
www.renesas.com

All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Technology Corp.
website (http://www.renesas.com).

Data Flash Access Library

Type T01, European Release

16 Bit Single-chip Microcontroller
RL78 Series

Installer: RENESAS_RL78_EEL-FDL_T01_PACK01_xVxx

R01US0034ED0110
September 10, 2019

16

U
ser M

anual

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits,
software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and
damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents,
copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical
information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and
application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas
Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics
disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification,
copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended
applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below.
“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment;

home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication

equipment; key financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other
Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a
direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious
property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military
equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising
from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or other
Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General
Notes for Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the
ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation
characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of
the use of Renesas Electronics products outside of such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products
have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless
designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing
safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event
of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to
redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures.
Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of
the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each
Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate
the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics
products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or
losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use,
or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control
laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or
transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or
otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this
document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or
Renesas Electronics products.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly
controlled subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

R01US0034ED0110 3
User Manual

Table of Contents

Chapter 1 Introduction ... 5
1.1 Components of the EEPROM Emulation System ... 6

1.1.1 Physical flash layer .. 6
1.1.2 Flash access layer ... 6
1.1.3 EEPROM access layer .. 6
1.1.4 Application layer... 6

1.2 Naming Conventions ... 7
Chapter 2 Architecture ... 8

2.1 Data Flash fragmentation .. 8
2.1.1 FDL pool .. 9
2.1.2 EEL pool .. 9
2.1.3 USER pool ... 9

2.2 Address virtualization .. 10
2.3 Access right supervision ... 11
2.4 Request-Response architecture ... 12
2.5 Background operation ... 13

2.5.1 Background operation (Erase) ... 13
2.5.2 Background operation (write) ... 14
2.5.3 Background operation (blank-check/verify) ... 15
2.5.4 No background operation for read command .. 15

2.6 Suspension of block oriented commands (erase) ... 16
Chapter 3 User interface (API) ..17

3.1 Run-time configuration .. 17
3.2 Data types ... 18

3.2.1 Library specific simple type definitions .. 18
3.2.2 Enumeration type “fal_command_t” .. 18
3.2.3 Enumeration type “ fal_status_t” .. 19
3.2.4 Structured type “fal_request_t” .. 19
3.2.5 Structured type “fal_descriptor_t” .. 20

3.3 Functions ... 22
3.3.1 Basic functional workflow ... 22
3.3.2 Interface functions ... 22

Chapter 4 Operation ..33
4.1 Blank-check ... 33
4.2 Internal verify ... 34
4.3 Read .. 35
4.4 Write .. 35
4.5 Erase ... 37

R01US0034ED0110 4
User Manual

Chapter 5 FDL usage by user application ...38
5.1 First steps .. 38
5.2 Special considerations .. 38

5.2.1 Reset consistency .. 38
5.2.2 EEL+FDL or FDL only.. 38

5.3 File structure ... 39
5.3.1 Library for IAR V1.xx Compiler .. 39
5.3.2 Library for IAR V2.xx Compiler .. 39
5.3.3 Library for CA78K0R Compiler .. 40

5.4 Configuration ... 41
5.4.1 Linker sections ... 41
5.4.2 Descriptor configuration (partitioning of the data flash) ... 41
5.4.3 Request structure .. 42

5.5 General flow .. 42
5.5.1 General flow: Initialization .. 42
5.5.2 General flow: commands except read ... 43
5.5.3 General flow: read command ... 44

5.6 Example of FDL used in operating-systems ... 45
5.7 Example: Simple application ... 46
5.8 Example: Read/Write during background erase ... 47

Chapter 6 Characteristics ..49
6.1 Resource consumption ... 49
6.2 Timings .. 49

6.2.1 Maximum Function Execution Times ... 49
6.2.2 Command execution times .. 50

Chapter 7 Cautions ..51

Data Flash Access Library

R01US0034ED0110 5
User Manual

Chapter 1 Introduction

This user’s manual describes the overall structure, functionality and software
interfaces (API) of the Data Flash Library (FDL) accessing the physical Data
Flash separated and independent from the Code Flash. This library supports
dual operation mode where the content of the Data Flash is accessible (read,
write, erase) during instruction code execution.
The Data Flash Library Type01 provides APIs for the C and assembly
language of the CA78K0R, IAR V1.xx and IAR V2.xx tool chains.(APIs for the
assembly language are provided by the CA78K0R tool chain only.)
The Data Flash Library Type01 for IAR V2.xx tool chain (except linker sample
file) can also be used with the IAR V3.xx and IAR V4.xx tool chains.
The FAL (flash access layer) is a layer of EEPROM emulation system and
encapsulates the low-level access to the physically flash in secure way. In
case of Data Flash this layer is using the FDL. It provides a functional socket
for Renesas EEPROM emulation software, but beside this it offers also direct
access to the user at which the access priority and access separation is fully
controlled by the library.

Components of the EEPROM emulation system

User application

EEL

EEL-API

FDL-API

FDL flash access layer (FAL)

FDL-POOL (data flash) physical data flash

EEPROM layer

application layer

To boost the flexibility and the real-time characteristics of the library it offers
only fast atomic functionality to read, write and erase the Data Flash memory
at smallest possible granularity. Beside the pure access commands some
maintenance functionality to check the quality of the flash content is also
provided by the library

Figure 1-1

Data Flash Access Library

R01US0034ED0110 6
User Manual

1.1 Components of the EEPROM Emulation System
To achieve a high degree of encapsulation the EEPROM emulation system is
divided into several layers with narrow functional interfaces.

1.1.1 Physical flash layer
The FDL is accessing the Data Flash as a physical media for storing data in
the EEPROM emulation system. The Data Flash is a separate memory that
can be accessed independent of the Code Flash memory. This allows
background access to data stored in the Data Flash during program execution
located in the code flash. The physical Data Flash is mapped by the FDL into a
virtual pool called FDL-Pool below.

1.1.2 Flash access layer
The Data Flash access layer is represented by the flash access library
provided by Renesas. In case of devices incorporating data-flash the FDL is
representing this layer. It offers all atomic functionality to access the FDL pool.
To isolate the data-flash access from the used flash-media this layer (the FDL)
is transforming thy physical addresses into a virtual, linear address-room.

1.1.3 EEPROM access layer
The EEPROM layer allows read/write access to the Data Flash at abstract
level. It is represented by Renesas EEL or alternatively any other, user
specific implementation.

1.1.4 Application layer
The application layer is user’s application software that can use freely all
visible (specified by the API definition) commandos of upper layers. The
EEPROM layer and the flash access layer can be used asynchronously. The
FDL manages the access rights to it in a proper way.

Data Flash Access Library

R01US0034ED0110 7
User Manual

1.2 Naming Conventions
Certain terms, required for the description of the Data Flash Access and
EEPROM emulation library are long and too complicated for good readability
of the document. Therefore, special names and abbreviations will be used in
the course of this document to improve the readability.
These abbreviations shall be explained here:

Abbreviations /
Acronyms Description
Block Smallest erasable unit of a flash macro

Code Flash

Embedded Flash where the application code is stored.
For devices without Data Flash EEPROM emulation
might be implemented on that flash in the so called data
area.

Data Flash
Embedded Flash where mainly the data of the EEPROM
emulation are stored. Beside that also code operation
might be possible.

Dual Operation

Dual operation is the capability to fetch code during
reprogramming of the flash memory. Current limitation is
that dual operation is only available between different
flash macros. Within the same flash macro it is not
possible!

EEL EEPROM Emulation Library

EEPROM
emulation

In distinction to a real EEPROM the EEPROM emulation
uses some portion of the flash memory to emulate the
EEPROM behavior. To gain a similar behavior some
side parameters have to be taken in account.

FAL Flash Access Library (Flash access layer)
FCL Code Flash Library (Code Flash access layer)
FDL Data Flash Library (Data Flash access layer)

Flash

“Flash EPROM” - Electrically erasable and
programmable nonvolatile memory. The difference to
ROM is, that this type of memory can be re-programmed
several times.

Flash Block A flash block is the smallest erasable unit of the flash
memory.

Flash Macro
A flash comprises of the cell array, the sense amplifier
and the charge pump (CP). For address decoding and
access some additional logic is needed.

