RENESAS

RAA305350MGBM General purpose 3CH Driver IC

1 Over View

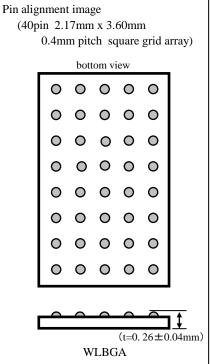
RAA305350MGBM is general-purpose 3CH H-bridge driver IC .This is a small size single chip IC constituted by the control block built in 32 bits RISC microcomputer and DSP, and by the driver block built in hall signal processing circuit.

2 Features

Applications

Smart phone, Tablet, Camera, Sensing and Actuator Control

Driver Block [CH1/CH2/CH3]


(1)Built-in 3 channels H-bridge drivers Composition : CH1, CH2, CH3
(2)Built-in 3 channels Hall signal processing circuits Composition : Constant Current Bias --- 3 channels Gain Amp --- 3 channels (with gain resistor)
(3)Built-in 12bit-ADC with 6 channels input selector
(4)Configurable for VCM/Piezo/SMA/BLDC motor drive
(5)PWM/Linear drive
(6)Other CH3 (AF Control case) ; Supports open/closed loop control

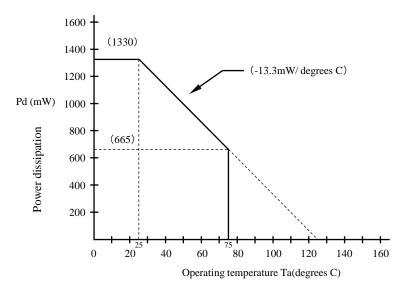
Controller

(1)Built-in 32bit RISC CPU	
(2)Built-in Code Flash ROM(48KB)	-
(3)Built-in RAM(8KB) for program	
(4)Built-in DSP 2 channels (GREEN_DSP_V2)	
(5)Built-in SPI 2 channels	
(6)Built-in Timer (16bit) 4 channels	
(7)Built-in IIC serial interface 1 channel	
(8)Built-in General purpose I/O 8lines (with interruption function)	
(9)Clock frequency : Built-in PLL (x4, x6, x8, x12, x16)	
For system clock 32.4MHz(Max)	
For PWM clock of motor control 162MHz(Max)	
For SPI serial clock Master 4MHz(Max), Slave 2MHz	z(Max)
For IIC serial clock 1MHz(Max, Fast Mode+)	

Others

- (1)Built in POR(power on reset), TSD(thermal shut down)
- (2)Built in Power save mode
- (3)Built in IS/AF Driver control synchronized signal from Image Sensor (OIS case)

ABSOLUTE MAXIMUM RATING	- (Ta=25	degrees	C)
-------------------------	----------	---------	----


ITEM	SYMBOL	RATING	UNIT	NOTES
Power dissipation	Pd	(1330)	mW	note1 (Ta=25 degrees C)
Thermal derating	Kθ	(-13.3)	mW/degrees C	note1 (Ta=25 degrees C)
Maximum junction temperature	Tj	125	degrees C	
Storage temperature	Tstg	-40 to 125	degrees C	
Power supply 1	VDD	4.6	V	note2
Power supply 2	VCC	4.6	V	note2
Power supply 3	VM	6.5	V	note2
Input voltage of terminals	Vin	-0.3 to VDD + 0.3	V	note3
DC output current	Iout	+/- 600	mA	note4
Peak output current	Іор	+/- 800	mA	note5 pulse width<10ms,Duty<=20%

Notes note1: Glass epoxy board: 76mm × 114mm × 1.6mm 4layers board(Cu cover rate:1-layer 20%,2-layer 100%,3-layer 100%,4-layer 20%) note2: Don't impress a power supply conversely in principle.

note3 : Don't impress more than power supply voltage and below GND voltage in principle.

note4 : Don't exceed +/-200mA per channel.

note5: Don't exceed the specification of output current, when more than one CH use them, turning on at the same time.

Notes The power consumption of this IC has the dominant electric power which each output transistor consumes.

Output transistor power consumption formula (Output current)² x Ron (ex.) (400mA)² x 3.3 ohm=528mW

When ambient air temperature is 25 degrees C or more, please install a heat sink with reference to the above figure if needed.

To continue operating a long-time at high temperature impacts a product life.

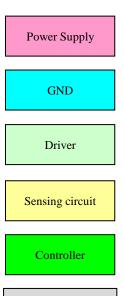
RECOMMENDED OPERATING CONDITIONS (Ta=25 degrees C)

ITEM	SYMBOL	RATING	UNIT	NOTES
Power supply 1	VDD	1.7 to 3.3	V	
Power supply 2	VCC	2.7 to 3.3	v	
Power supply 3	VM	2.7 to 3.3	v	Linear drive mode
Power supply 4	VM	2.7 to 5.5	v	PWM drive mode

RATED POWER SUPPLY VOLTAGE (Ta=25 degrees C)

ITEM	SYMBOL	RATING	UNIT	NOTES
Power supply 1	VDD	1.8	V	
Power supply 2	VCC	2.8	v	
Power supply 3	VM	2.8	v	Linear / PWM drive mode
Power supply 4	VM	5.0	v	PWM drive mode

