To our customers,

Old Company Name in Catalogs and Other Documents

On April 1%, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1%, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

LENESANS

10.

11.

12.

Notice

All information included in this document is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sal es office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

Y ou should not ater, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. Y ou are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. 'Y ou should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific’. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “ Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as“ Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is“ Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home el ectronic appliances, machine tools; persona electronic equipment; and industria robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific™: Aircraft; agrospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or heathcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

Y ou should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especialy with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics’ as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

To all our customers

Regarding the change of names mentioned in the document, such as Hitachi
Electric and Hitachi XX, to Renesas Technology Corp.

The semiconductor operations of Mitsubishi Electric and Hitachi were transferred to Renesas
Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog
and discrete devices, and memory chips other than DRAMs (flash memory, SRAMSs etc.)
Accordingly, although Hitachi, Hitachi, Ltd., Hitachi Semiconductors, and other Hitachi brand

names are mentioned in the document, these names have in fact all been changed to Renesas
Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and
corporate statement, no changes whatsoever have been made to the contents of the document, anc
these changes do not constitute any alteration to the contents of the document itself.

Renesas Technology Home Page: http://www.renesas.com

Renesas Technology Corp.
Customer Support Dept.
April 1, 2003

1RENESAS

RenesasTechnology Corp.

LENESAS

-
»
9
ﬁ\
7
<
Q
-
c
)

Debugging Interface

User’'s Manual HS6400DIIWA4SE

Renesas Electronics

Www.renesas.com

IMPORTANT INFORMATION
READ FIRST

READ this user's manual before using the Hitachi Debugging Interface (hereafter,
called HDI).

o KEEP the user's manual handy for future reference.

Do not attempt to use the system until you fully understand its mechanism.

Target User of the System:

This system should only be used by those who have carefully read and thoroughly
understood the information and restrictions contained in the user's manual. Do not attempt to
use the system until you fully understand its mechanism.

It is highly recommended that first-time users be instructed by users that are well versed in
the operation of the system.
Purpose of HDI:

This system is a software and hardware development tool for systems employing the
Hitachi microcomputer. This system must only be used for the above purpose.
Improvement Policy:

Hitachi, Ltd. (including its subsidiaries, hereafter collectively referred to as Hitachi)
pursues a policy of continuing improvement in design, performance, and safety of the system.
Hitachi reserves the right to change, wholly or partially, the specifications, design, user's
manual, and other documentation at any time without notice.

Figures:

Some figures in this user's manual may show items different from your actual system.

Other Important Things to Keep in Mind:

1. Examples described herein are meant merely to indicate the characteristics and
performance of Hitachi's semiconductor products. Hitachi assumes no responsibility for
any intellectual property claims or other problems that may result from applications based
on the examples described herein.

2. No license is granted by implication or otherwise under any patents or other rights of any
third party or Hitachi.

All Rights Reserved:

This user's manual and this system are copyrighted and all rights are reserved by Hitachi.
No part of this user's manual, all or part, may be reproduced or duplicated in any form, in
hard-copy or machine-readable form, by any means available without Hitachi's prior written
consent.

Trademarks:

Microsoft®, Windows®*and WindowsNT® are registered trademarks of Microsoft Corporation
in the United States and/or other countries.

IBM PC is the name of a computer administered by International Business Machines
Corporation.

ELF/DWAREF is the name of an object format developed by the Tool Interface Standards
Committee.

All products or brand names used in the manual are trademarks or registered trademarks of
their respective companies.

Preface
About this Manual

This manual explains the use of the Hitachi Debugging Interface
(HDI) for Hitachi microcomputer development tools. The following
section will provide a brief Introduction to the debugging interface
and list its key features.

The following sections Preparing to Debug, Looking at Your
Program, Working with Memory, Executing Your Program, Stopping
Your Program, Looking at Variables, Overlay Function, Selecting
Functions, and Configuring the User Interface, provide a “how to”
guide to using HDI for debugging.

The next two sections Menus and Windows give in depth reference
information about the operation and facilities available from these
respective areas.

This manual assumes that the HDI is used on the English version of
Microsoft® Windows®“95 operating system running on the IBM PC.

The separate Debugging Platform User’s Manual will typically provide:

A Setting up section that informs you about installing the debugging
platform's hardware and software on your PC and verifying that all
the components have been correctly installed.

