00
Mar. 01, 2013

RENESAS

Page 18 of 69

V850E2/ML4 Updating Program Code by Using Flash Self Programming
with CAN Controller

6.1.2 Overview of Reprogramming Flash Memory
Figure 6.1 shows the Overview of Reprogramming Flash Memory.

Flash memory

H®0000 0000
Exception handler

H"0000 1100 Constants

Functions

ROMized RAM allocation functions

Execute reprogram

processing using H*0000 6000
flash macro service Spare area

H"0000 8000

> Reprogram area
H®0000 8FFO
H"0000 8FFF

Check sum area, reprogram area

Transmit to on-

H"000F FEEE chip RAM area at
startup
—(4)
On-chip RAM (1)
H"FEDF 0000 -
(3) Buffer 0 < (2) __| | Binarize data received
Buffer 1 < via CAN communication
H"FEDF C000
FSL function <

Function allocated in RAM
Reprogram processing, interrupt |«
processing, etc.

Instruct to reprogram H*FEDF EO0O

using flash library

Exception handler <

H*FEDF F190
Flash macro service use area

H*FEDF FFFF

Figure 6.1 Overview of Reprogramming Flash Memory

1. After cancelling the reset, the S romp (ROMized section group) is copied to the on-chip RAM during the
cstart.asm processing before starting the main function.

2. The Intel Extend Hex format data received via CAN communication is stored to the on-chip RAM with the state of
binary data which executes writing.

3. The operation for the flash macro service is executed by the flash library function which is assigned to the on-chip
RAM.

4. The flash macro service executes the reprogram processing of on-chip flash memory.

RO1AN1343EJ0100 Rev.1.00 Page 19 of 69
Mar. 01, 2013 RENESAS

V850E2/ML4 Updating Program Code by Using Flash Self Programming
with CAN Controller

6.1.3 Process from Startup to Normal Operation

After the system activation, execute initializations in the main processing, and transmit a message "Generate INTP1
interrupt for transition to flash programming event." to the host. Then call the checksum judgment function to judge the
program code in the reprogram area.

The checksum of this sample program uses "Program code size" and "Checksum data" that a program was added to one
byte at a time. The checksum judgment function adds a program one byte at a time with the start address (H'0000 8000)
in the reprogram area for the number of program data size. The calculation result is compared with the checksum
judgment data calculated when received a data (Stored in the last 16-byte area of MasterPRG.text. Refer to 6.1.6 for the
details). The program in the reprogram area will be executed when the calculation result matches the said data, and the
one in the spare area will be executed if there is a difference.

6.1.4 Flash Reprogram Processing after Inputting INTP1 Interrupt

When the INTP1 interrupt (rising edge detection/ INTP1 switch push down on the board) is generated, moves to flash
reprogram processing.

In the flash reprogram processing, the message "--> INTP1 detected!" is transmitted to the host to erase the reprogram
area. Then the message "Send subroutine code to update program in Intel expanded hex format."” is transmitted to the
host to enter wait state for data reception from the host.

In the wait state for data reception, flag variables are used by polling to detect if the flash write is enabled or disabled.
When receiving program file data for update with Intel expanded hex format from the host, the data receive processing
(later described) is executed, and the data is stored into the write data store buffer (write buffer). When the write buffer
becomes full, the buffer data will be written to the flash memory.

This sample program provides a double structured write buffer. Regarding "Storing write data during data receive
processing™ and "Writing to the flash memory", each processing should be executed by switching the write buffer to be
used.

6.1.5 Data Receive Processing

After the V850E2/ML4 entered the wait state for data reception, CAN controller channel 0 (FCNO) receive processing
completion interrupt is generated every time it receives communication data from the host. When the said interrupt is
generated, the received data will be stored into the CAN receive data store buffer (receive buffer) in the order received.
When the V850E2/ML4 receives the line feed code, it judges the data that has been stored in the receive buffer as a
record data for a line and executes data receive processing described as follows to extract write data necessary for
updating.

The data receive processing is described as follows referring to Figure 6.2 "Example of Data with Intel Expanded Hex
Format". (The data shown in Figure 6.2 is color coded depending on its function.)

:04000005000013C81C

:020000040000FA
:20800000E0570584CA5EEFFF605F0484E0670583CC6EEFFF606F0483407640FF2E7F054609
:20802000CF86EFFF408E40FF71870546E0970580929E1000609F0480405681FF6A070082E5
:208040002BO6FAFFO0000406681FF6C5F4082206EFF3F606F00C44076FFFFOE7F66608F86C8
:1A8060000F00408EFFFF518766604096FFFFD2BF6660019A609FC4C57F00CO

00000001FF

Figure 6.2 Example of Data with Intel Expanded Hex Format

RO1AN1343EJ0100 Rev.1.00 Page 20 of 69
Mar. 01, 2013 RENESAS

V850E2/ML4 Updating Program Code by Using Flash Self Programming
with CAN Controller

e For the processing of each line, determine if the 1% character of the data in the receive buffer shows ":". If it shows
" judge the 8" and 9" characters (red) as Intel expanded hex format. If the 1 character does not show ":", the
record data become invalid, and returns to wait state for receive data. When the 8" character does not show “0", the
record data also become invalid, and returns to wait state.

e The 8" and 9™ characters (red) of the first line show "05". This "05" indicates the start linear address record which
does not have a program data. When received the start linear address record, return to the wait state for receive data
until the next entire record (line data) will be displayed.

e The 8" and 9" characters (red) of the second line show "04". This "04" indicates the extended linear address record
which does not have a program data. When received the extended linear address record, return to the wait state for
receive data until the next entire record will be displayed.

e When the entire 3" line of the record is displayed, the line is determined as a “data record" because the 8" and 9"
characters (red) show "00". The type of the record can be determined by the numbers from the start to 9" of each
record with Intel expanded hex format.

e The 2th and 3" characters (blue) of the record indicate the hex for 1 byte of the record size. The four characters from
4" to 8" (green) indicate the lower 2 bytes of the start data store address of the record.

¢ Regarding the 10" and later characters (orange) of the record, each two characters indicates 1 byte. In the data
receive processing, the 10™ and later characters (orange) is converted into binary data every 2 characters (call "text
binary conversion processing™), store the 1 byte data after the conversion into the write buffer in the order converted.
Add the one byte data for the checksum judgment (checksum data), and count the amounts of the data as a program
code size. When repeated these processing before the last two characters (black) of the record, return to the wait
state for receive data until the next entire record will be displayed.

e When the 8" and 9™ (red) characters of the record data show "01", it means "end record" (the bottom line in Figure
6.2). When the end record is shown, terminate the data receive processing without storing receive data. However, if
the data size in the write buffer is less than 16 bytes (unit of flash write) at this point, add H'FF to make the buffer
size 16 bytes.

This sample program provides a double structured write buffer with 16-byte size. Every time the store data in a write
buffer becomes full at 16 bytes, the store destination is switched to another write buffer during the data receive
processing. When the said buffer becomes full, the buffer data is written to the flash memory during flash reprogram
event processing. Writing to the flash memory is executed by polling waiting for receive data, not by an interrupt
processing. When switching the buffer at full, set flag variables which indicate writability.

6.1.6 Processing after Data Reception/Reprogram

When the end record is determined during data receive processing and the write of flash memory for the receive data is
terminated, the V850E2/ML4 leaves from the wait state for data reception in the flash reprogram event processing, and
writes the data for checksum judgment calculated at the time of data reception (program code size and checksum data/ 2
bytes for each) the flash memory. In this sample program, the data for checksum judgment is stored the last 4 bytes of
the reprogram area H'0000 8FFO0 to H'0000 8FF3 (H'0000 8FFO to H'0000 8FF1 for the program code size and H'0000
8FF2 to H'0000 8FF3 for the checksum data).

After writing the data for checksum judgment, a message is transmitted to the host and the V850E2/ML4 enters wait
state for reset.

RO1AN1343EJ0100 Rev.1.00 Page 21 of 69
Mar. 01, 2013 RENESAS

V850E2/ML4

Updating Program Code by Using Flash Self Programming

with CAN Controller

6.1.7

Communication Control Sequence

Figure 6.3 shows the Communication Control Sequence.

(V850E2/ML4)
Change exception handler address
v
Initializations
]
Checksum judgment

¥

Execute program for reprogram area
or spare area

!

Generate INTP1 interrupt for
transition to flash programming event.

C CAN communication host)

Transmit message I

Start flash reprogramming?

after switch interrupt

Start flash reprogramming

Output message
Repeat until switch interrupt is generated

&User operation

Interrupt INTP1 switch
Push SW4

>

Message processing

4

Transmit message \

v

Erase flash

¥

Output message
--> INTP1 detected!

D

Message processing

4

Transmit message [

>

Repeat

Output message

Send subroutine code to update
program in Intel expanded hex
format.

<

Receive data
v
Write to flash

I

Write checksum data

!

¥

Message processing

l

Transmit program file data for update

Transmit message \

Output message

Successfully Finish Writing Program
Data. Please Reset.

Infinite loop for reset wait

&User operation

Reset

%

Message processing

Figure 6.3 Communication Control Sequence

RO1AN1343EJO0100 Rev.1.00

Mar. 01, 2013

RENESAS

Page 22 of 69

V850E2/ML4

Updating Program Code by Using Flash Self Programming

with CAN Controller

6.2 File Composition

Table 6.3 lists the Files Used in the Sample Code. Files generated by the integrated development environment are not

included in this table.

Table 6.3 Files Used in the Sample Code

File Name Outline Remarks
main.c Main processing
intpl.c INTP1 interrupt processing
flash.c Processing related to flash reprogram
fcn0_can.c Processing related to CAN controller

taua0_led_sample.c

Sample program for update and
LED flash port processing

flash.h

Common header for flash memory
reprogram processing

r_typedefs.h

Fixed length integer type header

FSL.h

FSL header file

except_handler_ram.asm

Exception handler in RAM*

Jump to interrupt processing
function from RAM

cstart.asm

Startup routine

Change stack size from
standard startup routine, and
add initialization of program
area in RAM

libFSL_T05_REC_R32.lib

FSL library (32 register mode)

v850e2ml4_flash_update_can.dir

Link directive setting file

v850e2ml4_flash_update_can.fip

Far jump calling function file

[Note] * Defines the jump instruction from the interrupt handler address to the interrupt handler function to be
allocated on the exception handler.

RO1AN1343EJO0100 Rev.1.00
Mar. 01, 2013

RENESAS

Page 23 of 69

V850E2/ML4

Updating Program Code by Using Flash Self Programming

with CAN Controller

6.3 Constants

Table 6.4 and Table 6.5list the Constants Used in the Sample Code.