OPERATING TEMPERATURE


ITEM	SYMBOL	RATING	UNIT	NOTES
Operating temperature	Topr	-30 to 85	degrees C	note1

note1 : Flash write / erase : -10 to 50 degrees C

PIN LOCATION

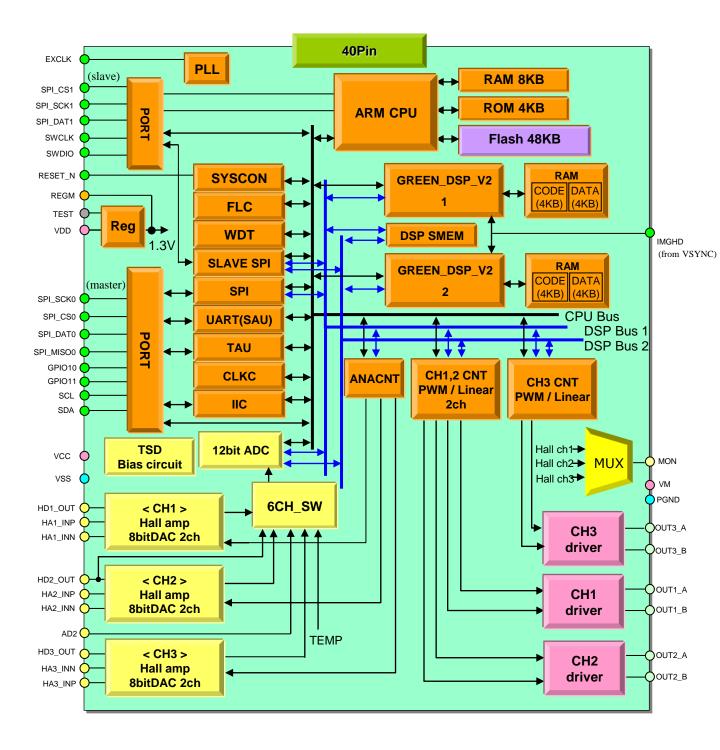
		5	4	3	2	1
	A	RESET_N	GPIO10	GPIO11	SPI_DAT0	SPI_MISO0
	в	EXCLK	IMGHD	REGM	VDD	SPI_SCK0
	с	SWDIO	SWCLK	TEST	SPI_CS0	SPI_CS1
	D	SCL	SDA	MON (analog monitor)	SPI_SCK1	SPI_DAT1
Bottom View	E	VSS	AD2	HA1_INP	HA1_INN	HD1_OUT
	F	vcc	HA3_INP	HA2_INP	HA2_INN	HD2_OUT
	G	HA3_INN	OUT3_A	OUT1_B	OUT2_B	HD3_OUT
	н	VM	OUT3_B	OUT1_A	OUT2_A	PGND
		1	2	3	4	5
	•	1 SPI_MISO0	2 SPI_DAT0	3 GPIO11	4 GPIO10	5 RESET_N
	A					
		SPI_MISO0	SPI_DAT0	GPI011	GPIO10	RESET_N
TonView	в	SPI_MISO0 SPI_SCK0	SPI_DAT0 VDD	GPI011 REGM	GPIO10 IMGHD	RESET_N EXOLK
TopView	B	SPI_MISOO SPI_SCKO SPI_CS1	SPI_DATO VDD SPI_CSO	GPIO11 REGM TEST MON (analog	GPI010 IMGHD SWCLK	RESET_N EXCLK SWDIO
TopView	B C D	SPI_MISOO SPI_SCKO SPI_CS1 SPI_DAT1	SPI_DAT0 VDD SPI_CS0 SPI_SCK1	GPIO11 REGM TEST MON (analog monitor)	GPI010 IMGHD SWCLK SDA	RESET_N EXCLK SWDIO SCL
TopView	B C D	SPI_MISOO SPI_SCKO SPI_CS1 SPI_DAT1 HD1_OUT	SPI_DATO VDD SPI_CSO SPI_SCK1 HA1_INN	GPIO11 REGM TEST (analog monitor) HA1_INP	GPI010 IMGHD SWCLK SDA AD2	RESET_N EXOLK SWDIO SCL VSS

RENESAS TEST (Don't Connect)