NVM
Non volatile memory. All memories that hold the value,
even when the power is cut off. E.g. Flash memory,
EEPROM, MRAM...

RAM “Random access memory” - volatile memory with
random access

ROM “Read only memory” - nonvolatile memory. The content
of that memory can not be changed.

Serial programming The onboard programming mode is used to program the
device with an external programmer tool.

Single Voltage

For the reprogramming of single voltage flashes the
voltage needed for erasing and programming are
generated onboard of the microcontroller. No external
voltage needed like for dual- voltage flash types.

Data Flash Access Library

R01US0034ED0110 8
User Manual

Chapter 2 Architecture

This chapter describes the overall architecture of the FDL library.

2.1 Data Flash fragmentation
The physical Data Flash location is fixed to a physical address assigned by the
hardware (e.g. for RL78/G13: 0xF1000 – 0xF1FFF). Just the logical
fragmentation of the Data Flash can be configured within the given range.

Following figure shows the logical fragmentation of physical Data Flash.

Logical fragmentation of physical Data Flash

 Data Flash

FDL pool

USER pool

EEL pool

0xF1000

0xF1FFF

Access by
EEL only

Access by
application only

Figure 2-1

Data Flash Access Library

R01US0034ED0110 9
User Manual

2.1.1 FDL pool
The FDL pool defines the maximum usage of physical Data Flash used by the
FDL. In case of physical Data Flash size of 16KByte it is possible to define the
following sizes for FDL pool configuration: 2KByte, 4KByte, 6KByte, 8KByte,
10KByte, 12KByte, 14KByte, 16KByte. This pool is divided into the EEL and
USER pool which are described below.

2.1.2 EEL pool
EEL pool is a part of the FDL pool and is assigned exclusively to Renesas
EEPROM Emulation Library (EEL) only. In case the EEL is not used the whole
FDL pool will be reserved for USER pool.

2.1.3 USER pool
The USER pool is a part of the FDL pool. It can be used exclusively by the
application in a free way. In case of proprietary EEPROM emulation
implementation (user specific) the completely FDL pool has to be configured
as USER-pool.

Data Flash Access Library

R01US0034ED0110 10
User Manual

2.2 Address virtualization
To facilitate the access to the USER pool the physical addresses were
virtualized. The virtualized pool looks like a simple one-dimensional array of
flash-words (4 bytes).

Relationship between physical and virtual pool addresses

USER/EEL
PoolData Flash

USER pool

EEL pool

0xF2FFF

0xF1000

Block 0

Block 1

Block 2

Block 3

Block 7

Block 6

0xF1C00

0xF1400

0xF1800

Block 3

Block 2

0xF2C00

0xF2BFF

0xF2800

0xF1BFF

0xF17FF

0xF13FF

0xF1FFF

virtual
word
index

Flash block
and address

transformation

Block 1

Block 0

Block 5

Block 4
0x0000

0x0300

0x0100

0x0200

0x00FF

0x01FF

0x02FF

0x03FF

0xF2000

0xF23FF

0xF2400

0xF27FF

Physical
address

Figure 2-2

Data Flash Access Library

R01US0034ED0110 11
User Manual

2.3 Access right supervision
As mentioned before the complete FDL pool is divided into two parts shared
between user and the EEL. The construction of the FDL does not allow user
access to the EEL-pool and vice versa.

FDL pool access supervision

USER pool access

USER

EEL

EEL pool access

0-(
N-1)

EEL pool

USER pool

N flash words

0x0000

N-1

FDL pool

FDL

Figure 2-3

Data Flash Access Library

R01US0034ED0110 12
User Manual

2.4 Request-Response architecture
The communication between the requester (user) and the executor (here the
FDL) is a common structured request variable. The requester can specify the
request and pass it to the FDL. After acceptance the progress of the execution
can be checked by polling the request status.

From execution-time point of view the commands of the FDL are divided into
two groups:
- suspendable block-oriented command like block erase taking relatively long
time for its execution
- not-suspendable word-oriented commands like write, read ... taking very
short time for its execution

Depending on the real-time requirements the user can decide if independent,
quasi-parallel execution of block and word commands is required or not. In
such a case two separate request-variables have to be defined and managed
by the application. Please refer to chapter “Operation” for details.

Following figure shows the access from requester and FDL point of view.

Request oriented communication between FDL and its requester

DATA

INDEX

COMMAND

STATUS

Requester

FDL

Figure 2-4

Data Flash Access Library

R01US0034ED0110 13
User Manual

2.5 Background operation
Due to the fact that the Data Flash operates in the background it is possible to
do something else in the meantime. For example the application could prepare
next data for writing into the Data Flash or handle different ISRs. Background
operation is a powerful feature especially in operation systems were each task
could start FAL commands which will be executed in the background during
task switching.

2.5.1 Background operation (Erase)
The erase command is from timing point of view the longest command. As
shown in the figure below, the application has the possibility to execute other
user code during the background operation.

Background operation (Erase)

FAL_Execute(ERASE)

FAL_BUSY

Erase

FAL_Handler()

FAL_BUSY

FAL_Handler()

FAL_BUSY

FAL_Handler()

FAL_BUSY

FAL_Handler()

FAL_OK

FDLUSER
Data Flash
hardware

(background)

Figure 2-5

Data Flash Access Library

R01US0034ED0110 14
User Manual

2.5.2 Background operation (write)
During the running write command blank-check/write/verify will be performed
in background. As shown in the figure below, the application has the possibility
to execute other user code during the background operation.

Background operation (write)

FAL_Execute(WRITE)

FAL_BUSY
Blank-
Check

FAL_Handler()

FAL_BUSY

FAL_Handler()

FAL_BUSY

FAL_Handler()

FAL_BUSY

FAL_Handler()

FAL_OK

FDL
Data Flash
hardware

(background)
USER

Write

Verify

Figure 2-6

Data Flash Access Library

R01US0034ED0110 15
User Manual

2.5.3 Background operation (blank-check/verify)
Same procedure as for erase the verify or blank-check will be performed in
background.

Background operation (blank-check/verify)

FAL_Execute(BC/VI)

FAL_BUSY

Blank-
Check/
Verify

FAL_Handler()

FAL_BUSY

FAL_Handler()

FAL_OK

FDL
Data Flash
hardware

(background)
USER

2.5.4 No background operation for read command
The read command doesn’t use the background operation. It’s directly finished
after the request acceptance.

No background operation for read command

FAL_Execute(read)

FAL_OK

FDL
Data Flash
hardware

(background)
USER

Figure 2-7

Figure 2-8

Data Flash Access Library

R01US0034ED0110 16
User Manual

2.6 Suspension of block oriented commands (erase)
In cases of systems working under critical real-time conditions, immediately
read/write access to the data is a must. In such cases, separate request
variables must be defined for word command accesses and block command
accesses. Both types of access are managed separately on FDL and
requester side.
The suspension and resumption of the running block command (erase) is
managed automatically according to the following rules
- word commands cannot be suspended
- each block command can be suspended by any word command
- User requested block command does always suspend running block
commands of the EEL
- EEL requested block commands cannot suspend running user block
command

In other words:
- word commands have always higher priority than block commands
- user access have always higher priority than EEL (running in background)

The following table shows dependencies between running and requested
commands of EEL or user.

Block command suspension rules

command acceptance
running command

WCMD
(eel)

WCMD
(user)

BCMD
(eel)

BCMD
(user)

requested
command

WCMD
(eel) rejected rejected

suspend/
resume***

suspend/
resume

WCMD
(user) rejected rejected

suspend/
resume

suspend/
resume***

BCMD
(eel) rejected rejected rejected rejected

BCMD
(user) rejected rejected

suspend/
resume rejected

Agenda:
WCMD = word command
BCMD = block command,
rejected = requested command is rejected
suspend = running block command is suspended

*** when the address of the WCMD refers to the block addressed by BCMD
the WCMD will be rejected too.

Table 2-1

Data Flash Access Library

R01US0034ED0110 17
User Manual

Chapter 3 User interface (API)

3.1 Run-time configuration
During runtime the configuration of the FDL can be changed dynamically. To
be able to do it more than one descriptor constant has to be defined by the
user in advance. Depends on the application mode different descriptors can be
chosen for the FAL_Init(...) function.