Table 6.4 Constants Used in the Sample Code

Constant Name Setting Value Description
RET_OK 0 Normal end
RET_ERR -1 Error end
RET_ERR_FLASH_ACTIVATE -1 Failure to start flash environment
RET_ERR_FLASH_MODECHECK -2 Failure to check FLMDO pin
RET_ERR_FLASH_ERASE -3 Failure of erase processing
RET_ERR_FLASH_WRITE -4 Failure of write processing
RET_ERR_FLASH_IVERIFY -5 Failure of internal verification
RET_ERR_FLASH_DEACTIVATE -6 Failure to terminate flash environment
RET_ERR_FLASH_FLMDO_HIGH -7 Failure to set High level for FLMDO pin
RET_ERR_FLASH_FLMDO_LOW -8 Failure to set Low level for FLMDO pin
RET_ERR_FLASH_CAN_RX_NUM | -9 Abnormal receive data size of CAN

communication

RET_ERR_FLASH_HEX_ LINESIZE | -10 Abnormal number of hex file line data
RET_ERR_FLASH_HEX_DATA -11 Abnormal hex file program data
BLOCK_MASTER_PRG 8 Reprogram area block number
TOP_ADDR_MASTER_PRG H'00008000 Reprogram area start address
SIZE_MASTER_PRG H'1000 Reprogram area size (4KB)
SIZE_WRITE 16 Write specification size

TOP_ADDR_MASTER_PRG_CHKSUM

TOP_ADDR_MASTER_PRG
+ SIZE_MASTER_PRG

Start address of checksum area
(H'00008FFO0)

- SIZE_WRITE
TOP_ADDR_EXT HANDLER H'FEDF E000 Transfer destination exception handler
start address
R0O1AN1343EJ0100 Rev.1.00 Page 24 of 69
Mar. 01, 2013 RENESAS

V850E2/ML4 Updating Program Code by Using Flash Self Programming

with CAN Controller

Table 6.5 Constants Used in the Sample Code

Constant Name Setting Contents
Value
FLASH_STATUS_FLMDO_HIGH H'01 FLMDO High setting completion state (pull-up valid)
FLASH_STATUS FSL_ACTIVATE H'02 FSL start status
HEXDATA POS RECMARK 0 Record mark position of hex data
HEXDATA POS BYTE_NUM 1 Position for number of bytes of hex data
HEXDATA_POS RECTYPE_UPPER |7 Upper digit position of hex data record type
HEXDATA POS RECTYPE_LOWER |8 Lower digit position of hex data record type
HEXDATA POS CODE_TOP 9 Start position of hex data code
SIZE_BUF_RX_DATA 525 Buffer size to store receive data (total of the
followings)

— Record mark: 1 character

— Number of bytes: 2 characters

— Location address: 4 characters

— Record type: 2 characters

— Code: 512 characters (max)

— Checksum: 2 characters

— Return (\r) + New line (\n): 2 characters
FCNO_CAN_SIZE DATA MAX 8 Maximum transmit/receive data length
FCNO_CAN_NUM_MB 64 Number of message buffers
FCNO_CAN_GAP_MB_ADDR H'40 Address interval of message buffers
FCNO_CAN_ADDR_MO_STRB H'FF481024 | FCNOMOSTRB register address
FCNO_CAN_ADDR_MO_CTL H'FF489038 | FCNOMOCTL register address
FCNO_CAN_ADDR_MO_DAT H'FF481000 | FCNOMODAT register address
FCNO_CAN_ID_SEND_MSG 0 Message ID used in the fcn0_can_tx_msg function
PORT BIT _P1 4 H'0010 Bit position of port function setting P1_4
PORT _BIT P2 3 H'0008 Bit position of port function setting P2_3
PORT_BIT_P2_14 H'4000 Bit position of port function setting P2_14
PORT BIT_P2 15 H'8000 Bit position of port function setting P2_15
RO1AN1343EJ0100 Rev.1.00 Page 25 of 69
Mar. 01, 2013 RENESAS

V850E2/ML4

Updating Program Code by Using Flash Self Programming
with CAN Controller

6.4 Variables
Table 6.6 lists the Global Variables.

Table 6.6 Global Variables

Type Variable Name Contents Function Used
uint8_t g_flag_start_flash_reprog | Flash reprogram start flag main,
intpl_isr
fsl_status t | g_error_fsl_status FSL error save main, flash_activate,
flash_modecheck,
flash_erase,
flash_write,
flash_iverify
uint32_t g_addr_write_error Write error address main, flash_write
uint8_t g_flag_w_data_buf0_full Write buffer 0 full flag flash_reprogram,
flash_store_can_data
uint8_t g_flag_w_data_bufl_full Write buffer 1 full flag flash_reprogram,
flash_store_can_data
uint8_t g_status_end_record End record receive flag flash_reprogram,
flash_store_can_data
uintl6 _t g_chksm_size Program code size of write data flash_reprogram,
flash_store_can_data
uintl6 t g_chksm_data Checksum data of write data flash_reprogram,
flash_store_can_data
uint8_t g_buf_write_data0 Write data store buffer O flash_reprogram,
[SIZE_WRITE] flash_store_can_data
uint32_t g_cnt_store_buf w_dataO | Data counts of write data store buffer 0 | flash_reprogram,
flash_store_can_data
uint8_t g_buf write_datal Write data store buffer 1 flash_reprogram,
[SIZE_WRITE] flash_store_can_data
uint32_t g_cnt_store_buf w_datal | Data counts of write data store buffer 1 | flash_reprogram,
flash_store_can_data
uint32_t g_index_rx_data Receive data store location index flash_reprogram,
flash_store_can_data
uint8_t g_buf_rx_data Receive data store buffer flash_store_can_data
[SIZE_BUF_RX_DATA]
int8_t g_status_store_error Error flag flash_reprogram,
flash_store_can_data
uint8_t g_flag_flash_status Flash environment status flash_init,
flash_activate,
flash_end
char g_msg_sendcode(] Program transmission request message | flash_reprogram

RO1AN1343EJO0100 Rev.1.00
Mar. 01, 2013

RENESAS

Page 26 of 69

V850E2/ML4

Updating Program Code by Using Flash Self Programming
with CAN Controller

6.5 Functions
Table 6.7 lists the Functions.

Table 6.7 Functions

Function Name

Outline

main

Main processing

except_handler_addr_set

Setting for exception handler base address

check_sum_check

Checksum judgment for reprogram area

intpl_init Initialization of INTP1 interrupt
intpl_isr Interrupt processing for INTP1
flash_reprogram Flash reprogram processing
flash_init Initialization of flash environment

flash_activate

Start processing for flash environment

flash_modecheck

Checking processing for FLMDO pin using FSL

flash_erase Erase processing for specified block
flash_write Write processing from specified address
flash_iverify Internal verification of specified block
flash_end Termination processing for flash environment

flash_set fimdO

Setting for LFMDO pin level

flash_store_can_data

Store processing for receive data conversion

hex2bin

Text binary conversion processing

taua0_led_sample

TAUAO initialization for LED flash with constant period
(sample function in reprogram area)

tauaO_led_spare

TAUAO initialization for LED flash with constant period
(sample function in spare area)

tauaO_i0_interval_timer_isr *

Interrupt processing for TAUAO interval timer

fcnO_can_init

Initialization of CAN controller channel 0 (FCNO)

fcnO_can_port_init

Initialization of FCNO port

fcn0_can_mb_init

Initialization of FCNO message buffer

fcn0_can_tx_msg

FCNO message transmit processing

fcn0_can_tx

FCNO transmit processing

fcn0_can_rx

FCNO receive processing

fcnO_can_rx_isr

Interrupt processing for FCNO reception completion

fcnO_can_error_isr

Exception handling for FCNO error interrupt

[Notes] * To set the store processing for received program data by CAN communication above the LED flash
processing, the interrupt handler function taua0_chO_interval_timer_isr enables multiple interrupts.
TAUAQO interval timer interrupt is set to a lower priority than FCNO reception completion interrupt.

RO1AN1343EJO0100 Rev.1.00

Mar. 01, 2013

Page 27 of 69
RENESAS

V850E2/ML4

Updating Program Code by Using Flash Self Programming
with CAN Controller

6.6 Function Specifications
The following tables list the sample code function specifications.

main
Outline Main processing
Header

Declaration void main (void)

Description After initializing the variables, exception handler address, INTP1 interrupt, and CAN
controller, executes the program located in the reprogram area or spare area
according to the result of checksum judgment. After enabling interrupt and outputting
INTP1 interrupt request message, executes flash reprogram processing when the
INTP1 interrupt is generated. Outputs a reset request message if the reprogram is
successful or an error message if it is failed, and enters into the infinite loop.

Arguments None

Return Value

None

except_handler_addr_set

Outline
Header
Declaration
Description

Arguments

Return Value

Switching of exception handler base address

except_handler_addr_set (uint32_t base_addr)

After setting the specified values for the argument to the SW_BASE register, sets 1

to the SET bit for SW_CTL register, and transmits the contents of the SW_BASE

register to the exception handler base address register (EH_BASE).

uint32_t base_addr : Setting value of exception handler base address
(The low 12-bit should be 0.)

0 (RET_OK) :Normal end

-1 (RET_ERR) : Argument error (The low 12-bit is not 0.)

check_sum_check

Outline
Header
Declaration
Description

Arguments
Return Value

Checksum judgment for reprogram area

int32_t check_sum_check (void)

Based on the program code size or checksum data stored in the last 4 bytes (H'0000
8FFO0 to H'0000 8FF3) of reprogram area, calculates sum value from the start
address (H'0000 8000) of reprogram area to judge the consistency with the
checksum data.

None
0 (RET_OK) : Checksum matched
-1 (RET_ERR) : Checksum unmatched

RO1AN1343EJO0100 Rev.1.00

Mar. 01, 2013

Page 28 of 69
RENESAS

V850E2/ML4

Updating Program Code by Using Flash Self Programming
with CAN Controller

intpl_init
Outline Initialization of INTP1 interrupt
Header
Declaration void intpl1_init (void)
Description Initializes INTP1 interrupt. After setting P2_3 pin function to INTP1 input, sets the
interrupt request to be detected at the falling edge for input using interrupt controller.
Then sets INTP1 interrupt priority level.
Arguments None
Return Value None

intpl_isr
Outline INTP1 interrupt processing
Header
Declaration void intp1_isr (void)
Description Sets a flag indicating that INTP1 interrupt was generated.
Arguments None
Return Value None

flash_reprogram

Outline
Header
Declaration
Description

Arguments
Return Value

Flash reprogram processing
flash.h

int32_t flash_reprogram (void)
First, executes flash environment initialization, flash environment start processing,
FLMDO pin checking processing, and reprogram block erase processing. Next,
transmits a program transmit request message and enters into the loop to execute
program receive wait and flash write. When the program is received to the last and
the writing is terminated, executes flash reprogram termination processing by writing
checksum data.

None

0 (RET_OK)

-1 (RET_ERR_FLASH_ACTIVATE)
(RET_ERR_FLASH_MODECHECK)
-3 (RET_ERR_FLASH_ERASE)

-4 (RET_ERR_FLASH_WRITE)

-5 (RET_ERR_FLASH_IVERIFY)

-6 (RET_ERR_FLASH_DEACTIVATE)

: Normal end

. Failure to start flash environment.