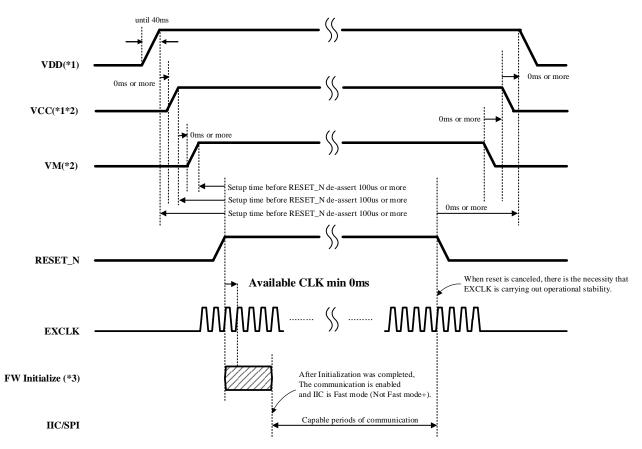
R19DS0112EJ0106 Rev.1.06

Pin Functions

	Land		S	ub Functio	on	VO	IN/OUT	Initial	—	Termination
No.	Address	Pin	GPIO	CPU INT	DSP INT	Level	Power/GND	Condition *4	Function	of unused pin
1	F5	VCC							Power supply for analog block and flash	-
2	B2	VDD	-	-	-	-	Power supply	-	Power supply for I/O and digital block	-
3	H5	VM							Power supply for CH1,CH2,CH3 driver	-
4	H1	PGND					GND	_	Power system GND	-
5	E5	VSS	-	-	-	-	GND	-	Digital and analog GND	-
6	H3	OUT1_A	-	-	-		OUT	Hi-Z	CH1 driver output A	*1
7	G3	OUT1_B	-	-	-		OUT	Hi-Z	CH1 driver output B	*1
8	H2	OUT2_A	-	-	-	VM	OUT	Hi-Z	CH2 driver output A	*1
9	G2	OUT2_B	-	-	-	VIVI	OUT	Hi-Z	CH2 driver output B	*1
10	G4	OUT3_A	-	-	-		OUT	Hi-Z	CH3 driver output A	*1
11	H4	OUT3_B	-	-	-		OUT	Hi-Z	CH3 driver output B	*1
12	D3	MON	-	-	-		OUT	Hi-Z	To Monitor Loop Gain	*1
13	E1	HD1_OUT	-	-	-		OUT	Hi-Z	Hall CH1 constant current output	*1
14	E3	HA1_INP	-	-	-		IN	Hi-Z	Hall amplifier CH1 non-inverting input	*2
15	E2	HA1_INN	-	-	-		IN	Hi-Z	Hall amplifier CH1 inverting input	2
16	F1	HD2_OUT	-	-	-		OUT	Hi-Z	Hall CH2 constant current output	*1
17	F3	HA2_INP	-	-	-	VCC	IN	Hi-Z	Hall amplifier CH2 non-inverting input	*2
18	F2	HA2_INN	-	-	-		IN	Hi-Z	Hall amplifier CH2 inverting input	2
19	G1	HD3_OUT	-	-	-		OUT	Hi-Z	Hall CH3 constant current output	*1
20	F4	HA3_INP	-	-	-		IN	Hi-Z	Hall amplifier CH3 non-inverting input	*2
21	G5	HA3_INN	-	-	-		IN	Hi-Z	Hall amplifier CH3 inverting input	
22	E4	AD2	-	-	-		IN	Hi-Z	ADC input	*2
23	A5	RESET_N	-	-	-		IN	Hi-Z	Reset	-
24	D5	SCL	GPIO00	INTINO	INT INO		IN/OUT	Hi-Z	SCL for I2C Interface / GPIO port GPIO00 / UART RXD00 / CPU INTIN0 / DSP INT IN0	*3
25	D4	SDA	GPIO01	-	-		IN/OUT	Hi-Z	SDA for I2C Interface / GPIO port GPIO01 / UART TXD00	*3
26	B1	SPI_SCK0	GPIO02	-	-		IN/OUT	Hi-Z	CLOCK input or output for SPI (SCK) / GPIO port GPIO02	*3
27	A2	SPI_DAT0	GPIO03	-	-		IN/OUT	Hi-Z	Data input or output for SPI (DAT) / Data output for SPI (MOSI) / GPIO port GPIO03	*3
28	A1	SPI_MISO0	GPIO07	INTIN7	-		IN/OUT	Hi-Z	Data input for SPI (MISO) / GPIO port GPIO07 / CPU INTIN7	*3
29	C2	SPI_CS0	GPIO04	INTIN4	-		IN/OUT	Hi-Z	Chip select input or output for SPI (CS) / GPIO port GPIO04 / TAU TO0, TO1, TO2 / CPU INTIN4	*3
30	B5	EXCLK	-	-	-	VDD	IN	Hi-Z	External CLOCK input	-
31	D2	SPI_SCK1	GPIO08	-	-		IN/OUT*6	Hi-Z	CLOCK input for SPI (SCK)	*3
32	D1	SPI_DAT1	GPIO09	-	-		IN/OUT*6	Hi-Z	Data input or output for SPI (DAT)	*3
33	C1	SPI_CS1	GPIO12	-	-		IN/OUT*6	Hi-Z	Chip select input or output for SPI (CS) / GPIO port GPIO12	*3
34	C4	SWCLK	GPIO05	INTIN5	-		IN/OUT*6	Hi-Z (Pull-up)*5	Clock input for Debugger / GPIO port GPIO05 / UART RXD00 / TAU TI2 / CPU INTIN5	*3
35	C5	SWDIO	GPIO06	INTIN6	-		IN/OUT*6	Hi-Z (Pull-up)*5	Data input/output for Debugger / GPIO port GPIO06 / UART TXD00 / TAU TI1 / CPU INTIN6	*3
36	B4	IMGHD	-	INTIN3	INT IN3		IN*6	Hi-Z	CPU INTIN3 / DSP INT IN3 (Image Sencor Sync signal)	*2
37	A4	GPIO10	GPIO10	INTIN1	INT IN1		IN/OUT*6	Hi-Z	GPIO port GPIO10 / TAU TO2 / CPU INTIN1 / DSP INT IN1	*3
38	A3	GPIO11	GPIO11	INTIN2	INT IN2		IN/OUT*6	Hi-Z	GPIO port GPIO11 / TAU TO3 / CPU INTIN2 / DSP INT IN2	*3
	C3	TEST	-			_	IN	Pull-up	TEST for RENESAS	*1
39								Full-up		*1
40	B3	REGM	-			-	OUT	-	TEST for RENESAS	1