A Tutorial section that takes you through the available features using
some sample code.

A Reference section that describes the user interface that is specific to
that debugging platform; for example, editing breakpoints,
configuring the trace acquisition, etc.

Assumptions

It is assumed that the reader has a competent knowledge of the C/C++
programming language, assembly-language mnemonics for the
processor being debugged and is experienced in using Microsoft"
Windows" applications on PC compatible computers.

Hitachi Debugging Interface User Manual

Document Conventions

This manual uses the following typographic conventions:

Table 1 Typographic Conventions

CONVENTION

MEANING

[Menu->Menu Option]

Bold text with ‘->’ is used to indicate menul
options (for example, [File->Save As...]).

FILENAME.C

Uppercase names are used to indicate file
names.

“enter this string”

Used to indicate text that must be entered
(excluding the “” quotes).

(The “how to” symbol)

Key+Key Used to indicate required key presses. For
example, Ctrl+N means press the Ctrl key
and then, while holding the Ctrl key down,
press the N key.

[2 When this symbol is used, it is always

located in the left-hand margin. It indicates
that the text to its immediate right is
describing “how to” do something.

Contents
1. INTRODUCTION i
1.1 KEY FEATURES....cooi ittt ettt ettt et eaa e e e e s e et e bt seb e e na e e st e b e e nesat s bt she saa e et sae e nan e e eenre e 1
2, SYSTEM OVERVIEW 3
2.1 USERINTERFACEooooeiiteitietiete ittt eivereetcetea e e eten et et b e st s sa e sesaeeba st st saese s b e s b st s nn e su s enba e e ranen s 3
2.2 DATAENTRY ..ottt ettt bbbt s r s ee et s a it et se e 3
2.2 OPBIAIOIS. ... e 3
2.2.2 DAt@ FOIMALS ...ttt e 3
2.2.3 PIECISION ...ttt e 4
2.2.4 EXPresSsion EXAMPIBScocoooiviiiiiiiiie e e 4
2.2.5 SYMDOI FOIMAL..........ccooiiiiieieiee et ettt 4
2.2.6 SYmMDOI EXAIMPIES..........c.ocoioiiieiiieiiieit ettt 4
2.3 HELP ettt ettt ae Rt a e bbbttt n e e et 5
2.3.1 Context SENSIIVE HEIDoccoovvviiiiiiieiet e e 5
3. PREPARING TO DEBUG 7
3.1 COMPILING FOR DEBUGcoctiietiiteeietereete ittt sttt ve et eneas s neneeas e enseae s ies s esste s tens s sens et s b ans 7
3.2 SELECTING A DEBUGGING PLATFORM......oitereuiititenieeiterneettenerneseseenmeessbestesssassesesssssnasssensssassasessanenses 7
3.3 CONFIGURING THE DEBUGGING PLATFORM.......ccueoveririireeettaeiriteriemsentaneasesesersaasanenenmanssssssosssnanansansanes 8
B30T SEUUP ... e 8
B.3.2 MAPPING ...ttt et s 8
B.3.3 SHAMUS ... et 11
3.4 DOWNLOADING A PROGRAM.........c.cotiiitiieiietesietetetetsteseeesesateeteresaesenaesmsanetesesnseneaeeneeenssasissseinsseseaseas 11
4, LOOKING AT YOUR PROGRAM 15
4.1 VIEWING THE CODEcovitiiiiiiiietiiecetesieiests bt ettt esestssaee e seeseee b eseesssbasbens st cesssrassaesssse b e se b s tananenns 15
417 VIieWing SOUICE COUEccooveiieeieeeieee ettt 15
4.1.2 Viewing Assembly-Language COUE.............c.coviiiiiiiiii et 16
4.1.3 Modifying Assembly-Language COE.............. oot 17
4.2 LOOKING AT LABELScocuiivititeeieeeteeeeieteeeee bt s s e s e st b e st s e e be et et s ettt as s saess bt ebeas i 17
427 LISHNG LADEIS ... s 18
4.2.2 Adding a Label from a Source or Disassembly Window.......................ccooiiiiiiiiininn, 18
4.3 LOOKING AT A SPECIFIC ADDRESSc.ciueuieieteieniisitetesensesneeinsesesasamensassssssseesiassesassesessesse b s sesesse s 19
4.3.1 Looking at the Current Program Counter AJAress ... 20
A4 FINDING TEXT ..oioiiiiiiieeeceiete ettt et ettt et saese st e s b s st e b et es e e st oo e e s s ab s shea b e e et e s e ae s e s et e bbb eb e s e 20
5. WORKING WITH MEMORY rterteserasensanentreesassstssessersassnsas 21
5.1 LOOKING AT AN AREA OF MEMORYcocoriiiiieieeierierenteneeeteeetemestesenaeseeseeasene e seaeitsassesss s snesnsieaneaeas 21
5.1.1 Displaying Memory @S ASCI!coo i 22
5.1.2 Displaying MemoOry @s BYIESooii i i 22
5.1.3 Displaying Memory @S WOIGS ...t 22
5.1.4 Displaying Memory a@s LONG WOITS............c.coiiiiiiiiiiiii e 22
5.1.5 Displaying Memory as Single-Precision Floating POINt...............ccc...ooii 22
5.1.6 Displaying Memory as Double-Precision Floating Point.............................. 23
5.1.7 Looking at a Different Area of MEMOIY.............ccccoiiiiiiiiii i 23
5.2 MODIFYING MEMORY CONTENTScoooiitiiitiiiiteieieneerteeteeeesceiesesneneenemnens s saee st aanss s sias b b asan s 23
520 QUICK EQE ..o et 24
B.2.2 FUINEQIt ... ettt et 24
5.2.3 Selecting @ Memory RanGe..............cco oot 24
5.3 FINDING AVALUE INIMEMORYoooiiiiiiiiiiriieniitesiestes et es et es et b b s 25
54 FILLING AN AREA OF MEMORY WITH A VALUEccuiiiiiiiieiiieierttereec ettt s 25
541 FilliNG @ RANGE ..o e 26
5.5 COPYING AN AREA OF MEMORYcooiiiiiiieieirierisesesessrsieiesesnesnesesesnesmese s oo as et ssesessb e 26