: Failure to check FLMDO pin

: Failure of erase processing

: Failure of write processing

. Failure of internal verification

: Failure to terminate flash environment

-7 (RET_ERR_FLASH_FLMDO_HIGH) : Failure to set FLMDO pin to High level

-8 (RET_ERR_FLASH_FLMDO_LOW) : Failure to set FLMDO pin to Low level

-9 (RET_ERR_FLASH_CAN_RX_NUM) : Abnormal receive data size in CAN
communication

-10 (RET_ERR_FLASH _HEX_LINESIZE)

: Abnormal number of hex file line data

-11 (RET_ERR_FLASH_HEX_DATA) : Abnormal hex file program data

RO1AN1343EJO0100 Rev.1.00

Mar. 01, 2013

Page 29 of 69
RENESAS

V850E2/ML4

Updating Program Code by Using Flash Self Programming
with CAN Controller

flash_init
Outline Initialization of flash environment
Header
Declaration int32_t flash_init (void)
Description After executing FLMDO pin level setting function and setting FLMDO pin to High level,
the FSL_Init function is executed to initialize the self library. When the
flash_set flmdO function becomes an error, returns
RET_ERR_FLASH_FLMDO_HIGH.
Arguments None
Return Value 0 (RET_OK) : Normal end

-7 (RET_ERR_FLASH_FLMDO_HIGH) : Failure to set FLMDO pin to High level

flash_activate

Outline
Header
Declaration
Description

Arguments
Return Value

Start processing for flash environment

int32_t flash_activate (void)
Starts flash environment by calling the FSL_FlashEnv_Activate function. In case of
normal end, sets a bit to show the global variable g_flag_flash_status that the flash
environment has been started and returns RET_OK to terminate. If the
FSL_FlashEnv_Activate function returns a value other than FSL_OK, stores the
return value in the global variable g_error_fsl_status and returns
RET_ERR_FLASH_ACTIVATE to terminate.

None

0 (RET_OK)

-1 (RET_ERR_FLASH_ACTIVATE)

: Normal end
: Failure to start flash environment

flash_modecheck

Outline
Header
Declaration
Description

Arguments
Return Value

Checking processing for FLMDO pin using FSL

int32_t flash_modecheck (void)

Calls the FSL_ModeCheck function to check the FLMDO pin. In case of normal end,

returns RET_OK to terminate. When the FSL_ModeChec function returns other than
FSL_OK, stores the return value in the global variable g_error_fsl_status and returns
RET_ERR_FLASH_MODECHECK to terminate.

None
0 (RET_OK) : Normal end
-2 (RET_ERR_FLASH_MODECHECK) : Failure to check FLMDO pin

RO1AN1343EJO0100 Rev.1.00

Mar. 01, 2013

Page 30 of 69
RENESAS

V850E2/ML4

Updating Program Code by Using Flash Self Programming
with CAN Controller

flash_erase
Outline Erase processing for specified block
Header

Declaration int32_t flash_erase (uint32_t start_block, uint32_t end_block)

Description Erases the block by calling the FSL_Erase function according to the specified
arguments. After executed the FSL_Erase function, calls the FSL_StatusCheck
function and waits until the erase processing is completed. If the FSL_Erase function
or the FSL_StatusCheck function returns an error value, stores the return value in
the global variable g_error_fsl_status and returns RET_ERR_FLASH_ERASE to
terminate.

Arguments uint32_t start_block . Start block number of the range to be erased

Return Value

uint32_t end_block : End block number of the range to be erased
0 (RET_OK) : Normal end
-3 (RET_ERR_FLASH_ERASE) : Failure of erase processing

flash_write
Outline Write processing from specified address
Header
Declaration int32_t flash_write (uint8_t * src_data_addr, uint32_t dst_write_addr, uint32_t length)
Description Writes to the flash by calling the FSL_Write function according to the specified
arguments. After executed the FSL_Write function, calls the FSL_StatusCheck
function and waits until the write processing is completed. When the FSL_Write
function or the FSL_StatusCheck function returns an error value, stores the return
value in the global variable g_error_fsl_status and returns
RET_ERR_FLASH_WRITE to terminate.
Arguments uint8_t * src_data_addr : Start address of write data (outside the on-chip ROM)

Return Value

: Store destination address of write data
(4-word boundary)

uint32_t length : Write data length

0 (RET_OK) : Normal end

-4 (RET_ERR_FLASH_WRITE) : Failure to write

uint32_t dst_write_addr

flash_iverify
Outline Internal verification of specified block
Header

Declaration int32_t flash_iverify (uint32_t start_block, uint32_t end_block)

Description Executes the internal verification of the specified block by calling the FSL_IVerify
function according to the arguments. After executed the FSL_IVerify function, calls
the FSL_StatusCheck function and waits until the internal verification is completed.
When the FSL_[Verify function or the FSL_StatusCheck function returns an error
value, stores the return value in the global variable g_error_fsl_status and returns
RET_ERR_FLASH_IVERIFY to terminate.

Arguments uint32_t start_block : Start block number of the range subject for verification

Return Value

uint32_t end_block
0 (RET_OK)
-5 (RET_ERR_FLASH_IVERIFY)

: End block number of the range subject for verification
: Normal end
: Failure of internal verification

RO1AN1343EJO0100 Rev.1.00

Mar. 01, 2013

Page 31 of 69
RENESAS

V850E2/ML4

Updating Program Code by Using Flash Self Programming
with CAN Controller

flash_end
Outline Termination processing for flash reprogram
Header
Declaration int32_t flash_end (void)
Description After terminated the flash environment by calling the FSL_FlashEnv_Deactivate
function, calls the flash_set flmd0 function and sets the FLMDO pin to Low level.
When the FSL_FlashEnv_Deactivate function returns an error value,
RET_ERR_FLASH_DEACTIVATE is returned. When the flash_set flmdO function
returns a value other than 0, RET_ERR_FLASH_FLMDO_LOW is returned to
terminate.
Arguments None
Return Value 0 (RET_OK) : Normal end

-6 (RET_ERR_FLASH_DEACTIVATE) : Failure to terminate flash environment
-8 (RET_ERR_FLASH_FLMDO_LOW) : Failure to set FLMDO pin to High level

flash_set flmdO

Outline
Header
Declaration
Description

Arguments
Return Value

Setting for FLMDO pin level

int32_t flash_set flmdO (uint8_t level)

Sets FLMD control register to switch the FLMDO pull-up/pull-down control register.
According to the reprogram sequence to protect register, after substituted H'A5 in the
FLMD protect command register, substitutes the value specified by the argument and
the inverted value in the FLMD control register. Then substitutes again the value
specified by the argument in the FLMD control register. Ensures that the register
values have been changed to terminate.

uint8_t level uint8_t level
0 (RET_OK) : Normal end
-1 (RET_ERR) : Error in write operation to FLMDCNT register

flash_store_can_data

Outline
Header
Declaration
Description

Arguments
Return Value

Store processing for receive data conversion

flash.h

void flash_store_can_data (void)

Converts the hex data to binary data with each line and stores it in the buffer. If the
hex data for a line is a data record, converts the data into binary form and stores it
until the buffer becomes full. If the hex data for a line is an end record, sets the flag
indicating that the reception has been terminated by filling the remaining of the buffer
with H'FF.

None

None

RO1AN1343EJO0100 Rev.1.00

Mar. 01, 2013

Page 32 of 69
RENESAS

V850E2/ML4

Updating Program Code by Using Flash Self Programming
with CAN Controller

hex2bin
Outline Text binary conversion processing
Header
Declaration int32_t hex2bin(uint8_t upper, uint8_t lower)
Description Converts the text data (2 characters) to binary data with 1 byte.
When the data given to the arguments is the text data with "0 to 9" or "A to F", the
data will be considered as valid data and converted to binary data with H'O to H'F.
After shifting the conversion result of the first argument (the upper) to left by 4 bits
and implementing the OR operation with the conversion result of the second
argument (the lower), returns the data as binary data with 1 byte.
Arguments uint8_t upper : Text data for upper 4-bit

Return Value

: Text data for lower 4-bit
: Binary data with 1 byte
: Input data error

uint8_t lower
0 to 255
-1 (RET_ERR)

taua0_led_sample

Outline

Header
Declaration
Description

Arguments
Return Value

TAUAO initialization for LED flash with constant period
(sample function in reprogram area)

void taua0_led_sample (void)

Sets the ports connected to the LEDs to output in order to flash the LEDs. Sets
TAUAO to the interval timer which generates interrupts with constant period.
None

None

tauaO_led_spare

Outline

Header
Declaration
Description

Arguments
Return Value

TAUAO initialization for LED flash with constant period
(sample function in spare area)

void tauaO_led_spare (void)

Sets the ports connected to the LEDs to output in order to flash the LEDs Sets
TAUAO to the interval timer which generates interrupts with constant period.
None

None

tauaO_i0_interval_timer_isr

Outline
Header
Declaration
Description
Arguments
Return Value

Interrupt processing for TAUAO interval timer

void tauaQ_i0_interval_timer_isr (void)
Inverts the output of P1_4 to flash LEDs.
None

None

RO1AN1343EJO0100 Rev.1.00

Mar. 01, 2013

Page 33 of 69
RENESAS

V850E2/ML4

Updating Program Code by Using Flash Self Programming
with CAN Controller

fcnO_init
Outline Initialization of CAN controller channel 0 (FCNO)
Header
Declaration int32_t fcnO_init (void)
Description After initializing FCNO port (the fcnO_port_init function), sets FCNO system clock and
communication baud rate to enable module operation for related interrupt enable.
After initializing the message buffer (the fcnO_mb_init function), transfers FCNO to
normal operating mode.
Arguments None
Return Value 0 (RET_OK) : Normal end
-1 (RET_ERR) : Register error

fcnO_port_init

Outline
Header
Declaration
Description

Arguments
Return Value

Initialization of FCNO port

void fcnO_port_init (void)

Sets the port to use P2_14 for reception and P2_15 for transmission in CAN
communication.