- *1 Open
- *2 Connect to VSS

*3 'Connect to VSS' or


'Pin is Open, ,Pin enbled in PORTSEL register ,Switch to GPIO in PNMOD register ,Output Enable in GPIO0OE register and output data fixed to '0' in GPIO0DT register.'

- *4 An initial value is not influenced by the RESET_N terminal.
- *5 Pull-up can be turned off by register setting.
- *6 Pull-up can be turned on/off by register setting.

TOTAL BLOCK

POWER SUPPLY SEQUENCE

Notes at the time of power-on

- *1 Please apply VDD at the same time or before VCC.
- *2 Please apply VCC at the same time or before VM.

(Please apply all powers with a stable voltage.)

Notes at the time of power-down

- *1 Please power down VCC and VM at the same time.
- *2 Please power down VDD at the same time or after power VCC.

Notes at the time of FW Initialization

*3 The periods of FW Initialization is depend on FW.

CPU initialize the registers of IIC during the periods of FW Initialization.

Consumption current

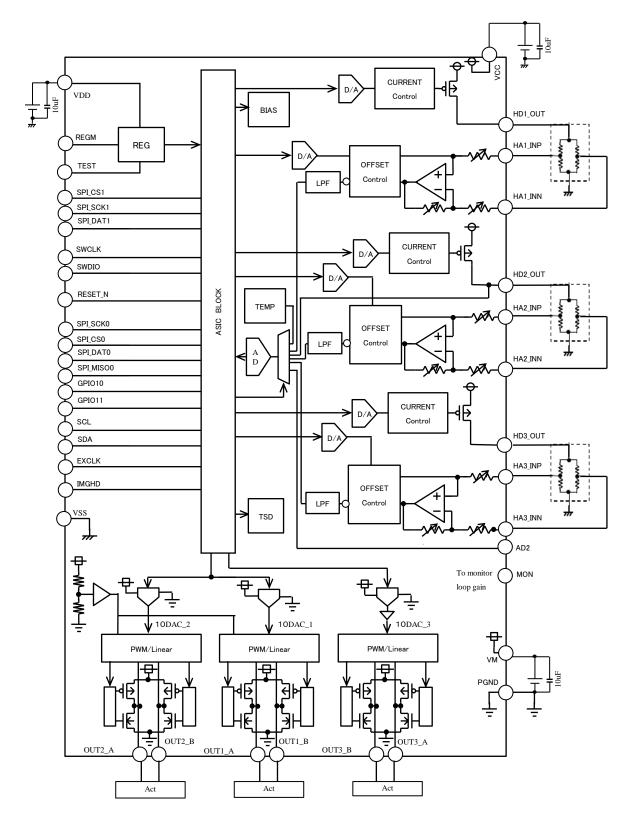
			If no	t specified, VI	DD=1.8V,VCC	=VM=2.8V T	a=25degreeC
Item	Countral			Standard Valu	e	TT. '	
nem	Symbol	Condition	min	typ	max	Unit	Remarks
VDD current	IVDln	EXCLK=27MHz PLL=162MHz,SystemClock=32.4MHz Linear mode	-	10	-	mA	*1
VCC current	IVCln	All output function without load.HA* DAC setting code 80h,HB*DAC setting code 00h,BTL_IS*DAC & AF_BTL setting Default.	-	4.7	7.05	mA	
VM current	IVMpw	All output function without load.HA* DAC setting code 80h,HB*DAC setting code 00h PWM mode	-	1.2	1.8	mA	*2
VM current	IVMln	All output function without load.HA* DAC setting code 80h,HB*DAC setting code 00h,BTL_IS*DAC & AF_BTL setting Default.	-	7.6	11.4	mA	

Note *1: These are reference data. These are depend on FW processing.

Note *2: These are reference, not guaranteed.

Electrical characteristics (POR threshold)

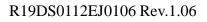
					If not	specified, T	a=25degreeC
Item	Symbol	Symbol Condition	S	Standard Valu	Unit	Remarks	
	Symbol	Condition	min	typ	max	Ullit	Remarks
UVP (Under Voltage Protect)							
PVO detect level	PVO	Check on VCC >Vcore	1.30	1.55	1.67	V	
LVI detect level	LVI	Check on VCC level	2.35	-	-	V	*1
POR detect level	POR	Check on VDD	1.30	1.60	1.68	V	


Note *1: These are reference , not guaranteed.