56 TESTING AN AREA OF MEMORYoooiiiiiiiiieiie ettt ettt sre e te b s sae e e sen e 27

iv Hitachi Debugging Interface User Manual
5.7 SAVING AN AREA OF IMEMORYcoiiiiiiiietieniieieieeseeeses et nessae st et s et see e sne e eesssrsrnsnesans 28
5.8 LOADING AN AREA OF MEMORYocoiiiiiieiiiiriiesiieeeseee et st stene et ecr s enee e n s enesssbesssasaeseneaes 28
5.9 VERIFYING AN AREA OF MEMORYccoiiiiiiitieieiieicesisesesesseseasessensestetenes e seneeseenenesneseanesnssaesesnesenes 29
6. EXECUTING YOUR PROGRAM..........cocrcirinnsissnsinsssnsncsnssssnisessesss 31
6.1 RUNNING FROM RESETocoiiiiiieiistes e eeiesieerest et ete st et seessene st shsebs e sna sastse e cneensasssereensarenses 31
6.2 CONTINUING RUN ..ottt ettt ettt sttt e sttt sttt s e 31
6.3 RUNNING TO THE CURSOR.......cooueiiitiiietieietestetistsesesasesessescesseesaeesbes s besesesesbaesemeneseses e saesissnsassnsnnasassaes 32
6.4 RUNNING TO SEVERAL POINTS ...ttt et sttt st s s 32
B.5 SINGLE STEP....oi ottt ettt e ettt et e st eb et b e se ettt ekt e b e s b st e r e st st e e b e et 33
6.5.1 Stepping INt0 @ FUNCHON.c.ccooieieieie e, 33
6.5.2 Stepping Over a FUNCHOn Call.............cccovviiiiiiiiiiie e 33
6.6 STEPPING OQUT OF A FIUNCTION......eoiiiiiieieiietenie e tenit e eeeae ettt sb et s est st ane s aesaene s 33
B.7 IMULTIPLE STEPS....octiieiittieeiteiesiesieeteerte e eeesteetesbe s s s b e st ete e r e anes et sobesassb et s e s e s s sasensesseanssanensansesansnannes 34
7. STOPPING YOUR PROGRAM . 35
7.1 HALTING EXECUTION. ...ooiiiiiiieetecteti e er ettt ettt e e naeer et e s et ss st e sessmse se s mssnnssannenaenenas 35
7.2 STANDARD BREAKPOINTS (PC BREAKPOINTS) ...ccueiutiiiiieteiireeeniierceisir et st sen s sresnssnnssaeneanesnnns 35
7.2.1 Cycling Through Standard BreaKpoints ... 36
7.2.2 Clearing Standard Breakpoints..............c.cocovcrivieiiciiiiciici et 37
7.3 THE BREAKPOINTS WINDOWc.oiuioieuiirietirniiieiesesetsat e senseae s sesae e e esesanesesssssssessansanseseesasssesnens 37
7.3.1 AdAiNG @ Bre@KDOINL............cooveiiiiiieieeeee et 37
7.3.2 Modifying @ Bre@kpOintccccoooiiviiiiieieee ettt 38
7.3.3 Deleting @ Bre@KpPOINt...............couei ittt 38