/* */
/* some code */
/* */

/* load standard descriptor */
my_status=FAL_Init(&fal_descriptor_str);

/* */
/* some code */
/* */

FAL_Close(); /* close USER part of the FAL pool */
EEL_Close(); /* close EEL part of the FAL pool */
 /* - but only if necessary, means */
 /* if EEL used in system */

/* load alternative descriptor */
my_status=FAL_Init(&fal_descr_2_str);

/* */
/* some code */
/* */

Note: Before changing FAL pool configuration by using of different FAL pool-
descriptor the user has to close the FAL (USER part of the pool) in any case.
In case that the EEL is active in the system, the EEL part of the FAL-pool has
to be closed by using EEL_Close() too.

Data Flash Access Library

R01US0034ED0110 18
User Manual

3.2 Data types
This chapter describes all data definitions used by the FDL.

3.2.1 Library specific simple type definitions
This type defines simple numerical type used by the library

typedef unsigned char fal_u08;
typedef unsigned int fal_u16;
typedef unsigned long int fal_u32;

3.2.2 Enumeration type “fal_command_t”
This type defines all codes of available commands

typedef enum {
 FAL_CMD_UNDEFINED = (0x00),
 FAL_CMD_BLANKCHECK_WORD = (0x00 | 0x01),
 FAL_CMD_IVERIFY_WORD = (0x00 | 0x02),
 FAL_CMD_READ_WORD = (0x00 | 0x03),
 FAL_CMD_WRITE_WORD = (0x00 | 0x04),
 FAL_CMD_ERASE_BLOCK = (0x00 | 0x05),
 } fal_command_t;

Code value description:

FAL_CMD_UNDEFINED - default value
FAL_CMD_BLANKCHECK_WORD - blank-check of 1 Data Flash word
FAL_CMD_IVERIFY_WORD - verify of 1 Data Flash word
FAL_CMD_READ_WORD - read 1 Data Flash word
FAL_CMD_WRITE_WORD - write 1 Data Flash word
FAL_CMD_ERASE_BLOCK - erases 1 Data Flash block

Data Flash Access Library

R01US0034ED0110 19
User Manual

3.2.3 Enumeration type “ fal_status_t”
This enumeration type defines all possible status- and error-codes can be
generated during data-flash access via the FDL. The FAL_OK and FAL_BUSY
status are returned to the requester during normal operation. Other codes
signalize problems.

typedef enum {
 /* operation related status --------------*/
 FAL_OK = (0x00),
 FAL_BUSY = (0x00 | 0x01),

 /* run-time error related status ---------*/
 FAL_ERR_PROTECTION = (0x10 | 0x00),
 FAL_ERR_BLANKCHECK = (0x10 | 0x01),
 FAL_ERR_VERIFY = (0x10 | 0x02),
 FAL_ERR_WRITE = (0x10 | 0x03),
 FAL_ERR_ERASE = (0x10 | 0x04),

 /* configuration error related status ----*/
 FAL_ERR_PARAMETER = (0x20 | 0x00),
 FAL_ERR_CONFIGURATION = (0x20 | 0x01),
 FAL_ERR_INITIALIZATION = (0x20 | 0x02),
 FAL_ERR_COMMAND = (0x20 | 0x03),
 FAL_ERR_REJECTED = (0x20 | 0x04)
 } fal_status_t;

Status value Description
FAL_OK default value, ready, no error detected
FAL_BUSY request is accepted and is being processed
FAL_ERR_PROTECTION access outside permitted pool area
FAL_ERR_BLANKCHECK specified flash-word is not blank
FAL_ERR_VERIFY specified flash-word could not be verified
FAL_ERR_WRITE write is failed
FAL_ERR_ERASE block erase is failed

FAL_ERR_PARAMETER not relevant for the FDL (defined for future
improvements)

FAL_ERR_CONFIGURATION Wrong values configured in descriptor
FAL_ERR_INITIALIZATION FDL not initialized or not opened
FAL_ERR_COMMAND wrong command code used
FAL_ERR_REJECTED when FDL busy with another request

3.2.4 Structured type “fal_request_t”
This type is used for definition of request variables and used for information
exchange between the application and the FDL. A request variable is passed
to the FDL to initiate a command and can be used by the requester (EEL,
application...) to check the status of its execution.

/* FAL request type (base type for any FAL access) */
typedef struct {
 fal_u32 data_u32;
 fal_u16 index_u16;
 fal_command_t command_enu;
 fal_status_t status_enu;
 } fal_request_t;

Data Flash Access Library

R01US0034ED0110 20
User Manual

Struct member Description

data_u32 32-bit buffer for data exchange during read/write
access

index_u16 virtual word index within the targeted pool
command_enu command code
status_enu request status code (feedback)

3.2.5 Structured type “fal_descriptor_t”
This type defines the structure of the FDL descriptor. It contains all
characteristics of the FDL. It is used in the fdl_descriptor.c file for definition of
the ROM constant fal_descriptor_str.

Based on configuration data inside the fdl_descriptor.h the initialization data of
descriptor constant is generated automatically in the fdl_descriptor.c.

/* FAL descriptor type */
typedef struct {
 fal_u32 fal_pool_first_addr_u32;
 fal_u32 eel_pool_first_addr_u32;
 fal_u32 user_pool_first_addr_u32;
 fal_u32 fal_pool_last_addr_u32;
 fal_u32 eel_pool_last_addr_u32;
 fal_u32 user_pool_last_addr_u32;
 fal_u16 fal_pool_first_block_u16;
 fal_u16 eel_pool_first_block_u16;
 fal_u16 user_pool_first_block_u16;
 fal_u16 fal_pool_last_block_u16;
 fal_u16 eel_pool_last_block_u16;
 fal_u16 user_pool_last_block_u16;
 fal_u16 fal_first_widx_u16;
 fal_u16 eel_first_widx_u16;
 fal_u16 user_first_widx_u16;
 fal_u16 fal_last_widx_u16;
 fal_u16 eel_last_widx_u16;
 fal_u16 user_last_widx_u16;
 fal_u16 fal_pool_wsize_u16;
 fal_u16 eel_pool_wsize_u16;
 fal_u16 user_pool_wsize_u16;
 fal_u16 block_size_u16;
 fal_u16 block_wsize_u16;
 fal_u08 fal_pool_size_u08;
 fal_u08 eel_pool_size_u08;
 fal_u08 user_pool_size_u08;
 fal_u08 fx_MHz_u08;
 fal_u08 wide_voltage_mode_u08;
 } fal_descriptor_t;

Data Flash Access Library

R01US0034ED0110 21
User Manual

Struct member Description
fal_pool_first_addr_u32 first physical address of the FAL pool
eel_pool_first_addr_u32 first physical address of the EEL pool
user_pool_first_addr_u32 first physical address of the USER pool
fal_pool_last_addr_u32 last physical address of the FAL pool
eel_pool_last_addr_u32 last physical address of the EEL pool
user_pool_last_addr_u32 last physical address of the USER pool
fal_pool_first_block_u16 first virtual block of the FAL pool
eel_pool_first_block_u16 first virtual block of the EEL pool
user_pool_first_block_u16 first virtual block of the USER pool
fal_pool_last_block_u16 last virtual block of the FAL pool
eel_pool_last_block_u16 last virtual block of the EEL pool
user_pool_last_block_u16 last virtual block of the USER pool
fal_first_widx_u16 first virtual word-index inside the FAL pool
eel_first_widx_u16 first virtual word-index inside the EEL pool
user_first_widx_u16 first virtual word-index inside the USER pool
fal_last_widx_u16 last virtual word-index inside the FAL pool
eel_last_widx_u16 last virtual word-index inside the EEL pool
user_last_widx_u16 last virtual word-index inside the USER pool
fal_pool_wsize_u16 size of the FAL pool expressed in words
eel_pool_wsize_u16 size of the EEL pool expressed in words
user_pool_wsize_u16 size of the USER pool expressed in words
block_size_u16 size of one Data Flash block expressed in bytes

block_wsize_u16 size of one Data Flash block expressed in
words

fal_pool_size_u08 size of the FAL pool expressed in blocks

eel_pool_size_u08 size of the EEL pool expressed in blocks
(Note 1, 2)

user_pool_size_u08 size of the USER pool expressed in blocks
(Note 1, 2)

fx_MHz_u08
Frequency of user clock
(Note 3)

wide_voltage_mode_u08
selection of flash memory programming mode
0: full speed mode
1: wide voltage mode