RAA305350MGBM (Driver Block)

Electrical specification (Analog block) Ta=25 degrees C

				If not specifie	d, VCC=VM=2.	.8V, VDD=1.8V, T	a=25 degrees O	2
	Item	Symbol	Symbol Condition Stand				Unit	Remarks
	item	Symbol	Condition	min	typ	max	Cint	Refigures
	Resolution	RES	684uV/LSB @VCC=2.8V	-	12	_	bit	
	Liniearity minimum code	DRLAD	about 0.1V	-	_	080h	CODE	
1011	Liniearity maximum code	DRHAD	about VCC-0.1V	F7Fh	_	-	CODE	
12bit ADC	Zero scale input voltage	VINLAD		-	0	-	V	
	Full scale input voltage	VINHAD		-	VCC	-	V	
	Conversion time	TCAD		3.375	—	—	us	
	clock frequency	FCLK		—	—	16	MHz	
	Lo output voltage	VOLMN		—	—	0.10	V	
Hall	Hi output voltage	VOHMN		VCC-0.1	—	—	V	
Amplifier	Differential Gain accuracy	GHS	x20, x30, x40, x80 x120, x160, x100, x150, x7	-12	0	12	%	
	Output LPF cut-off frequency	BWHA	-3dB	-	10	_	kHz	*1
	Resolution	RES	10.9mV/LSB @VCC=2.8V	-	8	_	bit	
	Differential Nonlinearity	DNLDA8	guaranteed monotonic, IO=0mA DAC setting code DRLDA8~DRHDA8	-1	-	1	LSB	*1
Hall Amplifier	Integral Nonlinearity	INLDA8	IO=0mA DAC setting code DRLDA8~DRHDA8	(Reference value) -2	_	(Reference value) 2	LSB	*1
offset	Liniearity minimum code	DRLDA8	about 0.25V IO=0mA	-	_	15h	CODE	
adjusting 8bit DAC	Liniearity maximum code	DRHDA8	about 2.75V IO=0mA	EBh	_	_	CODE	
	Zero scale output voltage	VOZSDA8	DAC setting code 00h, IO=0mA	-	_	0.1	V	
	Full scale output voltage	VOFSDA8	DAC setting code FFh, IO=0mA	VCC-0.1	_	—	V	
	Output response time	TCDA8	DRLDA8~DRHDA8	_	_	(Reference value) 5	us	*1
	FET Tr minimum current	IIBMINIC	DAC setting code 00h VIN=0V, ISET[1:0]=01b	_	_	10	uA	
Constant	FET Tr maximum current 1	IIBMAXIC1	DAC setting code D6h VIN=VCC-0.5V, ISET[1:0]=00b	1.0	_	_	mA	
Constant Current Amplifier	FET Tr maximum current 2	IIBMAXIC2	DAC setting code D6h VIN=VCC-0.5V, ISET[1:0]=01b	2.0	_	_	mA	
	Internal DAC linearity minimum code	DRLIDA8	RL=0.75kohm, Vb=0, ISET[1:0]=01b	—	_	11h	CODE	
	Internal DAC linearity maximum code	DRHIDA8	RL=0.75kohm, Vb=0, ISET[1:0]=01b	D6h	_	-	CODE	


Electrical specification (Driver block) Ta=25 degrees C

			If not s	pecified, VCC	=VM=2.8V, VI	DD=1.8V, Ta=	25 degrees C	
	Item	Symbol	Condition	2	Standard Value	e	Unit	Remarks
	item	Symbol	Condition	min	typ	max	Ont	Remarks
	IS DAC Resolution	RESIS		-	10	-	bit	
Linear Driver (CH1,2,3)	IS internal DAC liniearity minimum code	DRLIDA10IS	RL=280hm	Ι		C0h	CODE	*1
	IS internal DAC liniearity maximum code	DRHIDA10IS	RL=280hm	340h			CODE	*1

Note *1: These are reference , not guaranteed.

			If not	If not specified, VCC=VM=2.8V, VDD=1.8V, T				a=25 degrees C	
	Item	tem Symbol Condition Standard Value				Unit	Remarks		
	Itelli	Symbol	min		typ	typ max		Rellarks	
	On resistance IS	RONIS	Io=100mA, VM=2.8V Total of top and bottom resistance	-	3.6	5.8	ohm	*1	
	Turn on time 1	TON1	Threshold 50%, Io=100mA IS slew rate setting=000b	-	0.3	0.45	μs		
	Turn off time 1	TOFF1	Threshold 50%, Io=100mA IS slew rate setting=000b	-	0.12	0.24	μs		
	Rise up time 1	Tr1	From 10% to 90%, Io=100mA IS slew rate setting=000b	-	0.13	0.52	μs		
	Fall downtime 1	Tf1	From 90% to 10%, Io=100mA IS slew rate setting=000b	-	0.05	0.10	μs		
	Turn on time 2	TON2	Threshold 50%, Io=100mA IS slew rate setting=110b	-	0.26	0.39	μs	*1	
PWM driver (CH1,2,3)	Turn off time 2	TOFF2	Threshold 50%, Io=100mA IS slew rate setting=110b	-	0.12	0.24	μs	*1	
	Rise up time 2	Tr2	From 10% to 90%, Io=100mA IS slew rate setting=110b	-	0.11	0.44	μs	*1	
	Fall downtime 2	Tf2	From 90% to 10%, Io=100mA IS slew rate setting=110b	-	0.05	0.10	μs	*1	
	Turn on time 3	TON3	Threshold 50%, Io=100mA IS slew rate setting=101b	-	0.24	0.36	μs	*1	
	Turn off time 3	TOFF3	Threshold 50%, Io=100mA IS slew rate setting=101b	-	0.12	0.24	μs	*1	
	Rise up time 3	Tr3	From 10% to 90%, Io=100mA IS slew rate setting=101b	-	0.08	0.32	μs	*1	
	Fall downtime 3	Tf3	From 90% to 10%, Io=100mA IS slew rate setting=101b	-	0.05	0.10	μs	*1	