None

None

fcnO_mb_init
Outline Initialization of FCNO message buffer
Header
Declaration void fcn0_mb_init (void)
Description After executing minimum initialization for all of the message buffers, sets the
message buffer O for reception and the message buffer 1 for transmission.
Arguments None

Return Value

None

fcn0_can_tx_msg

Outline
Header
Declaration
Description

Arguments
Return Value

FCNO message transmit processing

void fcnO_can_tx_msg (char * msg)

Executes FCNO transmit processing (the fcnO_can_tx function) for the number of
times required and transmits the message specified by the argument. The message
including end character is transmitted until "\0" appears at the end of the character
string. The transmit data ID is set to O for transmit processing.

char * msg : Transmit message character string

None

RO1AN1343EJO0100 Rev.1.00

Mar. 01, 2013

Page 34 of 69
RENESAS

V850E2/ML4

Updating Program Code by Using Flash Self Programming
with CAN Controller

fcnO_can_tx
Outline FCNO transmit processing
Header
Declaration int32_t fcn0_can_tx (int8_t length, uint8_t * send_data, uint32_t id)
Description Transmits the data specified by the argument send_data for the bytes specified by
the argument length as CAN communication data using FCNO message bufferl.
Waits until the FCNOM1TRQF and the FCNOM1RDYF become transmittable. Sets
the transmit data to the message buffer with specified size and transmits the ID
specified by the argument id.
Arguments int8_t length : Transmit data length
uint8_t * send_data : Start address of transmit data
uint32_tid . ID set to transmit data
Return Value 0 (RET_OK) : Normal end
-1 (RET_ERR) : Argument error

fcnO_can_receive

Outline
Header
Declaration
Description

Arguments

Return Value

FCNO receive processing

int32_t fcnO_can_receive (int8_t * length, uint8_t * recv_data, uint32_t = id)
While FCNO message buffer O receives data, the receive data is stored in the
address area specified by the argument recv_data. When storing the data in the
message buffer, the receive data length and the ID will be stored in the argument
length and the argument id respectively. After the data is stored, if the store or
update bit for message buffer is set, starts over the data store processing.
int8_t * length : Receive data length
(When an error in receive data length occurs, it
will be 8 which indicates the data counts actually
stored.)
: Start address of receive data store area
: ID set to the receive data
0to 8 (0 to FCN_MAX_DATA_LENGTH) : Normal receive data length
Above 9 (>FCN_MAX_DATA LENGTH) : Error in receive data length

uint8_t * recv_data
uint32_t * id

fcnO_rx_isr
Outline FCNO reception completion interrupt processing
Header
Declaration void fcnO_rx_isr (void)
Description Executes processing to store the receive data conversion (flash_store_can_data
function).
Arguments None
Return Value None

RO1AN1343EJO0100 Rev.1.00

Mar. 01, 2013

Page 35 of 69
RENESAS

V850E2/ML4 Updating Program Code by Using Flash Self Programming
with CAN Controller

fcnO_error_isr

Outline FCNO error interrupt processing
Header
Declaration void fcnO_error_isr (void)
Description Execute force recovery in case of bus off.
Arguments None
Return Value None
RO1AN1343EJ0100 Rev.1.00 Page 36 of 69

Mar. 01, 2013 RENESAS

V850E2/ML4

Updating Program Code by Using Flash Self Programming

with CAN Controller

6.7 Flowcharts

6.7.1

Startup Routine Processing
Figure 6.4 shows the Startup Routine Processing.

C

Startup processing >

!

Initialize pointer registers

A 4

Initialize hardware
hdwinit

.

Initialize sbss section
_zeroclrw

'

Initialize bss section
_zeroclrw

'

Clear program area in RAM
_zeroclrw

'

Copy ROMized data
_rcopy

|

Execute main processing
main

<
<

Initialize the following criterial pointer registers
when accessing to memories (data and instructions).
tp register
gp register
Sp register
ep register
CTBP register

Figure 6.4 Startup Routine Processing

RO1AN1343EJ0100 Rev.1.00
Mar. 01, 2013

Page 37 of 69
RENESAS

V850E2/ML4

Updating Program Code by Using Flash Self Programming

with CAN Controller

6.7.2 Main Processing
Figure 6.5 shows the Main Processing.

main
¥
Initialize global variable

v
Change exception handler address
except_handler_addr_set
¥
Initialize INTP1 interrupt
intpl_init
v
Initialize CAN controller
fcnO_init
¥

C)

Checksum judgment
check_sum_check

Checksum error?

[Global variable]

int8_t g_flag_start flash_reprog: Start flash reprogramming

g_flag_start_flash_reprog « false

Yes

A

Program in reprogram area
port_led_sample

Program in spare area
port_led_spare

<
Rl

A,
Enable interrupts
__El

{

Transmit message
fcnO_can_tx_msg

Message output (request interrupt switch)

Generate INTP1 interrupt for transition to flash programming event.

<

Start flash reprogramming?

Transmit message
fcnO_can_tx_msg
v
Flash reprogram processing
flash_reprogram
¥
Transmit message
fcnO_can_tx_msg

Return value of flash

Repeat until switch interrupt is generated.

g_flag_start_flash_reprog == false?

Message output (detect INTP1 interrupt)
--> INTP1 detected!

Message output (message according to reprogram result)

Messages according to reprogram result;
- Reset request for success
- Message corresponding to an error.

Error

reprogram processing?

RET_OK

¥

Transmit message
fcn0_can_tx_msg
J

Infinite loop for reset wait

When failed to reprogram, output debug
information.

Error code
Write error address

Figure 6.5 Main Processing

RO1AN1343EJO0100 Rev.1.00
Mar. 01, 2013

RENESAS

Page 38 of 69

V850E2/ML4 Updating Program Code by Using Flash Self Programming
with CAN Controller

6.7.3 Switching Processing for Exception Handler Address
Figure 6.6 shows the Switching Processing for Exception Handler Address.

< except_handler_addr_set) [Argument]

uint32_t base_addr: Setting value of exception handler base address

No

Lower 12-bit of
base_addr is 0?

A 4

return(RET_ERR) >

Switch to EHSWO bank __Idsr(31, H'00000010)
Set register bank to H'10

.

Set transfer value for EH_BASE register | __ldsr(3, base_addr)
Set SW_BASE register

'

Transfer __ldsr(0, H'00000001)
Write SW_CTL.SETto 1

.

< return(RET_OK) >

[Note] When switching the exception handler address, the period from the startup of switching procedure to
the termination thereof must be free from exceptions, or any problem in case that an exception was
generated. This sample program has a program that operates properly for any exception handler
address of before/after switching.

If the program cannot be located at the time of application, settings such as interrupt disable will be
required.

Figure 6.6 Switching Processing for Exception Handler Address

RO1AN1343EJ0100 Rev.1.00 Page 39 of 69
Mar. 01, 2013 RENESAS

V850E2/ML4 Updating Program Code by Using Flash Self Programming
with CAN Controller

6.7.4 Checksum Judgment for Reprogram Area
Figure 6.7 shows the Checksum Judgment for Reprogram Area.

(check_sum_check >

L Read the following data calculated at the time of last
startup (when data received) and stored in the last
Read checksum judgment data 16-byte area of reprogram area;
- Checksum data

- Write data (program code) size

Ensure that the size does not exceed
4080 bytes (= 4Kbytes - 16 bytes)

Write data size falls within
effective range? No

Set start address of reprogram area

>

A
Read data (1 byte) of reprogram area
for calculation

No

Complete reading for write data size?

i

Increment read address
of reprogram area

|

alculation result matches No

with checksum data?

A
(return(RET_OK) > (return(RET_ERR) >

Figure 6.7 Checksum Judgment for Reprogram Area

RO1AN1343EJ0100 Rev.1.00 Page 40 of 69
Mar. 01, 2013 RENESAS

V850E2/ML4

Updating Program Code by Using Flash Self Programming

with CAN Controller

6.7.5

Initialization of INTP1 Interrupt

Figure 6.8 shows the Initialization of INTP1 Interrupt.

< intp1_init

.

Initialize ports
Port input mode and input buffer
in disabled state

A

Set port filter
Initialize FCLA15CTL2 register

|

Initialize PU2 register

.

Initialize PD2 register

.

Set ALT1-IN input of P2_3
(use for INTP1 interrupt)

A

Enable interrupt level setting
_set_il

.

< return

PIBC2 &= ~H'0008
PBDC2 &= ~H'0008
PM2 |= H'0008
PMC2 &= ~H'0008
PIPC2 &= ~H'0008

FCLA15CTL2 « H'02

PU2 &= ~H'0008

PD2 &= ~H'0008

PIS2 |= H'0008
PISE2 &= ~H'0008
PISA2 &= ~H'0008
PFC2 &= ~H'0008
PFCE2 &= ~H'0008
PMC2 |= H'0008
PIBC2 |= H'0008

__set_il(2, "INTP1")
__set_il(0, "INTP1")

Figure 6.8

Initialization of INTP1 Interrupt

RO1AN1343EJ0100 Rev.1.00

Mar. 01, 2013

RENESAS

Page 41 of 69

V850E2/ML4 Updating Program Code by Using Flash Self Programming
with CAN Controller

6.7.6 INTP1 Interrupt Processing
Figure 6.9 shows the INTP1 Interrupt Processing.

intol isr [Global variable]
P int8_t g_flag_start_flash_reprog: Start flash reprogramming
Set flag to start flash reprogramming 9_flag_start_flash_reprog « 1

< return >

[Note] Refer to "4.2.6 Precautions for Interrupt Generated During Use of FSL" for application.

Figure 6.9 INTP1 Interrupt Processing

RO1AN1343EJ0100 Rev.1.00 Page 42 of 69
Mar. 01, 2013 RENESAS

V850E2/ML4

Updating Program Code by Using Flash Self Programming
with CAN Controller

6.7.7 Flash Reprogram Processing
Figure 6.10 and Figure 6.11 show the Flash Reprogram Processing.

< flash_reprogram >

'

Initialize variables

I

Initialize flash environment
flash_init

e

Yes

Start processing for flash environment
flash_activate

e —
.

Yes

Check FLMDO pin
flash_modecheck

e —

Yes

Erase block of reprogram area
flash_erase

e
.

Yes

Transmit message
fcnO_can_tx_msg

Fail to write program Succeed
E D C K?
Create checksum data

I

Write checksum data

flash_write
R
le 1O
Yes

g_flag_w_data_buf0_full « false g_chksm_size «- 0 g_index_recv_data «- 0
g_flag_w_data_bufl_full « false g_chksm_data «- 0 write_addr «~ TOP_ADDR_MASTER_PRG
g_status_data_buff «- 0 g_cnt_store_buf_w_data0 «- 0

g_status_end_record < 0 g_cnt_store_buf_w_datal « 0

ret « flash_init()

[Global variables]
uint8_t g_flag_w_data_buf0_full : Write buffer 0 full flag
X uint8_t g_flag_w_data_bufl_full : Write buffer 1 full flag
ret «— flash_activate() uint8_t g_status_data_buff : Write buffer status
uint8_t g_status_end_record; : Completion record receive flag
uint16_t g_chksm_size : Program code size of write data
uintl6_t g_chksm_data : Checksum data of write data
uint8_t g_buf_write_dataO[SIZE_WRITE] : Write data store buffer 0
uint32_t g_cnt_store_buf_w_data0 : Data counts of write data store buffer 0
uint8_t g_buf_write_datal[SIZE_WRITE] : Write data store buffer 1
ret flash_moecheck() u!nt32_t g__cnt_store_buf_w_datal : Data _counts _of write data store puffer 1
= uint32_t g_index_recv_data; : Specify receive data store location

[Local variable]
fsl_u32 write_addr : Write address

Erase block 8
ret < flash_erase(BLOCK_MASTER_PRG, BLOCK_MASTER_PRG)

Message output
Send subroutine code to update program in Intel expanded hex format.

g_buf_write_data0[0] < (g_chksm_size & 0x00ff)
g_buf_write_data0[1] < ((g_chksm_size & 0xff00) >> 8)
g_buf_write_data0[2] < (g_chksm_data & 0x00ff)
g_buf_write_data0[3] < ((g_chksm_data & 0xff00) >> 8)

ret « flash_write(g_buf_write_data0, TOP_ADDR_MASTER_PRG_CHKSUM, SIZE_WRITE/4)

Internal verification of reprogram area
flash_iverify

ret « flash_iverify(BLOCK_MASTER_PRG, BLOCK_MASTER_PRG)

Flash write termination processing
flash_end

ret_end « flash_end()

No

ret == RET_OK?