Note 1: the sum of eel_pool_size_u08 and user_pool_size_u08 must not
 exceed fal_pool_size_u08.
Note 2: both descriptor configuration conditions will be checked by
 FAL_Init(...)
Note 3: User frequency (frequency >= 4MHz)

Frequency must be rounded up as shown below:
descr.fsl_frequency_u08 = 20 for 20000000Hz
descr.fsl_frequency_u08 = 24 for 23100000Hz

User frequency (frequency < 4MHz)
In case the frequency is smaller than 4MHz the only supported
physical frequencies are the following:
descr.fsl_frequency_u08 = 1 for 1000000Hz
descr.fsl_frequency_u08 = 2 for 2000000Hz
descr.fsl_frequency_u08 = 3 for 3000000Hz

Data Flash Access Library

R01US0034ED0110 22
User Manual

3.3 Functions
Due to the request oriented interface of the FDL the functional interface is very
narrow. Beside the initialization function and some administrative function the
whole flash access is concentrated to two functions only: FAL_Execute(...)
and FAL_Handler().

3.3.1 Basic functional workflow
To be able to use the FDL (execute pool-related commands) in a proper way
the requester has to follow a specific startup and shutdown procedure.

Figure 3-1 Basic workflow flow

Power OFF

closed

opened

busy

FAL_Open() FAL_Close()

 FAL_Init()

FAL_Execute(CMD)

where CMD =

READ_WORD,
WRITE_WORD,

BLANKCHECK_WORD,
IVERIFY_WORD,
ERASE_BLOCK

status = NOT busy

 OFF

ON

FAL_Handler()

3.3.2 Interface functions
The interface functions create the functional software interface of the library.
They are prototyped in the header file fdl.h.

Data Flash Access Library

R01US0034ED0110 23
User Manual

3.3.2.1 FAL_Init

Description
Initialization of all internal data.

C interface for CA78K0R compiler

fal_status_t __far FAL_Init(const __far fal_descriptor_t*
 descriptor_pstr);

C interface for IAR V1.xx compiler

__far_func fal_status_t FAL_Init(const __far fal_descriptor_t
 __far* descriptor_pstr);

C interface for IAR V2.xx compiler

__far_func fal_status_t FAL_Init(const fal_descriptor_t
 __far * descriptor_pstr);

Pre-condition
Internal high-speed oscillator is running.

Post-condition
Initialization is done.

Argument

Argument Type Description

descriptor_pstr fal_descriptor_t

Pointer to the descriptor (describing the
FDL configuration). The virtualization of
the data-flash address-room is done
based on that descriptor. The user can
use different descriptors to switch
between different FDL-pool
configurations.

Return types/values

Value Type Description

fal_status fal_status_t

FAL_ERR_CONFIGURATION
when descriptor data are not plausible.
FAL_OK when descriptor correct and
initialization successful.

Data Flash Access Library

R01US0034ED0110 24
User Manual

Usage

fal_status_t my_status;

my_status = FAL_Init(&fal_descriptor_str);

if(my_status == FAL_OK)
{
 /* FDL can be used /
}
else
{
 / error handler */
}

Data Flash Access Library

R01US0034ED0110 25
User Manual

3.3.2.2 FAL_Open

Description
This function must be used by the application to activate the data-flash. It turns
on the data flash clock if necessary.
Please note that this function includes the necessary delay for the data flash
clock setup. The data flash is operational and can be used right after function
exit.

C interface for CA78K0R compiler

void __far FAL_Open(void);

C interface for IAR V1.xx compiler

__far_func void FAL_Open(void);

C interface for IAR V2.xx compiler

__far_func void FAL_Open(void);

Pre-condition
FAL_Open() does not check any precondition, but FAL_Init(...) has to be
executed successfully already.

Post-condition
Data flash clock is switched on.

Argument

Argument Type Description
None

Return types/values

Value Type Description
None

Usage

FAL_Open();

Data Flash Access Library

R01US0034ED0110 26
User Manual

3.3.2.3 FAL_Close

Description
This function deactivates the data flash.

C interface for CA78K0R compiler

void __far FAL_Close(void);

C interface for IAR V1.xx compiler

__far_func void FAL_Close(void);

C interface for IAR V2.xx compiler

__far_func void FAL_Close(void);

Pre-condition
None

Post-condition
Data flash clock is switched off. In case of FAL and EEL usage both
FAL_Close and EEL_Close must be called for switching off the Data Flash.

Argument

Argument Type Description
None

Return types/values

Value Type Description
None

Usage

FAL_Close();

Data Flash Access Library

R01US0034ED0110 27
User Manual

3.3.2.4 FAL_Execute

Description
This is the main function of the FDL the application can use to initiate
execution of any command. Please refer to the chapter “Operation” for
detailed explanation of each command.

C interface for CA78K0R compiler

void __far FAL_Execute(__near fal_request_t* request_pstr);

C interface for IAR V1.xx compiler

__far_func void FAL_Execute(__near fal_request_t __near*
 request_pstr);

C interface for IAR V2.xx compiler

__far_func void FAL_Execute(fal_request_t __near *
 request_pstr);

Pre-condition
FAL_Init() executed successfully with status FAL_OK.
FAL_Open() executed already.

Post-condition
None

Argument

Argument Type Description
request_pstr fal_request_t This argument defines the command

which should be executed by FDL. It is a
request variable which is used for bi-
directional information exchange before
and during execution between FDL and
the application.

Return types/values

Value Type Description
None

Data Flash Access Library

R01US0034ED0110 28
User Manual

Usage

__near fal_request_t my_fal_WCMD_request_str;

my_fal_WCMD_request.data_u32 = 0x12345678;
my_fal_WCMD_request.index_u16 = 0x0123;
my_fal_WCMD_request.command_enu = FAL_CMD_WRITE_WORD;

/* command initiation */
do {
 FAL_Execute(&my_fal_WCMD_request);
 FAL_Handler(); /* proceed background process */
} while (my_fal_WCMD_request.status_enu == FAL_ERR_REJECTED);

/* command execution */
do {
 FAL_Handler();
} while (my_fal_WCMD_request.status_enu == FAL_BUSY);
if(my_fal_WCMD_request.status_enu != FAL_OK) error_handler();

Data Flash Access Library

R01US0034ED0110 29
User Manual

3.3.2.5 FAL_Handler

Description
This function is used by the application to proceed the execution of a
command running in the background. In case of the FDL the functionality of
the Handler is reduce to simple status polling of the running background
command. In case any background command was suspended in the past, the
FAL_Handler takes care for the resume-process.

C interface for CA78K0R compiler

void __far FAL_Handler(void);

C interface for IAR V1.xx compiler

__far_func void FAL_Handler(void);

C interface for IAR V2.xx compiler

__far_func void FAL_Handler(void);

Pre-condition
FAL_Init() executed successfully with status FAL_OK.
FAL_Open() executed already.

Post-condition
In case of finished command the status is written to the request structure.

Argument

Argument Type Description
None

Return types/values

Value Type Description
None

Data Flash Access Library

R01US0034ED0110 30
User Manual

Usage

/* infinite scheduler loop */
do {
 /* proceed potential command execution */
 FAL_Handler();

 /* 20ms time slize (potential FAL requester) */
 MyTask_A(20);

 /* 10ms time slize (potential FAL requester) */
 MyTask_B(10);

 /* 40ms time slize (potential FAL requester) */
 MyTask_C(40);

 /* 10ms time slize (potential FAL requester) */
 MyTask_D(10);
} while (true);

Data Flash Access Library

R01US0034ED0110 31
User Manual

3.3.2.6 FAL_GetVersionString

Description
This function provides the internal version information of the used library.

C interface for CA78K0R compiler

__far fal_u08* __far FAL_GetVersionString(void);

C interface for IAR V1.xx compiler

__far_func fal_u08 __far* FAL_GetVersionString(void);

C interface for IAR V2.xx compiler

__far_func fal_u08 __far * FAL_GetVersionString(void);

Pre-condition
None

Post-condition
None

Argument

Argument Type Description
None

Return types/values

Value Type Description
 fal_u08 __far* Pointer to the first character of a zero

terminated version string.