Note *1: These are reference , not guaranteed.

RAA305350MGBM (Controller Block)

Controller Block outline

Block diagram

Block diagram is shown in below.

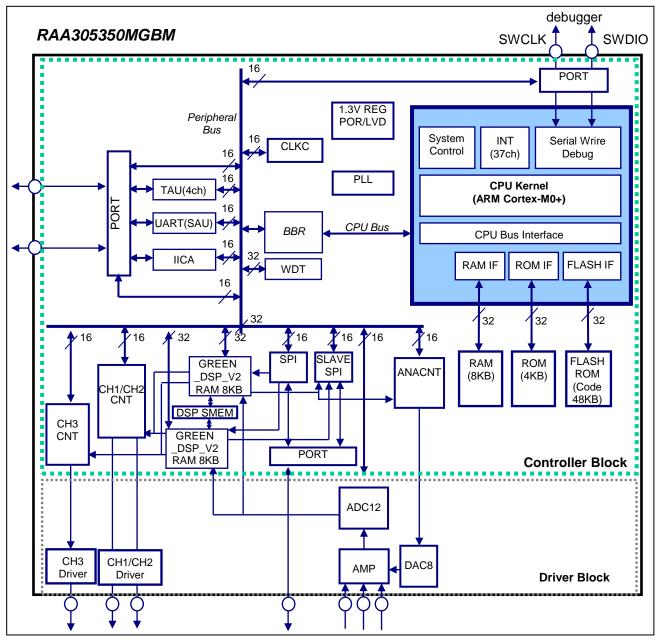
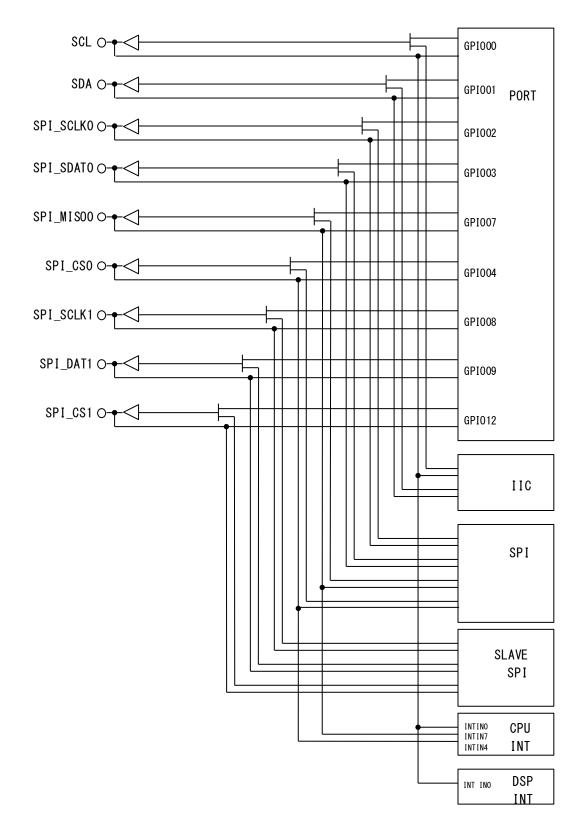
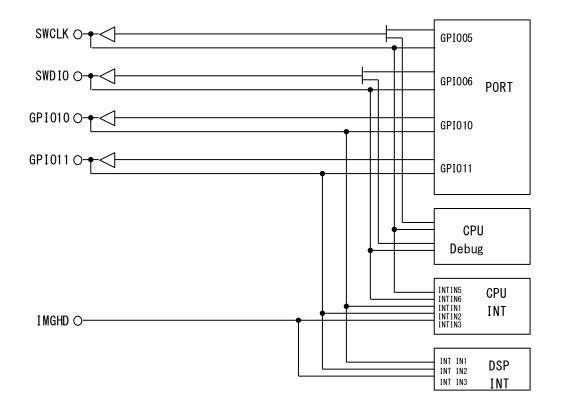



Figure 1.1 RAA305350MGBM Block diagram

BBR:Bus BRidge TAU:Timer Array Unit



Pin connection (1/2)

RENESAS

Pin connection (2/2)

Controller Features

controller peripheral I/O Features shown in Table (1)