Yes

Return without change when
an error occurs before

!

Update return value to error in ret « ret_end
termination processing

termination processing

(return(ret))

Figure 6.10 Flash Reprogram Processing (1/2)

RO1AN1343EJ0100 Rev.1.00
Mar. 01, 2013

Page 43 of 69
RENESAS

V850E2/ML4

Updating Program Code by Using Flash Self Programming

with CAN Controller

rror in CAN receive data?

No

Buffer 0 can be written to

A 4

[Global variables]

uint8_t g_flag_w_data_bufO_full

uint8_t g_flag_w_data_bufl_full

uint8_t g_status_data_buff

uint8_t g_status_end_record;

uintl6_t g_chksm_size

uintl6_t g_chksm_data

uint8_t g_buf_write_dataO[WRITE_SIZE]
uint32_t g_cnt_store_buf_w_data0
uint8_t g_buf_write_datal[WRITE_SIZE]
uint32_t g_cnt_store_buf_w_datal
uint32_t g_index_recv_data;

[Local variable]
fsl_u32 write_addr

Update return value to error in
termination processing

No

flash memory?

Write buffer 0 to flash memory
flash_write

!

Update flash write address

Succeed?

ret = flash_write(g_buf_write_data0,

write_addr,
SIZE_WRITE/4)

flash memory?

Buffer 1 can be written to

: Write buffer 0 full flag

: Write buffer 1 full flag

: Write buffer status

: Completion record receive flag

: Program code size of write data

: Checksum data of write data

: Write data store buffer 0

: Data counts of write data store buffer 0
: Write data store buffer 1

: Data counts of write data store buffer 1
: Specify receive data store location

: Write address

ret « g_status_store_error

No

flash_write

Write buffer 1 to flash memory

write_addr,

g_flag_w_data_bufo_full « false !

write_addr += SIZE_WRITE

SIZE_WRITE/4);

Update flash write address

write_addr += SIZE_WRITE

e

Yes

No writable data exist
Receive end record?

Figure 6.11 Flash Reprogram Processing (2/2)

RO1AN1343EJ0100 Rev.1.00
Mar. 01, 2013

RENESAS

Page 44 of 69

ret = flash_write(g_buf_write_datal,

g_flag_w_data_buf0_full « false

V850E2/ML4 Updating Program Code by Using Flash Self Programming
with CAN Controller

6.7.8 Initialization of Flash Environment
Figure 6.12 shows the Initialization of Flash Environment.

flash init [Global variable]
— uint8_t g_flag_flash_status : Flash environment status

.

Set FLMDO pin to High level
flash_set_flmdO

Return value of No

flash_set_flmdO is 02

A 4

Creturn(RET_ERR_FLASH_FLMDO_HIGH)>

g_flag_flash_status |= FLASH_STATUS_FLMDO_HIGH

Update flash environment status

.

Initialize self library
FSL_Init

v

< return(RET_OK) >

Figure 6.12 Initialization of Flash Environment

RO1AN1343EJ0100 Rev.1.00 Page 45 of 69
Mar. 01, 2013 RENESAS

V850E2/ML4 Updating Program Code by Using Flash Self Programming

with CAN Controller

6.7.9 Start Processing for Flash Environment
Figure 6.13 Start Processing for Flash Environment
flash activate [Global variables]
- uint8_t g_flag_flash_status : Flash environment status
L fsl_status_t g_error_fsl_status : Store FSL error

Start flash environment
FSL_FlashEnv_Activate

eturn value o
FSL_FlashEnv_Activate is
FSL_OK?

No

Yes v

Store error state

¥

Gturn(RET_ERR_FLASH_ACTIVATED

A 4

Update flash environment status

b

C return(RET_OK))

g_error_fsl_status < Return value of FSL_FlashEnv_Activate()

g_flag_flash_status |= FLASH_STATUS_FSL_ACTIVATE

Figure 6.13 Start Processing for Flash Environment

RO1AN1343EJ0100 Rev.1.00
Mar. 01, 2013 RENESAS

Page 46 of 69

V850E2/ML4 Updating Program Code by Using Flash Self Programming
with CAN Controller

6.7.10 Checking Processing for FLMDO Pin using FSL
Figure 6.14 Checking Processing for FLMDO Pin using FSL

flash modecheck [Global variable]
- fsl_status_t g_error_fsl_status : Store FSL error

v

Check FLMDO pin
FSL_ModeCheck

Return value of FSL_ModeCheck is

Yes Y

g_error_fsl_status «— Return value of FSL_ModeCheck()
Store error state

b

Qeturn(RET_ERR_FLASH_MODECHECKD
A
< return(RET_OK) >

Figure 6.14 Checking Processing for FLMDO Pin using FSL

RO1AN1343EJ0100 Rev.1.00 Page 47 of 69
Mar. 01, 2013 RENESAS

V850E2/ML4 Updating Program Code by Using Flash Self Programming
with CAN Controller

6.7.11 Erase Processing for Specified Block
Figure 6.15 Erase Processing for Specified Block

flash_erase [Arguments]
- uint32_t start_block . Start block number of the range to be erased
l uint32_t end_block : End block number of the range to be erased

Erase specified block
FSL_Erase fs|_status < Return value of FSL_Erase(start_block, end_block)

<

b 4

Yes

fs|_status == FSL_BUSY? Wait for erase completion

A 4
Check previously specified status | fsl_status < Return value of FSL_StatusCheck()
FSL_StatusCheck

No
fsl_status != FSL_OK?

Yes v

error_fs|_status « fsl_status
Store error state g_error_tsi_ <« Isl_

'

Gturn(RET_ERR_FLASH_ERAS@

A 4

[Global variable]
(return(RET_OK) > fsl_status_t g_error_fsl_status : Store FSL error
[Local variable]
fsl_status_t fsl_status : Return value of FSL function

Figure 6.15 Erase Processing for Specified Block

RO1AN1343EJ0100 Rev.1.00 Page 48 of 69
Mar. 01, 2013 RENESAS

V850E2/ML4 Updating Program Code by Using Flash Self Programming

with CAN Controller

6.7.12 Write Processing from Specified Address
Figure 6.16 Write Processing from Specified Address

[Arguments]
) uint8_t * src_data_addr . Write source RAM address
< flash_write > uint32_t dst_write_addr : Write destination flash address
i uint32_t length : Write size
Write from specified address
FSL_Write fsl_status < Return value of FSL_Write(src_data_addr, dst_write_addr, length)

<

<

fsl_status == FSL_BUSY?

Y

FSL_StatusCheck

Wait for write completon

Check previously specified status | fsl_status < Return value of FSL_StatusCheck()

fsl_status !'= FSL_OK?

Yes I

Store error state

|

(return(RET_ERR_FLASH_WRITED

A

g_error_fsl_status « fsl_status
g_addr_write_error <« dst_write_addr

[Global variables]
< return(RET_OK) > fsl_status_t g_error_fsl_status : Store FSL error

[Local variable]

fsl_status_t fs|_status

uint32_t g_addr_write_error : Write error address

: Return value of FSL function

Figure 6.16 Write Processing from Specified Address

RO1AN1343EJO0100 Rev.1.00

Mar. 01, 2013 RENESAS

Page 49 of 69

V850E2/ML4

Updating Program Code by Using Flash Self Programming

with CAN Controller

6.7.13 Internal Verification of Specified Block
Figure 6.17 shows the Internal Verification of Specified Block.

< flash_iverify >

Write from specified address
FSL_IVerify

[Arguments]
uint32_t start_block : Start block number of internal verification
uint32_t end_block : End block number of internal verification

fsl_status «— Return value of FSL_|Verify(start_block, end_block)

fsl_status == FSL_BUSY?

Wait for write completion

A 4

Check previously specified status | fsl_status <~ Return value of FSL_StatusCheck()
FSL_StatusCheck

fsl_status != FSL_OK?

Yes

A 4

Store error state

g_error_fsl_status « fsl_status

¢

@turn(RET_ERR_FLASH_IVERIF@

A
C return(RET_OK))

[Global variable]

fsl_status_t g_error_fsl_status : Store FSL error
[Local variable]
fsl_status_t fsl_status : FSL function return value

Figure 6.17 Internal Verification of Specified Block

RO1AN1343EJ0100 Rev.1.00
Mar. 01, 2013

Page 50 of 69
RENESAS

V850E2/ML4 Updating Program Code by Using Flash Self Programming
with CAN Controller

6.7.14 Termination Processing for Flash Environment
Figure 6.18 shows the Termination Processing for Flash Environment.

flash end [Global variable]
- uint8_t g_flag_flash_status : Flash environment status
ret < RET_OK [Local variable]

Initialize return value int32_t ret : Return value

lash environment has Yes

been started? (g_flag_flash_status & FLASH_STATUS_FSL_ACTIVATE !=0)

Terminate flash environment
FSL_FlashEnv_Deactivate

Succeed? Yes l

No Update flash environment status

g_flag_flash_status &=

Seterror to rewrn value ~FLASH_STATUS_FSL_ACTIVATE

ret < RET_ERR_FLASH_DEACTIVATE

LMDO pin has been

set to High? (g_flag_flash_status & FLASH_STATUS_FLMDO_HIGH != 0)

No

Set FLMDO pin to Low level ret = flash_set_flmd0(0)
flash_set_flmdo

Succeed? Yes l

No Update flash environment status

g_flag_flash_status &=

Set error to return value ~FLASH_STATUS_FLMDO_HIGH

ret « RET_ERR_FLASH_FLMDO_LOW

(return(ret) >

Figure 6.18 Termination Processing for Flash Environment

RO1AN1343EJ0100 Rev.1.00 Page 51 of 69
Mar. 01, 2013 RENESAS

V850E2/ML4 Updating Program Code by Using Flash Self Programming
with CAN Controller

6.7.15 Setting for FLMDO Pin Level
Figure 6.19 shows the Setting for FLMDO Pin Level.

[Argument]
< flash_set_flmdo) uint8_t level : FLMDO pin level
FLMD protection command register | FLMDPCMD « H'A5
Write enable
FLMD control register FLMDCNT « level
Write FLMDCNT « ~level

FLMDCNT <« level

. . N
Succeed in write? ° ((0x00 != FLMDPS) || (level I= FLMDCNT))?