Usage (CA78K0R compiler)

__far const fal_u08 *my_version_string;

my_version_string = FAL_GetVersionString();

Usage (IAR V1.xx and V2.xx compiler)

fal_u08 __far* my_version_string;

my_version_string = FAL_GetVersionString();

Data Flash Access Library

R01US0034ED0110 32
User Manual

Description of the version string

For version control at runtime the developer can use this function to find the
starting character of the library version string (ASCII format).
The version string is a zero-terminated string constant that covers library-specific
information and is based on the following structure: NMMMMTTTCCCCCGVVV..V,
where:

• N : library type specifier (here ‘D’ for FDL)
• MMMM : series name of microcontroller (here ‘RL78’)
• TTT : type number (here ‘T01’)
• CCCCC : compiler information (4 or 5 characters)
• ‘Rxyy’ for CA78K0R compiler
• ‘Ixyy’ for IAR V1.xx compiler
• ‘Lxyyz’ for IAR V2.xx compiler

• G : all memory models (here ‘G’ for general)
• VVV..V : library version
• ‘Vxyy’ for release version x.yy
• ‘Exyyy’ for engineering version x.yyy

Examples:
The version string of the FDL V1.12 for the CA78K0R compiler is:
"DRL78T01R110GV112"
The version string of the FDL V1.12 for the IAR V1.xx compiler is:
"DRL78T01I120GV112"
The version string of the FDL V1.12 for the IAR V2.xx compiler is:
"DRL78T01L1000GV112"

Data Flash Access Library

R01US0034ED0110 33
User Manual

Chapter 4 Operation

4.1 Blank-check
The blank-check operation can be used to check if all bits within the addressed
pool-word are still “erased”. The user can use blank-check command freely.
The blank-check command is initiated by FAL_Execute() and must be
continued by FAL_Handler() as long as command is not finished (request-
status updated).

Status of FAL_CMD_BLANKCHECK_WORD command

Status Class Background and Handling

FAL_ERR_INITIALIZATION heavy

meaning FDL not initialized or
not opened

reason wrong handling on user
side

remedy Initialize and open FDL
before using it

FAL_ERR_PROTECTION heavy

meaning request cannot be
accepted

reason word index is outside
the corresponding pool

remedy set correct word index
and try again

FAL_ERR_REJECTED normal

meaning FDL driver cannot
accept the request

reason

FDL driver is busy with
an other word
command or block
command (in case of
same block).

remedy
Call FAL_Handler as
long as request isn’t
accepted.

FAL_ERR_BLANKCHECK normal

meaning specified flash-word is
not blank

reason
any bit in the flash
word addressed by
word index isn’t erased

remedy
nothing, free
interpretation at
requester side

FAL_BUSY normal

meaning request is being
processed

reason request checked and
accepted

remedy
nothing, call
FAL_Handler until
status changes

FAL_OK normal

meaning request was finished
regular

reason
no problems during
command execution
happens

remedy nothing

Table 4-1

Data Flash Access Library

R01US0034ED0110 34
User Manual

4.2 Internal verify
The internal verify operation can be used to check if all bits (0’s and 1’s) are
electronically correct written. Inconsistent and weak data caused by
asynchronous RESET can be detected by using the verify command. The user
can uses verify freely to check the quality of user data. The verify command is
initiated by FAL_Execute() and must be continued by FAL_Handler() as long
as command is not finished (request-status updated).

Status of FAL_CMD_IVERIFY_WORD command

Status Class Background and Handling

FAL_ERR_INITIALIZATION heavy

meaning FDL not initialized or
not opened

reason wrong handling on user
side

remedy Initialize and open FDL
before using it

FAL_ERR_PROTECTION heavy

meaning request cannot be
accepted

reason word index is outside
the corresponding pool

remedy set correct word index
and try again

FAL_ERR_REJECTED normal

meaning FDL driver cannot
accept the request

reason

FDL driver is busy with
an other word
command or block
command (in case of
same block).

remedy
Call FAL_Handler as
long as request isn’t
accepted.

FAL_ERR_VERIFY normal

meaning
specified flash-word in
pool could not be
verified

reason
any bit in the
addressed flash word
isn’t electrically correct

remedy
nothing, free
interpretation at
requester side

FAL_BUSY normal

meaning request is being
processed

reason request checked and
accepted

remedy
nothing, call
FAL_Handler until
status changes

FAL_OK normal

meaning request was finished
regular

reason
no problems during
command execution
happens

remedy nothing

Table 4-2

Data Flash Access Library

R01US0034ED0110 35
User Manual

4.3 Read
The read operation can be used to read the content of the addressed pool-
word. It is initiated and finished directly by FAL_Execute(). FAL_Handler() is
not needed in that case.

Status of FAL_CMD_READ_WORD command

Status Class Background and Handling

FAL_ERR_INITIALIZATION heavy

meaning FDL not initialized or
not opened

reason wrong handling on user
side

remedy Initialize and open FDL
before using it

FAL_ERR_PROTECTION heavy

meaning request cannot be
accepted

reason word index is outside
the corresponding pool

remedy set correct word index
and try again

FAL_ERR_REJECTED normal

meaning FDL driver cannot
accept the request

reason

FDL driver is busy with
an other word
command or block
command (in case of
same block).

remedy
Call FAL_Handler as
long as request isn’t
accepted.

FAL_OK normal

meaning request was finished
regular

reason
no problems during
command execution
happens

remedy nothing

4.4 Write
The write operation writes 32-bit data into passed word index. To protect
existing flash data against accidental overwrite 1-word blank-check is
executed in advance. After that the write-command is initiated. In case of
successfully finished writing the quality of data will be checked via internal
verify.

Status of FAL_CMD_WRITE_WORD command

Status Class Background and Handling

FAL_ERR_INITIALIZATION heavy

meaning FDL not initialized or
not opened

reason wrong handling on user
side

remedy Initialize and open FDL
before using it

Table 4-3

Table 4-4

Data Flash Access Library

R01US0034ED0110 36
User Manual

FAL_ERR_PROTECTION heavy

meaning request cannot be
accepted

reason word index is outside
the corresponding pool

remedy set correct word index
and try again

FAL_ERR_REJECTED normal

meaning FDL driver cannot
accept the request

reason

FDL driver is busy with
an other word
command or block
command (in case of
same block).

remedy
Call FAL_Handler as
long as request isn’t
accepted.

FAL_ERR_BLANKCHECK normal

meaning

specified flash-word in
pool is not blank, write
was not performed, the
content of flash-word
remains untouched

reason
overwriting of non-
erased flash words is
not allowed

remedy
erase the block before
writing again into this
block

FAL_ERR_WRITE normal

meaning

flash word addressed
by word index couldn’t
be written correctly
after performing the
max. number of retries

reason flash problems

remedy
erase the block and try
to write again into this
block

FAL_ERR_VERIFY normal

meaning
after writing the data
the flash word could
not be verified

reason flash problems

remedy
erase the block and try
to write again into this
block

FAL_BUSY normal

meaning request is being
processed

reason request checked and
accepted

remedy
nothing, call
FAL_Handler until
status changes

FAL_OK normal

meaning request was finished
regular

reason
no problems during
command execution
happens

remedy nothing

Data Flash Access Library

R01US0034ED0110 37
User Manual

4.5 Erase
The erase operation can be used to erase one block of the related pool. After
starting the erase-command the hardware is checking if the addressed block is
already blank to avoid unnecessary erase cycles. After that the erase-
command is initiated.

Status of FAL_CMD_ERASE_BLOCK command

Status Class Background and Handling

FAL_ERR_INITIALIZATION heavy

meaning FDL not initialized or
not opened

reason wrong handling on user
side

remedy Initialize and open FDL
before using it

FAL_ERR_PROTECTION heavy

meaning request cannot be
accepted

reason block number outside
the corresponding pool

remedy correct block number
and try again

FAL_ERR_REJECTED normal

meaning FDL driver cannot
accept the request

reason

FDL driver is busy with
an other word
command or block
command (in case of
same block).

remedy
Call FAL_Handler as
long as request isn’t
accepted.