Function block	Features					
Interrupt controller (INT)	 Internal Interrupts 	: 37 sources				
	 External interrupts 	: 8 sources				
	 ICUIN input sense 	: Edge sense (rise edge, fall edge, both edges)				
	Priority	: Programable				
TIMER ARRAY UNIT(TAU)	· Channels	: 4ch				
	 Count bit 	: 16 bits counter, down counting				
	 Timer scale 	: $f_{CLK}/2^0$ to $f_{CLK}/2^{15}$				
General purpose I/O & Pin control	• GPIO number of lines	: 12 lines (GPIO)				
(PORT)	· I/O pins	: Can be set to each I/O pin using the corresponds				
		input and output control register bits.				
		: Can be select to each I/O from GPIO and				
		peripheral module Pin mode register 0/1/2/3.				
	· I/O pins control	: Each pins can be changed GPIO and other peripheral functions with setting the operation				
		mode register.				
	· I/O pins pull-up	: Enables and disables the pull-up resistors.				
Serial Peripheral Interface	Number of channels	: 1 channel				
(SPI)	Character length	: 8 bits				
· · ·	• Order of transfer	: MSB first or LSB first				
	Shift clock	: Internal or external shift clock				
	Internal shift clock source	: $f_{CLK}/2^0$ to $f_{CLK}/2^{15}$				
	Baud rate count	: 2-256				
	Transmit interrupt factor	: Transmit buffer empty or Transmit end				
	Receive error detection	: Overrun				
	· Chip Select	: Chip select signal				
	· DSP register access	: Registers are accessible from CPU				
Slave Serial Peripheral Interface	 Number of channels 	: 1 channel				
(SLAVE SPI)	· Character length	: 8 bits				
	 Order of transfer 	: MSB first				
	 Shift clock 	: external shift clock				
	Transmit interrupt factor	: Transmit end				
	Receive/Send buffer	: 1Byte address buffer(Receive)				
		and 6 Byte data buffer(Send)				
	 Chip Select 	: Chip select signal				
	 DSP register access 	: Registers are accessible from CPU				

controller peripheral I/O Features shown in	Table (2)
---	-----------

Function block		Features
Universal asynchronous Receiver	·Channels	: 1 channel
Transmitter (UART)	·Character length	: 7/8/9 -bit length can be selected
	·Transfer order	: MSB and LSB first can be selected
	·Stop bit length	: 1 or 2 bit can be selected
	Parity check	: Can be enabled or disabled
	·Attribute of parity check	: Even or Odd parity can be selected
	 Internal clock source 	: Dividable range = : $f_{CLK}/2^0$ to $f_{CLK}/2^{15}$
	·Baud rate counter	: Maximum 2-256
	•Transmit interrupt factor	: Transmit buffer empty or Transmit end
		can be selected. Error interrupt also.
	·Error detection	: Framing error, Parity error, Overrun error.
Clock /PLL/ System control	·Clock source	: External Input (EXCLK)
	·SYSTEM/DSP clocks	: 32.4MHz max
	·PWM clocks	:162MHzmax
	 Standby Function 	: SLEEP, DEEP-SLEEP
	·PLL clock(=PWM clocks)	: MAX : 162MHz
	·PLL control	: PLL can be stop.
	·OIS module clock control	: OIS module clock control can be stop
Multi Master & Slave	·Channels	: 1 channel
SERIAL INTERFACE IICA	·Clock frequency	: Standard mode (fastest transfer rate: 100 kbps)
(IICA)		: Fast mode (fastest transfer rate: 400 kbps)
		: Fast mode+ (fastest transfer rate: 1
		Mbps)
	 Transmit interrupt factor 	: Transfer end interrupt
	·Error detection	: Overrun error
		Parity error (ACK error)
CH1,CH2 Control	·Image stabilizer drive function	: 2 channel PWM or Linear (H-bridge)
(OISCNT)	·DSP register access	: Registers are accessible through CPU Bus.
CH3 Control	 Auto focus drive function 	: 1 channel PWM or Linear (H-bridge)
(AFCNT)	·DSP register access	: Registers are accessible through CPU Bus.

Function block		Features
DSP	· Channels	: 2 channels
(GREEN_DSP_V2 1, 2)	Arithmetic operation	: Multiplication
		Signed 32 bits * Signed 32 bits = Signed 32 bits Multiplication results (64 bits) can be shifted right any number of bits : Addition/ Substruct Signed 32 bits + Signed 32 bits = Signed 32 bits Signed 32 bits - Signed 32 bits = Signed 32 bits
		Internally calculated with 33bits precision. : Limit calculation
		Upper-/lower-limits can be set.
		: Capable to generate an interrupt to the CPU at program halt.
	Interrupt requests	: When program halts: Executes the STOP, break, and undefined instructions.
Shared Memory	·Memory Capacity	: 16byte (GREEN_DSP_V2 1->GREEN_DSP_V2 2)
(DSP SMEM)		16byte (GREEN_DSP_V2 2->GREEN_DSP_V2 1)
	 Interrupt requests 	: GREEN_DSP_V2 1->GREEN_DSP_V2 2
	(Software interrupt)	GREEN_DSP_V2 2->GREEN_DSP_V2 1
Analog Control	· AMP,DAC8 control	: Control register
(ANACNT)	 DSP register access 	: Registers are accessible through CPU Bus.
12bit ADC Control	Resolution	: 12bits
(ADC12)	· Channels	: 6ch
	 Conversion mode 	: Single mode, Scan mode
	 DSP register access 	: Registers are accessible through CPU Bus.