Yes

A 4

C return(RET_OK) > C return(RET_ERR) >

Figure 6.19 Setting for FLMDO Pin Level

RO1AN1343EJ0100 Rev.1.00 Page 52 of 69
Mar. 01, 2013 RENESAS

V850E2/ML4 Updating Program Code by Using Flash Self Programming
with CAN Controller

6.7.16 Store Processing for Receive Data
Figure 6.20 and Figure 6.21 show the Store Processing for Receive Data.

[Global variables]
< flash_store_can_data) uint8_t g_buf recv_data[] : Rreceive data store buffer
l uint32_t g_index_rx_data : Receive data store location index
Receive from CAN addr_buf «<— &g_buf_rx_data[g_index_rx_data]
fcnO can receive fcn0_can_receive(&length, addr_buf, &id)
—T g_index_rx_data += length -
l [Local variables]
(for loopl T int8_t * addr_buf : Position address
i =0; I < length; i++ uint8_t i : Loop counter
int8_t length : CAN communication receive data length
uint32_t id : CAN communication receive ID

(\r' == addr_buf) || (\n' == =addr_buf) ?
Yes
Line feed?

Search lines for
receive data size

Update pointer for character position

v

L for loopl end J
ine feed imJ\YeS

in receive data? l

No < return >

No

addr_buf++

Start of line data is "' ?

»

per digit of record is '0' 7

Restore buffer store location g_index_rx_data « 0
to the original

I

(return)

Type of records?

0 Data record
1 End record
2 Extended address record
3 Start address record v
4 Extended linear address record Dita
5 Start linear address record Termination cons\{g::ion
Unexpected data default l processing processing
Do Nothing Do Nothing @ @
. ! v !
A
Restore buffer store location g_index_rx_data < 0
to the original

!

C return >

Figure 6.20 Store Processing for Receive Data (1/2)

RO1AN1343EJ0100 Rev.1.00 Page 53 of 69
Mar. 01, 2013 RENESAS

V850E2/ML4 Updating Program Code by Using Flash Self Programming
with CAN Controller

Obain data length bin_size « hex2bin(g_buf_rx_data[HEXDATA_POS_BYTE_NUM],
by using binary conversion
Y using binary g_buf_rx_data[HEXDATA_POS_BYTE_NUM-+1])
hex2bin
for loop2
i =0; | < bin_size; i++
~ Obtaindata bin_data < hex2bin(g_buf_rx_data]HEXDATA_POS_CODE_TOP+2%,
by using tliqmar{) conversion g_buf_rx_data[HEXDATA_POS_CODE_TOP+2%i+1])
ex2bin

No

Write buffer is 0?

Repeat for binary data size
(g_status_data_buff == 0)

Store in write data store buffer 0 Store in write data store buffer 1 ‘

g_buf_write_datal[g_cnt_store_buf_w_datal] « bin_data
g_cnt_store_buf_w_datal++

g_buf_write_dataO[g_cnt_store_buf_w_data0] « bin_data
g_cnt_store_buf_w_data0O++

Buffer 1 is full?

Buffer O is full?

Processing for change of Processing for change of
write buffer 0 write buffer 1
g_cnt_store_buf_w_data0 « 0 g_cnt_store_buf_w_datal < 0
g_flag_w_data_buf0_full « true g_flag_w_data_bufl_full « true
g_status_data_buff « 1 g_status_data_buff « 0
A A,

k.

. chksm_data += bin_data
Checksum calculation 9- - -

t

L for loop2 end J

b

Checksum size calculation

g_chksm_size += bin_size

No

Write buffer is 0?

[Local variables]

uint8_t bin_data :Program data o Fill the remaining of Fill the remaining of
int8_t bin_size : Data size included in a line write data store buffer 0 with H'FF write data store buffer 1 with H'FF
uint8_ti : Loop counter i i
Processing for change of Processing for change of
write buffer 0 write buffer 1
g_cnt_store_buf_w_data0 < 0 g_cnt_store_buf_w_datal < 0
[Global variables] g_flag_w_éjata_;)ufzo_fulll <« true g_flag_w_c?ata_;)ufffl_flgl <« true
uint8_t g_buf_rx_data[] : Receive data store buffer g_status_data_buff « g_status_data_buff «
uint8_t g_buf_write_dataO[SIZE_WRITE] : Write data store buffer 0
uint8_t g_buf_write_datal[SIZE_WRITE] : Write data store buffer 1 r
uint8_t g_flag_w_data_buf0_full : Write buffer 0 full flag D
uint8_t g_flag_w_data_buf1_full : Write buffer 1 full flag
uint32_t g_cnt_store_buf_w_data0 : Data count of buffer 0
uint32_t g_cnt_store_buf_w_datal : Data count of buffer 1
uint8_t g_status_data_buff : Write buffer status
Figure 6.21 Store Processing for Receive Data (2/2)
R0O1AN1343EJ0100 Rev.1.00 Page 54 of 69

Mar. 01, 2013 RENESAS

V850E2/ML4 Updating Program Code by Using Flash Self Programming

with CAN Controller

6.7.17 Text Binary Conversion Processing
Figure 6.22 shows the Text Binary Conversion Processing.

. [Arguments]
< hex2bin > uint8_t upper : Text data for upper 4-bit
uint8_t lower : Text data for lower 4-bit
No

Upper is numeric data?
The upper indicates '0 'to '9' or ' A" to 'F'?
Yes

Convert upper into binary data and store
conversion result in the upper

!

upper <<=4

Shift upper to left by 4 bits

No

A 4

Lower is numeric data?

The lower indicates '0' to '9' or 'A' to 'F'?

Convert lower into binary data and store
conversion result in the lower

!

A4
< return(upper | lower) > < return(RET_ERR)

)

Figure 6.22 Text Binary Conversion Processing

RO1AN1343EJ0100 Rev.1.00
Mar. 01, 2013 RENESAS

Page 55 of 69

V850E2/ML4 Updating Program Code by Using Flash Self Programming
with CAN Controller

6.7.18 TAUAO Initialization for LED Flash with Fixed-Cycle (Sample Function in
Reprogram Area and in Spare Area)
Figure 6.23 shows the TAUAO Initialization for LED Flash with Fixed-Cycle.

tauaO_led_sample,
tauaO_led_spare

v

Set port function PMC1 &= ~PORT_BIT_P1_4
Output mode setting for PM1 &= ~PORT_BIT_P1_4
LEDO port P1_4 PDSC1 &= ~PORT_BIT_P1_4

P1|= PORT BIT_P1_4

A 4

. TAUAOCMORO « H'0000

Set TAUAOCMORO register TAUAOCKS[L:0] bits = B'00 : Selected operation clock CKO
TAUAOSTS[2:0] bits = B'000 : Software trigger

TAUAOMDI[4:1] bits = B'0000 : Interval timer mode

TAUAOMDO bit=0 : Do not output INTTAUAOIO signal

A

. TAUAOTPSO « H'FFF7
Set TAUAOTPS register TAUAOPRSO[3:0] bits = B'0111 : Specify CKO clock division ratio PCLK/2A7

v

. TAUAOCDRO « H'FFFF : Compare value settin
Set TAUAOCDRO register < P g
Enable interrupt level setting __set_il(16, "INTTAUAOIO")
set_il __set_il(0, "INTTAUAOIO")

I

< return >

Figure 6.23 TAUAO Initialization for LED Flash with Fixed-Cycle

RO1AN1343EJ0100 Rev.1.00 Page 56 of 69
Mar. 01, 2013 RENESAS

V850E2/ML4 Updating Program Code by Using Flash Self Programming
with CAN Controller

6.7.19 TAUAO Interval Timer Interrupt Processing
Figure 6.24 shows the TAUAO Interrupt Processing.

C taua0_i0_interval_timer_isr >

|

LED port output invert

|

< return >

[Note] Refer to "4.2.6 Precautions for Interrupt Generated During Use of FSL" for application.

P1/= PORT_BIT_P1_4

Figure 6.24 TAUAO Interrupt Processing

RO1AN1343EJ0100 Rev.1.00 Page 57 of 69
Mar. 01, 2013 RENESAS

V850E2/ML4 Updating Program Code by Using Flash Self Programming
with CAN Controller

6.7.20 Initialization of CAN Controller Channel 0 (FCNO)
Figure 6.25 shows the Initialization of CAN Controller Channel 0 (FCNO).

C fcn0_can_init)

Initialize ports
fcn0_can_port_init

<
<

) 4

Software reset completed?

FCNOGMCLCTL & H'0010!=0

Yes
Error detected?

FCNOGMCLCTL & H'0020 =0

y

C return(RET_ERR) >

Determine FCN module system clock FCNOGMCSPRE « H'03 : System clock = PCLK/4
Enable FCN module operation FCNOGMCLCTL « H0100
Set communication baud rate FCNOCMBRPRS « H'0000
FCNOCMBTCTL « H'330A : Communication baud rate = 1Mbps
Enable interrupt output FCNOCMIECTL « H0800

Initialize message buffer
fcn0_can_mb_init

!

. FCNOCMCLCTL « H'8126
Set normal operating mode

!
Enable interrupt level setting __set_il(1, "INTFCNOIREC")
__set il __set_il(2, "INTFCNOIERR")
1 __set_il(0, "INTFCNOIREC")
__set_il(0, "INTFCNOIERR")

(return(RET_OK) >

Figure 6.25 Initialization of CAN Controller Channel 0 (FCNO)

RO1AN1343EJ0100 Rev.1.00 Page 58 of 69
Mar. 01, 2013 RENESAS

V850E2/ML4

Updating Program Code by Using Flash Self Programming
with CAN Controller

6.7.21 Initialization of FCNO Port
Figure 6.26 shows the Initialization of FCNO Port.

< fcnO_can_port_init

D

.

Initialize ports

'

Set pull-up/pull-down resistors

'

Set port functions
P2_14 for CAN input, and
P2_15 for CAN output

A
(return

D

PIBC2 &= ~(PORT_BIT_P2_14 | PORT_BIT_P2_15)
PBDC2 &= ~(PORT _BIT_P2_14 | PORT BIT_P2_15)
PM2 |= (PORT_BIT_P2_ 14| PORT_BIT_P2_15)
PMC2 &= ~(PORT_BIT_P2_14 | PORT_BIT_P2_15)

PU2 &= ~PORT_BIT_P2_14 : Do not connect internal pull-up resistor.
PD2 &= ~PORT_BIT_P2_14 : Do not connect internal pull-down resistor.