FAL_ERR_ERASE fatal

meaning specified flash block
could not be erased

reason internal flash problems

remedy do not use this block
anymore

FAL_BUSY normal

meaning request is being
processed

reason request checked and
accepted

remedy
nothing, call
FAL_Handler until
status changes

FAL_OK normal

meaning request was finished
regular

reason
no problems during
command execution
happens

remedy nothing

Table 4-5

Data Flash Access Library

R01US0034ED0110 38
User Manual

Chapter 5 FDL usage by user application

5.1 First steps
It is very important to have theoretic background about the Data Flash and the
FDL in order to successfully implement the library into the user application.
Therefore it is important to read this user manual in advance especially
chapter “Cautions”.

5.2 Special considerations

5.2.1 Reset consistency
During the execution of FDL commands a reset could occur and the data could
be damaged. In such cases it should be considered whether to uses two
variables for same data and so on. In other words please consider such reset
scenarios to avoid invalid data. The EEL provided by Renesas Electronics is
designed to avoid read of invalid data cause by such reset scenarios. The
following chapter describes the applications where the EEL should be used.

5.2.2 EEL+FDL or FDL only
Depending on the security level of the application, write frequency of variables
and variables count it should be considered whether to uses the EEL+FDL or
the FDL only.

5.2.2.1 FDL only

By using the FDL only the application has to take care about all reset
scenarios and writing flow of different variables with different sizes.

Application scenarios
- Programming of initial or calibration data
- user specific EEPROM emulation

5.2.2.2 EEL+FDL

The duo of EEL and FDL allows the user to uses the EEL for high write
frequency of different variables with different sizes in a secure way and
additionally the USER pool is available for free usage.

Application scenarios
- Programming of initial or calibration data
- Large count of variables and high write frequency by using the EEL
- Secure data handling completely handled by EEL

Data Flash Access Library

R01US0034ED0110 39
User Manual

5.3 File structure

5.3.1 Library for IAR V1.xx Compiler
[root]
Release.txt Library release notes
support.txt Library support information

[root]\[IAR_1xx]\[FDL]\[lib] FDL library
fdl.h FDL interface definition
fdl_types.h FDL types definition
fdl.r87 Pre-compiled library

[root]\[IAR_1xx]\[FDL]\[Sample]\[C]
fdl_descriptor.c Descriptor calculation part
fdl_descriptor.h Pool configuration part
fdl_sample_linker_file.xcl Sample Linker file

5.3.2 Library for IAR V2.xx Compiler
[root]
Release.txt Library release notes
support.txt Library support information

[root]\[IAR_2xx]\[FDL]\[lib] FDL library
fdl.h FDL interface definition
fdl_types.h FDL types definition
fdl.a Pre-compiled library

[root]\[IAR_2xx]\[FDL]\[Sample]\[C]
fdl_descriptor.c Descriptor calculation part
fdl_descriptor.h Pool configuration part
fdl_sample_linker_file.icf Sample Linker file

Data Flash Access Library

R01US0034ED0110 40
User Manual

5.3.3 Library for CA78K0R Compiler
[root]
Release.txt Library release notes
support.txt Library support information

[root]\[CA78K0R_xxx]\[FDL]\[lib] FDL library
fdl.h FDL interface definition (Compiler)
fdl.inc FDL interface definition (Assembler)
fdl_types.h FDL types definition
fdl.lib Pre-compiled library

[root]\[CA78K0R_xxx]\[FDL]\[Sample]\[C]

Sample folder for C-Compiler projects
fdl_descriptor.c Descriptor calculation part
fdl_descriptor.h Pool configuration part
fdl_sample_linker_file.dr Sample Linker file

[root]\[CA78K0R_xxx]\[FDL]\[Sample]\[asm]
 Sample folder for Assembler projects
fdl_descriptor.asm Descriptor calculation part
fdl_descriptor.inc Pool configuration part
fdl_sample_linker_file.dr Sample Linker file

Data Flash Access Library

R01US0034ED0110 41
User Manual

5.4 Configuration

5.4.1 Linker sections
Following segments are defined by the library and must be configured via the
linker description file.

FAL_CODE Segment for library code.

Can be located anywhere in the code flash.

FAL_CNST Segment for library constants like descriptor.
 Can be located anywhere in the code flash.

FAL_DATA Segment for library data.
 Must be located inside the SADDR RAM

NOTE: FAL_CODE and FAL_CNST segments must be located anywhere in
 the Code Flash but inside the same 64 KByte page.

5.4.2 Descriptor configuration (partitioning of the data flash)
Before the FDL can be used the FDL pool and it’s partitioning has to be
configured first. The descriptor is defining the physical/virtual addresses and
parameter of the pool which will be automatically calculated by using the
FAL_POOL_SIZE and EEL_POOL_SIZE definition.
Because the physical starting address of the data flash is fixed by the
hardware the user can only determine the total size of the pool expressed in
blocks. Also the physical size of the pool is limited by the hardware and must
not be defined by the user. Also the physical size of a flash block is a
predefined constant determined by the used hardware.
The first configuration parameter is FAL_POOL_SIZE. The minimum value is 0
and means any access to the FDL-pool is closed. The maximum value is the
data flash size expressed in blocks.
The other configuration parameter is EEL_POOL_SIZE, the size of the EEL-
pool within the FDL-pool used exclusively for Renesas EEPROM emulation
library only. The minimum size of the EEL-pool is 0. This means the complete
FDL pool is occupied by the user for storing data. But also when a proprietary
EEPROM emulation is implemented by the user the complete pool has to be
reserved for it by specifying EEL_POOL_SIZE=0. The maximum size of the
EEL-pool is FAL_POOL_SIZE.
Notes:
- The USER pool and EEL pool are complementary. This means: the USER
pool is always the remaining none-EEL-pool (in other words
USER_POOL_SIZE = FAL_POOL_SIZE – EEL_POOL_SIZE).
- The virtual address 0 of the user-pool corresponds with the successor of the
last EEL-pool word.

Data Flash Access Library

R01US0034ED0110 42
User Manual

5.4.3 Request structure
Depending on the user application architecture more than one request variable
could be necessary. For example if an immediate write is necessary during
running erase. In such a case two request variables (one for write and one for
erase) are necessary. Please take care that each request variable is located
on an even address.

5.5 General flow

5.5.1 General flow: Initialization
The following figure illustrates the initialization flow.

Initialization flow

FAL_Init

FAL_Open

FAL_OK

status?

Error handler

FAL_ERR_CONFIGURATION

FAL_Close

Execute any FAL
commands

Figure 5-1

Data Flash Access Library

R01US0034ED0110 43
User Manual

5.5.2 General flow: commands except read
After initialization of the environment the application can uses the commands
provided by the library. The following figure illustrates the general flow of
command (except read command) execution.

 FAL command execution (except read command)

Error handler

fill request
CMD

FAL_Execute(CMD)

status?

FAL_Handler()

FAL_ERR_REJECTED

FAL_Handler()

FAL_BUSY

status?

FAL_OK

FAL_BUSY

OTHER

OTHER

................

................

In case the requested command is rejected the application has to call the
FAL_Handler() for finishing/suspend the background command and try to
execute the command again.

Figure 5-2

Data Flash Access Library

R01US0034ED0110 44
User Manual

5.5.3 General flow: read command
The difference between the read command and other commands
(erase/write/verify/blank-check) is that the read command will be completed
directly during FAL_Execute() function. That means no additionally
FAL_Handler() calls are required.

FAL read command execution

Error handler

fill request
CMD(read)

FAL_Execute(CMD)

status?

FAL_Handler()

FAL_ERR_REJECTED

FAL_OK

OTHER

................

................

In case the requested command is rejected the application has to call the
FAL_Handler() for finishing/suspend the background command and try to
execute the command again.

Figure 5-3

Data Flash Access Library

R01US0034ED0110 45
User Manual

5.6 Example of FDL used in operating-systems
The possibility of background operation and request-response structure of the
FDL allows the user to uses the FDL in an efficient way in operating systems.
Note: Please read the chapter “Cautions” carefully before using the FDL
in such operating systems.

The following figure illustrates a sample operating system where the FDL is
used for Data Flash access.