controller peripheral I/O Features shown in Table (3)

Electrical characteristics (Controller block) Ta=25 degrees C

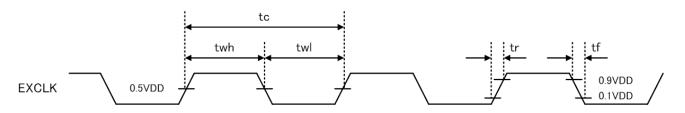
DC characteristics

If not specified VDD=1.8V, VCC=VM=2.8V, Ta=25 degrees C

ltem	Symbol	Conditions	Limit			Unit	Remarks	
llem	Symbol	Conditions	Min	Тур	Max	Unit	Remarks	
'H' output voltage VOH IOH=-2mA		VDD*0.8	-	VDD	V	note1		
L' output voltage VOL IO		IOL=2mA	0		VDD*0.2	V	note1	
'H' input current IIH VI=VDD		-	-	1	uA	note2		
'L' input current	IIL	VI=0V	-	-	-1	uA	note2	
Pull-up resistance	Rup		10	-	200	Kohm	note3	
'H' input voltage VIH			VDD*0.7	-	VDD	V	-	
'L' input voltage	VIL		0	-	VDD*0.3	V	-	

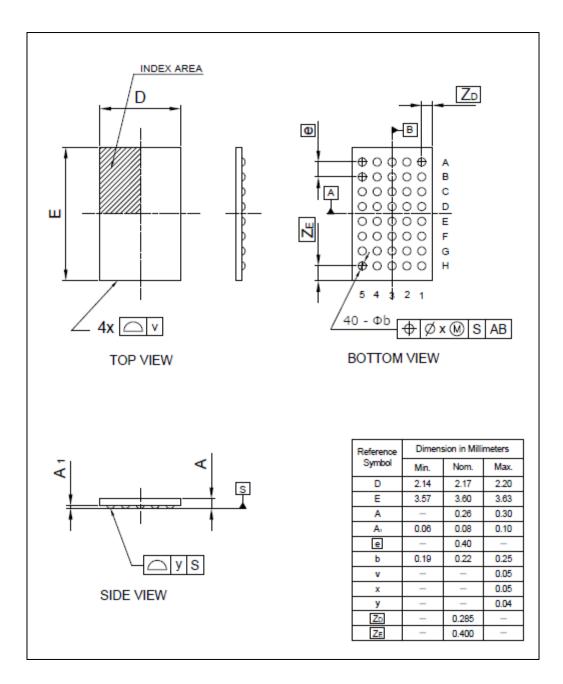
note1. correspondence terminal: SCL, SDA, SPI_SCK0, SPI_DAT0, SPI_MISO0, SPI_CS0, SPI_SCK1, SPI_DAT1, SPI_CS1, SWCLK, SWDIO, GPIO10, GPIO11

note2. in condition that pull-up resistance is not connected. (The built-in pull-up resistor is disabled by the F/W.) note3. correspondence terminal: SPI_SCK1, SPI_DAT1, SPI_CS1, SWCLK, SWDIO, GPIO10, GPIO11


Electrical characteristics (Controller block) Ta=25 degrees C

AC characteristics

(1) EXTERNAL CLOCK (CLOCK)


		If not specified,	VDD-1.0V	V CC- V IVI-	$-2.0 \times 10 - 2$	J ucgices C
Items	Symbol	Conditions	Li	mit	Unit	Remarks
Itenis	Symbol	Conditions	Min	Max	Unit	Kellia KS
Input Frequency	fclk	-	6	29	MHz	-
Input 'H' pulse width	twh	> 0.5VDD	14	-	ns	-
Input 'L' pulse width	twl	< 0.5VDD	14	-	ns	-
Input rise time	Tr	VDD voltage 10% to 90%	-	2	ns	-
Input fall time	Tf	VDD voltage 10% to 90%	-	2	ns	-
Cycle-to-cycle period jitter	tjit(CC)	-	-	2	%	-
Period Jitter	tjit(per)	-	-4	4	%	-

Outline drawing

Revision History

			Description
Rev	Date	Page	Summary
Rev 1.06	16th.Mar.2021	-	New

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the level at which resetting is specified.

3.Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.

5.Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6.Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (Max.) and V_{IH} (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (Max.) and V_{IH} (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.

8.Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

Notice

- 1.Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- 2.Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3.No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4.You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export, manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
- 5.You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- 6.Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 7.No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION ("Vulnerability Issues"). RENESAS ELECTRONICS DISCLAIMS ANY AND ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
- 8. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 9.Although Renessa Electronics endeavors to improve the quality and reliability of Renessa Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renessa Electronics data sheet or other Renessas Electronics document, Renessas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renessas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 10.Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11.Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12.It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
 Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note1)"Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note2)"Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact information

(Rev.5.0-1 October 2020)

For further information on a product, technology, the most up-todate version of a document, or your nearest sales office, please visit: www.renesas.com/contact/.