PFC2 |= (PORT_BIT_P2_14 | PORT BIT_P2_15)
PFCE2 |= (PORT_BIT_P2_14 | PORT_BIT_P2_15)
PMC2 |= (PORT_BIT_P2_14 | PORT _BIT_P2_15)
PM2 |= PORT BIT P2 14

PM2 &=~PORT_BIT_P2_15

PIBC2 |= PORT BIT_P2_14

PIS2 &=~PORT_BIT_P2_14

PISE2 |= PORT _BIT_P2_14

PISA2 &= ~PORT_BIT_P2_14

Figure 6.26 Initialization of FCNO Port

RO1AN1343EJ0100 Rev.1.00
Mar. 01, 2013

Page 59 of 69
RENESAS

V850E2/ML4

Updating Program Code by Using Flash Self Programming
with CAN Controller

6.7.22
Figure 6.27 and Figure 6.28 show

Initialization of FCNO Message Buffer

he Initialization of FCNO Message Buffer.

[Local variables]

fcn0_can_mb_init

C

: FCNOMmMCTL address
: FCNOMmMSTRB address

uintl6_t * addr_fcnOmmctl
uint8_t * addr_fcnOmmstrb

)

'

Initialize pointer

addr_fcnOmmctl «~ FCNO_CAN_ADDR_MO_CTL
addr_fcnOmmstrb « FCNO_CAN_ADDR_MO_STRB

'

for loopl
i=0;i<64 i++

FCNOMmRDYF == 07?

(*addr_fcnOmmctl&H'0001) == H'0001

Yes

Clear FCNOMmMRDYF

A 4

Set FCNOMmMSERY bit to 0, and
FCNOMMCLRY bitto 1
+addr_fcnOmmctl « H'0001

Minimum initialization for all
message buffers (000 to 063)

Clear only when it shows other than 0.
Use a loop because it may take longer to clear.

Clear FCNNnMmMTRQF and
FCNNMmDTNF

+*addr_fcnOmmctl « H'0006

'

Set message buffer to non-use

*addr_fcnOmmstrb &= ~(H'01)

'

Add address difference

addr_fcnOmmctl += (FCNO_CAN_GAP_MB_ADDR / sizeof(uint16_t))
addr_fcnOmmstrb += FCNO_CAN_GAP_MB_ADDR / sizeof(uint8_t))

I

for loopl end

A 4

\

Figure 6.27

Initialization of FCNO Message Buffer (1/2)

RO1AN1343EJ0100 Rev.1.00
Mar. 01, 2013

Page 60 of 69
RENESAS

V850E2/ML

4

Updating Program Code by Using Flash Self Programming
with CAN Controller

Set message configuration

Set ID

v

Set mess

age control register

Enable Interrupts

A

Set message configuration

Set ID

'

Set message control register
Enable interrupts

A

C

return

)

FCNOMOOOSTRB « H'09

FCNOMOOOSSOW bit =0 : Do not overwrite receive data frame.
FCNOMOO00SSMT[3:0] bits = B'0001 : Receive message buffer (without mask setting)
FCNOMOOOSSRT bit=0 : Transmit/receive data frame

FCNOMOOOSSAM bit =1 : Use message buffer

FCNOMOOOMIDOW <« FCNO_CAN_ID_SEND_MSG : Set standard ID to 0

Set message buffer O to receive

FCNOMOOOIENF and FCNOMOOORDYF must be set separately.
FCNOMOOOCTL <« H'0800
FCNOMOOOSEIE bit = 1
FCNOMOOOCLIE bit=0
(FCNOMOOOIENF bit=1 : Message buffer interrupt request enable bit)
FCNOMOOOCTL « H'0100
FCNOMOOOSERY bit = 1
FCNOMOOOCLRY bit =0
(FCNOMOOORDYF bit=1 : Message buffer preparation bit)

FCNOMOO1STRB « H'01

FCNOMOO1SSOW bit =0 : Do not overwrite receive data frame.
FCNOMO001SSMTI3:0] bits = B'0000 : Transmit message buffer
FCNOMOO1SSRT bhit =0 : Transmit/receive data frame
FCNOMOO1SSAM bit =1 : Use message buffer

FCNOMOO1MIDOW « FCNO_CAN_ID_SEND_MSG : Set standard ID to 0

Set message buffer 1 to transmit

FCNOMOO1IENF and FCNOMOO1RDYF must be set separately.
FCNOMOO1CTL « H'0800
FCNOMOO1SEIE bit = 1
FCNOMOO1CLIE bit=0
(FCNOMOOLIENF bit=1 : Message buffer interrupt request enable bit)
FCNOMOOOCTL « H'0100
FCNOMOO1SERY bit=1
FCNOMOO1CLRY bit =0
(FCNOMOO1RDYF bit =1 : Message buffer preparation bit)

Figure 6.28

Initialization of FCNO Message Buffer (2/2)

RO1AN1343EJO0100 Rev.1.00

Mar. 01, 2013

Page 61 of 69
RENESAS

V850E2/ML4 Updating Program Code by Using Flash Self Programming
with CAN Controller

6.7.23 FCNO Message Transmit Processing
Figure 6.29 shows the FCNO Message Transmit Processing.

fcnO_can_tx_ms [Argument]
—can_tx_msg int8_t * msg : Transmit message character string

'

Initialize local variables

addr_msg <~ msg [Local variables]

cnt <0 uint32_t cnt : Number of characters
uint32_t tx8_num : Number of 8-byte transmission
uint8_t tx_mod : Number of bytes for remaining
transmission
uint8_t * addr_msg : Address pointer
v uint32_t i : Loop counter

| cnt++ |

Count characters

l addr_msg++ ‘

y

Calculate the number of tx8_num <« cnt/ FCNO_CAN_SIZE_DATA_MAX
transmissions tx_mod < cnt % FCNO_CAN_SIZE_DATA_MAX

A 4

for loop
i=0;i<tx8 _num; i++

'

FCNO transmit processing fcn0_can_tx(FCNO_CAN_SIZE_DATA_MAX, Transmit by
fenO can tx addr_msg, FCNO_CAN_ID_SEND_MSG) 8-character
= i = addr_msg += FCNO_CAN_SIZE_DATA_MAX

L for loop end J

'

FCNO transmit processing Transmit remaining message
fcn0_can_tx fcn0_can_tx(tx_mod, addr_msg, FCNO_CAN_ID_SEND_MSG)

'

C return >

Figure 6.29 FCNO Message Transmit Processing

RO1AN1343EJ0100 Rev.1.00 Page 62 of 69
Mar. 01, 2013 RENESAS

V850E2/ML4

Updating Program Code by Using Flash Self Programming
with CAN Controller

6.7.24

FCNO Transmit Processing
Figure 6.30 shows the FCNO Transmit Processing.

C

fcn0_can_tx

Transmit data is up to 8 bytes?

[Arguments]
int8_t length : Transmit data length
int8_t * send_data : Transmit data start address

uint32_tid : ID for transmit data

No

|

(return(RET_ERR) >

No (FCNOMOO1CTL&H'0002) =0
Wait until FCNOM1TRQF==0

FCNOM1RDYF == 1?

No

(FCNOMOO1CTL&H'0001) !=0

Clear FCNOM1RDYE FCNOMOO1CTL « H'0001

Set message buffer 1 register addr_fcnOmmdat <« FCNO_CAN_ADDR_MO_DAT
address to pointer addr_fcnOmmdat += FCNO_CAN_GAP_MB_ADDR / sizeof(uint8_t)
for loop
i =0;i<length; i++
Set transmit data *addr_fcnOmmdat < send_datali]
Repeat for transmit
¢ data length
Update transmit data address addr_fenOmmdat += 4
for loop end
Set transmit data length FCNOMOOIDTLGB « length
Clear SSRT FCNOMOO1MIDOW <« H'00040000
Set RDYF FCNOMOO1CTL « H'0100
Set TROF FCNOMOO1CTL « H'0200
L [Local variables]
int8_t * addr_fcnOmmdat : FCNOMmDAT register address
retun(RET_OK) int8_t i : Loop counter

Figure 6.30 FCNO Transmit Processing

RO1AN1343EJO0100 Rev.1.00

Mar. 01,

2013

Page 63 of 69
RENESAS

V850E2/ML4

Updating Program Code by Using Flash Self Programming

with CAN Controller

6.7.25 FCNO Receive Processing

Figure 6.31 shows the FCNO Receive Processing.

C

fcnO_can_rx)

A

Clear FCNOMODTNF

'

Store receive data length

.

Store receive ID

Receive data length is error?

[Arguments]
int8_t * length : Receive data length
(amount of data handled in case of an error)
int8_t * rx_data : Transmit data start address
uint32_t = id : Receive ID

FCNOMOOOCTL <« H'0004

ret_length «— FCNOMOOODTLGB

*id < ((FCNOMOOOMIDOW & 0x1ffc0000) >> 18)

Yes ret_length > FCNO_CAN_SIZE_DATA_MAX?

Y

Normal
xlength « ret_length

Error
xlength < FCNO_CAN_SIZE_DATA_MAX

<
<

A

Initialize receive data address

.

for loop
i =0;i<length; i++

.

Set receive data

addr_fcnOmmdat < FCNOMOO1DATOB address

rx_datali] « *addr_fcnOmmdat

Repeat for receive

i data length
Update receive data address addr_fenOmmdat += 4
for loop end
Update flag bit is 07 (FCNOMOOOCTL & H'2004) != 0

Start over when having

a flag set [Local variables]
int8_t * addr_fcnOmmdat : Pointer for transmit data register address
int8_t ret_length : Receive data length

return(ret_length) (register value in case of an error)

int8 t i : Loop counter

Figure 6.31 FCNO Receive Processing

RO1AN1343EJ0100 Rev.1.00 Page 64 of 69

Mar. 01, 2013 RENESAS

V850E2/ML4 Updating Program Code by Using Flash Self Programming
with CAN Controller

6.7.26 Interrupt Processing for FCNO Receive Processing Completion
Figure 6.32 shows the Interrupt Processing for FCNO Receive Processing Completion.

< fcnO_can_rx_isr >

A
Store processing for
receive data conversion
flash_store_can_data

A

< return >

[Note] Refer to "4.2.6 Precautions for Interrupt Generated During Use of FSL" for application.

Figure 6.32 Interrupt Processing for FCNO Receive Processing Completion

RO1AN1343EJ0100 Rev.1.00
Mar. 01, 2013 RENESAS

Page 65 of 69

V850E2/ML4 Updating Program Code by Using Flash Self Programming
with CAN Controller

6.7.27 FCNO Error Interrupt Processing
Figure 6.33 shows the FCNO Error Interrupt Processing.

C fcnO_can_error_isr >

Yes

Set FCN module in FCNOCMCLCTL « H'0007
initialization mode

FCNOCMINSTR & H'10 =0

<
<

) 4

Initialization mode? FCNOCMCLCTL & H'0007 != 07?

No

Clear error counter and FCNOCMCLCTL « H'8000
information register to zero

.