FDL used in an operating system

Task 1 (each 50ms)
if(req1.status != FAL_BUSY)

FAL_Execute(req1)

Task 2 (each 100ms)
if(req2.status != FAL_BUSY)

FAL_Execute(req2)

 Task 3 (emergency task)
 do{
 FAL_Execute(req_et)
 FAL_Handler();
 } while(req_et.status == rejected);
 while(req_et.status == FAL_BUSY)
 FAL_Handler()

IDLE Task (each 2ms)
FAL_Handler()

operating system

This sample operating system shows three different task types which are
described below.

Task 1 and Task 2
This task type is a requesting task like Task 1 and 2. Such tasks just start any
FDL command via the FAL_Execute function and assume that it will be
finished in the background via the IDLE task.

IDLE task
The IDLE task will be used by the application for continuing any running FAL
command. That means the FAL_Handler must be called inside of such a task.

Figure 5-4

Data Flash Access Library

R01US0034ED0110 46
User Manual

Emergency task
The difference between this task type and the requesting type (Task 1 and
Task 2) is that this task performs any FAL commands completely without
waiting in the background. Such task can be used in case of voltage drop
where important data must be saved before the device is off.

5.7 Example: Simple application
The following sample shows how to use each command in a simple way.

 extern __far const fal_descriptor_t fal_descriptor_str;
 fal_status_t my_fal_status_enu;
 __near fal_request_t request;

 /* initialization */
 my_fal_status_enu = FAL_Init(
 (__far fal_descriptor_t*)&fal_descriptor_str);

 if(my_fal_status_enu != FAL_OK) ErrorHandler();
 FAL_Open();

 /* erase block 0 */
 request.index_u16 = 0x0000;
 request.command_enu = FAL_CMD_ERASE_BLOCK;
 FAL_Execute(&request);
 while(request.status_enu == FAL_BUSY) FAL_Handler();
 if(request.status_enu != FAL_OK) ErrorHandler();

 /* write patter 0x12345678 into the widx = 0 */
 request.index_u16 = 0x0000;
 request.data_u32 = 0x12345678;
 request.command_enu = FAL_CMD_WRITE_WORD;
 FAL_Execute(&request);
 while(request.status_enu == FAL_BUSY) FAL_Handler();
 if(request.status_enu != FAL_OK) ErrorHandler();

 /* read value of widx = 0 */
 request.index_u16 = 0x0000;
 request.command_enu = FAL_CMD_READ_WORD;
 FAL_Execute(&request);
 if(request.status_enu != FAL_OK) ErrorHandler();

 /* check whether the written pattern is correct */
 if(request.data_u32 != 0x12345678) ErrorHandler();

 /* blank check widx = 0 */
 request.index_u16 = 0x0000;
 request.command_enu = FAL_CMD_BLANKCHECK_WORD;
 FAL_Execute(&request);
 while(request.status_enu == FAL_BUSY) FAL_Handler();
 if(request.status_enu != FAL_ERR_BLANKCHECK) ErrorHandler();

 /* verify widx = 0 */
 request.index_u16 = 0x0000;
 request.command_enu = FAL_CMD_IVERIFY_WORD;
 FAL_Execute(&request);
 while(request.status_enu == FAL_BUSY) FAL_Handler();
if(request.status_enu != FAL_OK) ErrorHandler();

FAL_Close();

Data Flash Access Library

R01US0034ED0110 47
User Manual

5.8 Example: Read/Write during background erase
The FDL allows background erase operation, therefore during that time read-
and write-access to data located in another block of the addressed pool is
possible. To be able to use foreground read/write operation a separate request
variable has to be declared for that purpose. Read and write commands do
always suspend the erase process running in the background. Exception is
when the word command tries to access the same block as the running erase
in background. In such a case the FAL_Handler() has to be called until the
running erase command is finished. Please refer to the detailed explanation of
command suspension to chapter “Suspension of block oriented commands
(erase)”.

fal_request_t my_BCMD_req, my_WCMD_req;
fal_u32 my_data_u32;

void erase_state_0(void)
{
 /* specify the BCMD parameter */
 my_BCMD_req.index_u16 = 4;
 my_BCMD_req.command_enu = FAL_CMD_ERASE_BLOCK;

 FAL_Execute(&my_BCMD_req);

 /* if erase-request accepted goto next state 1 */
 /* if erase-request rejected remain in state 0 */
 /* if erase-request error occurs goto error-state */

 if(my_BCMD_req.status_enu == FAL_BUSY;)
 next_state = erase_state_1;
 else
 {
 if (my_BCMD_req.status_enu != FAL_ERR_REJECTED)
 next_state = erase_state_err;
 }
}

/* block erase is running in background here */
void erase_state_1(void)
{
 /* if read during erase needed, read immediately */
 if(emergency_read==TRUE)
 {

 do {
 my_WCMD_req.index_u16 = 234;
 my_WCMD_req.command_enu = FAL_CMD_READ_WORD;
 FAL_Execute(&my_WCMD_req);

 FAL_Handler(); /* enforce eventually blocking command */

 } while((my_WCMD_req.status_enu==FAL_ERR_REJECTED));

 /* read-request accepted -> read the data directly */
 if (my_WCMD_req.status_enu==FAL_OK)
 my_data_u32 = my_WCMD_req.data_u32;
 else
 {
 /* in case of error, goto error-state */
 next_state = erase_state_err;
 }
 } /* ########### NEXT PAGE -----> ############### */

Data Flash Access Library

R01US0034ED0110 48
User Manual

 /* if write during erase needed, read immediately */
 if(emergency_write==TRUE)
 {
 do {
 my_data_u32 = 0x12345678;
 my_WCMD_req.data_u32 = my_data_u32;
 my_WCMD_req.index_u16 = 234;
 my_WCMD_req.command_enu = FAL_CMD_WRITE_WORD;
 FAL_Execute(&my_WCMD_req);

 FAL_Handler();/* enforce eventually blocking command */

 } while((my_WCMD_req.status_enu==FAL_ERR_REJECTED));

 /* enforce execution of the write-request */
 do {
 FAL_Handler();
 } while((my_WCMD_req.status_enu==FAL_BUSY));

 /* if error during write -> goto error-state */
 if (my_WCMD_req.status_enu!=FAL_OK)
 next_state = erase_state_err;
 }

 /* proceed the BCMD execution */
 FAL_Handler();

 /* erase-request finished -> goto state 2 */
 if(my_BCMD_req.status_enu==FAL_OK))
 next_state = erase_state_2;
 else
 {
 /* in case of error, goto error-state */
 next_state = erase_state_err;
 }
}

Data Flash Access Library

R01US0034ED0110 49
User Manual

Chapter 6 Characteristics

6.1 Resource consumption

Resource consumption

 IAR V1.xx
Compiler

IAR V2.xx
Compiler

CA78K0R
Compiler

Max. code size
(code flash) 1510 byte 1500 byte 1480 byte

Constants (code flash) 64 byte 64 byte 64 byte
Internal data
(SADDR RAM) 2 byte 2 byte 2 byte

Max. stack (RAM) 60 byte 60 byte 60 byte

All values are based on FDL version V1.12

6.2 Timings
In the following, certain timing characteristics of the FDL are specified. All
timing specifications are based on the following library version:
 FDL T01 version V1.12.
Please note that there might be deviations from the specified timings in case
you are using other library versions than the ones mentioned.

6.2.1 Maximum Function Execution Times
The maximum function execution times are listed in the following tables. These
timings can be seen as worst case durations of the specific Tiny FDL function
calls and therefore can aid the developer for time critical considerations, e.g.
when setting up the watchdog timer. Please note however, that the typical and
minimum function execution times can be much shorter.

Maximum function execution times (full speed mode)

Function Maximum function execution time

FAL_Init
(no command running) 1758/fclk

FAL_Init **1
(command running in background) 2092/fclk + 60µs

FAL_Open 83/fclk + 12µs

FAL_Close
(no command running) 42/fclk

FAL_Close **1
(command running in background) 388/fclk + 60µs

FAL_Execute 1259/fclk + 28µs

FAL_Handler 974/fclk + 15µs

FAL_GetVersionString 14/fclk

Note **1
It is not recommended to call FAL_Init or FAL_Close in case of any command
running in background.