Set FCN module to FCNOCMCLCTL « H'0106
normal operating mode

»
»

v

< return >

Figure 6.33 FCNO Error Interrupt Processing

RO1AN1343EJ0100 Rev.1.00 Page 66 of 69
Mar. 01, 2013 RENESAS

V850E2/ML4 Updating Program Code by Using Flash Self Programming
with CAN Controller

7. Operation Overview

In this sample program, the updating program is transmitted using the CAN communication host device. The
V850E2/ML4 CPU board ROKOF4022C000BR is used as the CAN communication host device to describe the control
with the host PC.

Figure 7.1 shows the Hardware Configuration Example for Sample Code. To execute the CAN communication with the
V850E2/ML4 which is run by this sample program, set another CPU board to pass the data through between the serial
communication and the CAN communication. (This sample program includes the load module file,
v850e2ml4_serial_can_through.Imf which is a program for data passing.)

V850E2/ML4 CPU board V850E2/ML4 CPU board Serial communication
Type: ROKOF4022C000BR Type: ROKOF4022C000BR Application software
I — i I iy —
- [(E—— v
I CAN communication I Serial cable "
essage
. flat cable . — g
I 4 I A
Message Message
| — | — | — | — ° Program data
transfer \ Input file
Program data Program data from menu
— &
] —] -
V850E2/ML4
V850E2/ML4 v850e2ml4_serial_can_through.Imf
This sample code Data passing between serial communication
and CAN communication Host PC

Example of host device for CAN communication

Figure 7.1 Hardware Configuration Example for Sample Code

JP8 and JP10 for signal selection of the two CPU boards should be switched to 2-3 to use the CAN as shown in Table
7.1. JP1 of the CPU which is run by this sample program should be switched to 2-3 to use the INTP1 external interrupt
switch (SW4).

The CAN connectors (J4) are connected by the cable for CAN communication between the two CPU boards. The CPU
for data through (serial port connector (J5)) and the host PC should be connected by the serial cable.

Refer to "V850E2/ML4 CPU board ROKOF4022C000BR User's Manual" for more details about the CPU board jumper
settings and connectors.

Table 7.1 Jumper List

Jumper 1-2 (default) 2-3 (used in this program)
JP1* VBUS P2_3
JP8 (P2_14) SDL1 CANORXD
JP10 (P2_15) SDA1 CANOTXD

[Note] *: Only for the CPU board which is run by this sample program.

An operation procedure with the VT100 compatible terminal emulator is described as follows. First of all, activate the
terminal emulator and set for serial port connection. Select the number connected to the through board for the serial port
number of the terminal emulator. The setting values for serial ports are listed in Table 7.2.

RO1AN1343EJ0100 Rev.1.00 Page 67 of 69
Mar. 01, 2013 RENESAS

V850E2/ML4 Updating Program Code by Using Flash Self Programming
with CAN Controller

Table 7.2 Serial Port Setting

Item Setting value
Bit/sec 9600bps
Data bit 8bit
Parity None
Stop bit 1bit
Flow control None

After the above setting is completed, switch on the through board and the board for this sample program.

When the board for this sample program is activated, the V850E2/ML4 transmits a message "Generate INTP1 interrupt
for transition to flash programming event." to the host.

Then the V850E2/ML4 executes the program stored in the reprogram area, and flashes the LEDs on the board with the
fixed period.

When the INTP1 switch (SW4) on the board is pushed in this condition, the V850E2/ML4 transmits a message "-->
INTP1 detected!" to the host. When the INTP1 interrupt is generate, the V850E2/ML4 enters into flash reprogram
processing, and erases the update area. After the erasing is completed, the V850E2/ML4 transmits a message "Send
subroutine code to update program in Intel expanded Hex format." to the host, and enters into wait state for data
reception from the host.

In case of transmitting a file with Intel expanded hex format as a program data from the host, the terminal emulator
transmit function should be used. When transmitting an appropriate file (such as v850e2ml4_sample_host_send.hex),
the program data is transmitted to the through board by serial communication, and then the through board transmits the
data to the V850E2/ML4 for this sample program by CAN communication.

After the writing is completed, the V850E2/ML4 transmits a message "Successfully Finish Writing Program Data.
Please Reset.” to the host, it enters into wait state for reset. Reset the board.

When restarting, the LEDs on the board flash with the different period from previous one. If the data reception/flash
reprogram (update) prior to restart was failed to execute properly, the V850E2/ML4 finds a checksum error at the time
of restarting by reset input. The V850E2/ML4 executes the program in the spare area.

RO1AN1343EJ0100 Rev.1.00 Page 68 of 69
Mar. 01, 2013 RENESAS

V850E2/ML4 Updating Program Code by Using Flash Self Programming
with CAN Controller

8. Sample Code

Sample code can be downloaded from the Renesas Electronics website.

9. Reference Documents

User's Manual: Hardware
V850E2/ML4 User's Manual: Hardware Rev.2.00 (RO1UHO0262EJ)
The latest version can be downloaded from the Renesas Electronics website.

Technical Update/Technical News
The latest information can be downloaded from the Renesas Electronics website.

User's Manual: Development Tools
CubeSuite+ VV1.03.00 Integrated Development Environment User's Manual: Coding for CX compiler Rev.1.00
(R20UT2139EJ)
CubeSuite+ VV1.03.00 Integrated Development Environment User's Manual: Build for CX compiler Rev.1.00
(R20UT2142E))
V850E2/ML4 CPU Board ROKOF4022C000BR User's Manual Rev.1.00 (R20UT0778EJ)
The latest version can be downloaded from the Renesas Electronics website.

User's Manual: Software
V850E2M User's Manual: Architecture Rev.1.00 (RO1US0001EJ)
The latest version can be downloaded from the Renesas Electronics website.

Website and Support

Renesas Electronics website
http://www.renesas.com

Inquiries
http://www.renesas.com/contact/

RO1AN1343EJ0100 Rev.1.00 Page 69 of 69
Mar. 01, 2013 RENESAS

http://www.renesas.com/
http://www.renesas.com/contact/

REVISION HISTORY

V850E2/ML4 Application Note Updating Program Code by Using

Flash Self Programming with CAN Controller

Rev.

Date

Description

Page

Summary

1.00

Mar. 01, 2013

First edition issued

All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that
have been issued for the products.

1.

Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

— The input pins of CMOS products are generally in the high-impedance state. In operation with an
unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

— The states of internal circuits in the LSI are indeterminate and the states of register settings and
pins are undefined at the moment when power is supplied.

In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

— The reserved addresses are provided for the possible future expansion of functions. Do not access
these addresses; the correct operation of LSl is not guaranteed if they are accessed.

Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.

When switching the clock signal during program execution, wait until the target clock signal has

stabilized.

— When the clock signal is generated with an external resonator (or from an external oscillator)
during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

Differences between Products

Before changing from one product to another, i.e. to one with a different part number, confirm that the

change will not lead to problems.

— The characteristics of MPU/MCU in the same group but having different part numbers may differ
because of the differences in internal memory capacity and layout pattern. When changing to
products of different part numbers, implement a system-evaluation test for each of the products.

Notice

use of these circuits, software, or information.

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

others.

third parties arising from such ion, modi ion, copy or of ise misappropriation of Renesas Electronics product.

the product's quality grade, as indicated below.

equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

use of Renesas Electronics products beyond such specified ranges.

please evaluate the safety of the final products or systems manufactured by you.

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

regulations and follow the procedures required by such laws and regulations.
1

o

products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality”. The recommended applications for each Renesas Electronics product depends on

“"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical

implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it

in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and
malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the
possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes
9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or
regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the
development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and
. Itis the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the

contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

LENESANS

SALES OFFICES Renesas Electronics Corporation http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.

2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited

1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-651- 700, Fax: +44-1628-651-804

Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Dusseldorf, Germany
Tel: +49-211-65030, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronlcs (Shan hai Ltd.
Unit 204, 205, AZIA Center, No. 1 33 Luuazw Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21- 5877 1818 Fax: +86-21-6887-7858 / -7898

Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044

Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, JIn Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-! 9390 Fax: +60-3-7955-9510

Renesas Electronics Korea Co., Ltd

11F., Samik Lavied' or Bldg., 720-2 Yéoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

© 2013 Renesas Electronics Corporation. All rights reserved.

Colophon 2.2

	1. Specifications
	2. Operation Confirmation Conditions
	3. Reference Application Notes
	4. Peripheral Functions
	4.1 Terms for Flash Self Programming
	4.2 Notes for Flash Self Programming
	4.2.1 Setting for Link Directive File
	4.2.2 Setting for Non-use of Prologue/Epilogue Library
	4.2.3 Setting for ROMization of Section in RAM
	4.2.4 Setting for Far Jump Function
	4.2.5 Setting for Startup Routine
	4.2.6 Precautions for Interrupt Generated During Use of FSL

	5. Hardware
	5.1 Pins Used

	6. Software
	6.1 Operation Overview
	6.1.1 Setting for Section Assignment
	6.1.2 Overview of Reprogramming Flash Memory
	6.1.3 Process from Startup to Normal Operation
	6.1.4 Flash Reprogram Processing after Inputting INTP1 Interrupt
	6.1.5 Data Receive Processing
	6.1.6 Processing after Data Reception/Reprogram
	6.1.7 Communication Control Sequence

	6.2 File Composition
	6.3 Constants
	6.4 Variables
	6.5 Functions
	6.6 Function Specifications
	6.7 Flowcharts
	6.7.1 Startup Routine Processing
	6.7.2 Main Processing
	6.7.3 Switching Processing for Exception Handler Address
	6.7.4 Checksum Judgment for Reprogram Area
	6.7.5 Initialization of INTP1 Interrupt
	6.7.6 INTP1 Interrupt Processing
	6.7.7 Flash Reprogram Processing
	6.7.8 Initialization of Flash Environment
	6.7.9 Start Processing for Flash Environment
	6.7.10 Checking Processing for FLMD0 Pin using FSL
	6.7.11 Erase Processing for Specified Block
	6.7.12 Write Processing from Specified Address
	6.7.13 Internal Verification of Specified Block
	6.7.14 Termination Processing for Flash Environment
	6.7.15 Setting for FLMD0 Pin Level
	6.7.16 Store Processing for Receive Data
	6.7.17 Text Binary Conversion Processing
	6.7.18 TAUA0 Initialization for LED Flash with Fixed-Cycle (Sample Function in Reprogram Area and in Spare Area)
	6.7.19 TAUA0 Interval Timer Interrupt Processing
	6.7.20 Initialization of CAN Controller Channel 0 (FCN0)
	6.7.21 Initialization of FCN0 Port
	6.7.22 Initialization of FCN0 Message Buffer
	6.7.23 FCN0 Message Transmit Processing
	6.7.24 FCN0 Transmit Processing
	6.7.25 FCN0 Receive Processing
	6.7.26 Interrupt Processing for FCN0 Receive Processing Completion
	6.7.27 FCN0 Error Interrupt Processing

	7. Operation Overview
	8. Sample Code
	9. Reference Documents