Table 6-1

Table 6-2

Data Flash Access Library

R01US0034ED0110 50
User Manual

Maximum function execution times (wide voltage mode)

Function Maximum function execution time

FAL_Init
(no command running) 1758/fclk

FAL_Init **1
(command running in background) 2086/fclk + 114µs

FAL_Open 83/fclk + 12µs

FAL_Close
(no command running) 42/fclk

FAL_Close **1
(command running in background) 382/fclk + 114µs

FAL_Execute 1259/fclk + 40µs

FAL_Handler 974/fclk + 15µs

FAL_GetVersionString 14/fclk

Note **1
It is not recommended to call FAL_Init or FAL_Close in case of any command
running in background.

6.2.2 Command execution times
The command execution times are listed in the following tables. These timings
are divided into the typical timings, which will appear during the normal
operation, and the maximum timings for worst case considerations.

Command execution times (full speed mode)

Command Typical execution time Maximum execution time

erase 11597/fclk + 5800µs 282428/fclk + 264819µs

blank check 1257/fclk + 32µs 1952/fclk + 66µs

internal verify 1051/fclk + 39µs 1704/fclk + 75µs

write 3381/fclk + 240µs 6340/fclk + 1847µs

read 347/fclk 606/fclk + 23µs

Command execution times (wide voltage mode)

Command Typical execution time Maximum execution time

erase 10272/fclk + 7195µs 249108/fclk + 299308µs

blank check 1250/fclk + 67µs 1943/fclk + 120µs

internal verify 1015/fclk + 145µs 1661/fclk + 214µs

write 3325/fclk + 554µs 6108/fclk + 4125µs

read 347/fclk 606/fclk + 33µs

Table 6-3

Table 6-4

Table 6-5

Data Flash Access Library

R01US0034ED0110 51
User Manual

Chapter 7 Cautions

Following cautions must be considered before developing of an application.

• Library code and constants must be located completely in the same 64k
flash page.

• Initialization by FAL_Init must be performed before execution of
FAL_Open/FAL_Close/FAL_Handler/FAL_Execute functions.

• Do not read data flash directly (means without FAL) during command
execution of FAL

• Each request variable must be located from an even address

• Before executing any command, all members of the request variable must
be initialized. If there are any unused members in the request variable,
please set arbitrary values to these members.

• All functions are not re-entrant. That means don’t call FAL functions inside
the ISRs while any FAL function is already running.

• Task switches, context changes and synchronization between FDL
functions

All FDL functions depend on FDL global available information and are
able to modify this. In order to avoid synchronization problems, it is
necessary that at any time only one FDL function is executed. So, it is not
allowed to start an FDL function, then switch to another task context and
execute another FDL function while the last one has not finished.

Example of not allowed sequence:
- Task 1: Start an FDL operation with FDL_Execute
- Interrupt the function execution and switch to task 2, executing
FDL_Handler function.
- Return to task 1 and finish FDL_Execute function

• After execution of FAL_Close or FAL_Init function all requested/running
commands will be aborted and cannot be resumed. Please take care that
all running commands are finished before calling this functions.

• It is not possible to modify the Data Flash parallel to modification of the
Code Flash

• Suspension of word commands like read, write, verify, and blank-check is
not possible

• Internal high-speed oscillator must be started before using of the FDL.

• It is not allowed to locate any arguments and stack memory to address of
0xFFE20 and above.

• In case the application requires a frequency of less than 4MHz, the
following frequencies are allowed: 1MHz, 2MHz, 3MHz. It is not allowed
to use a frequency of e.g. 1.5MHz.

• In case the Data Transfer Controller(DTC) is used in parallel to the FDL,
do not locate RAM area for DTC to address 0xFFE20 and above

• Please check the restrictions of your target device described in the device
user’s manual in case of accessing the data flash via the FDL.

Data Flash Access Library

R01US0034ED0110 52
User Manual

• Additional cautions on using the FDL for IAR V2.xx.

• Library code and constants must be located completely in the same
32KB memory range.

• Each segment (FAL_DATA, FAL_CNST) must be located from an
even address.

• Do not align the members of any structure (by padding between
them) that is to be used in the argument of an FDL library function.
Refer to the fdl_types.h file for more information about the size of
each structure.

• If you wish to use a linker configuration file included of the IAR V2.2x
compiler (instead of a sample linker configuration file in the flash
library package), specify flash libraries sections with special names
for Renesas objects (R_TEXTF_UNIT64KP, R_SBSS) in the linker
configuration file.

e.g.)
ro section FAL_CODE -> ro code R_TEXTF_UNIT64KP section FAL_CODE
rw section FAL_DATA -> rw data R_SBSS section FAL_DATA

Note: Section FAL_CNST does not require special names for Renesas
objects since this section is defined in the sample source file
(fdl_descriptor.c). Simply declare this flash library section in a linker
configuration file as if it is normal section.

e.g.)
ro section FAL_CNST

Data Flash Access Library

R01US0034ED0110 53
User Manual

Revision History

Chapter Page Description
All Initial document

3.2.5

3.3.2.2
6.2
7

21-22

25
45-46
47

Rev. 1.01:
Adding description of fal_descriptor_t element
wide_voltage_mode_u08
Extending description of FAL_Open Update of execution
times for functions and commands
List of cautions extended

All

All
5.3.2
6.1

6.2.2
7

All

All
39
49

50
51

Rev. 1.10:
“Renesas Version” and “Renesas Compiler” unified to
“CA78K0R Compiler”
Adding description of IAR V2.xx compiler API
Adding file structure for IAR V2.xx compiler
Resource consumption updated and added information
of the IAR V2.xx compiler
Corrected the Table 6-5
List of cautions extended

Data Flash Access Library

R01US0034ED0110 54
User Manual

Data Flash Access Library

	Table of Contents
	Chapter 1 Introduction
	1.1 Components of the EEPROM Emulation System
	1.1.1 Physical flash layer
	1.1.2 Flash access layer
	1.1.3 EEPROM access layer
	1.1.4 Application layer

	1.2 Naming Conventions

	Chapter 2 Architecture
	2.1 Data Flash fragmentation
	2.1.1 FDL pool
	2.1.2 EEL pool
	2.1.3 USER pool

	2.2 Address virtualization
	2.3 Access right supervision
	2.4 Request-Response architecture
	2.5 Background operation
	2.5.1 Background operation (Erase)
	2.5.2 Background operation (write)
	2.5.3 Background operation (blank-check/verify)
	2.5.4 No background operation for read command

	2.6 Suspension of block oriented commands (erase)

	Chapter 3 User interface (API)
	3.1 Run-time configuration
	3.2 Data types
	3.2.1 Library specific simple type definitions
	3.2.2 Enumeration type “fal_command_t”
	3.2.3 Enumeration type “ fal_status_t”
	3.2.4 Structured type “fal_request_t”
	3.2.5 Structured type “fal_descriptor_t”

	3.3 Functions
	3.3.1 Basic functional workflow
	3.3.2 Interface functions
	3.3.2.1 FAL_Init
	3.3.2.2 FAL_Open
	3.3.2.3 FAL_Close
	3.3.2.4 FAL_Execute
	3.3.2.5 FAL_Handler
	3.3.2.6 FAL_GetVersionString

	Chapter 4 Operation
	4.1 Blank-check
	4.2 Internal verify
	4.3 Read
	4.4 Write
	4.5 Erase

	Chapter 5 FDL usage by user application
	5.1 First steps
	5.2 Special considerations
	5.2.1 Reset consistency
	5.2.2 EEL+FDL or FDL only
	5.2.2.1 FDL only
	5.2.2.2 EEL+FDL

	5.3 File structure
	5.3.1 Library for IAR V1.xx Compiler
	5.3.2 Library for IAR V2.xx Compiler
	5.3.3 Library for CA78K0R Compiler

	5.4 Configuration
	5.4.1 Linker sections
	5.4.2 Descriptor configuration (partitioning of the data flash)
	5.4.3 Request structure

	5.5 General flow
	5.5.1 General flow: Initialization
	5.5.2 General flow: commands except read
	5.5.3 General flow: read command

	5.6 Example of FDL used in operating-systems
	5.7 Example: Simple application
	5.8 Example: Read/Write during background erase

	Chapter 6 Characteristics
	6.1 Resource consumption
	6.2 Timings
	6.2.1 Maximum Function Execution Times
	6.2.2 Command execution times

	Chapter 7 Cautions