7.3.4 Deleting All Bre@KDOINESccoiueeiiiiinnee et 38
7.4 DISABLING BREAKPOINTSocoovitiiiteuictenieteteseieeesessesencesesesesssissese e e s esss s sass et sasa e st b s teneenen s s aese s 39
7.4.1 Disabling @ BreaKDOINL.............c.covoviiiiiieet et s 39
7.4.2 Enabling @ Bre@KpOint...............cccoouiiuiiieieeiett e e 39
7.5 TEMPORARY BREAKPOINTSoviitiiieiieitesieeeeieeseeeestestestaeteseeestesaeessesosiessassrsssscreeassns et eneeneesnnaeeanas 40
76 HARDWARE BREAKPOINTS{EVENT)...c.eetiiiiiierieiereemeetescece et s cc ettt sb et 41
8. LOOKING AT VARIABLES. ... crerecntisisniossissssisssisssesassiniessisssssssrsmesssessasssssssssssssssssssssssssassesses 43
8.1 TOOLTIP WATCH ..ottt ettt ettt s s e a e e en s e e n s e resae s e ese et ba b e 43
8.2 INSTANT WATCH ..ottt ere i eeee st ettt ettt e s et et st m ek e s a b sa s et e m s ae e e b s sat e aeareenbnanassessen 43
8.3 USING WATCH ITEMSottt ettt sttt ettt s n e sbe b s st e s se et 44
831 AdAING @ WALICH ... e 44
8.32 EXPanding @ WALCHc..cooiiiiiiiiieeeeet et e 46
8.3.3 Modifying Radix for Watch Item DiSplay ... 46
8.3.4 Changing a Watch Item’s ValUE..............ccccccoiiiiiiiiiic e 46
8.3.5 Deleting @ WALCHc..oooiiiteeee e 47
8.4 LOOKING AT LOCAL VARIABLESocviuiitiaririireertinssrestetesen st nessesae et ea e naeseessesseas s asseneessaseseasens 47
8.5 LOOKING AT REGISTERScuiiieieeiettettientaseetereeseestetsteestaese st et sesasse e e e e smeere e e s s ean e e s e nbensessanees 48
8.5.1 EXpanding @ Bit REGISIENcoouiieiiieee ettt 49
8.5.2 Modifying ReQiSter COMIBNES.c.ccviieriieiiet et 49
8.5.3 Using REGISIOr COMEONEScooviieeeieeee et 51
8.6 LOOKING AT IO . oottt et e b st b et sa e er e as et an b aaeas 51
8.6.1 Opening an I/O Registers WINQOW.................ccciiiiiiiiiii e 51
8.6.2 Expanding an I/O ReqiSter DiSPIAYcccocw oot 52
8.6.3 Modifying I/O ReGISIEr CONENEScoiiivieiie et 53
9. OVERLAY FUNCTION......ooerretrereeeessessssesssnesssesssssssstasssessassssssssessssssisesmansssssesessasessssssnsssssssanssssases 55
0.1 DISPLAYING SECTION GROUP ..ottt eiete et esie ettt et etese st sa s s s en s st e et ane s nass s 55
9.2 SETTING SECTION GROUP.........ocuiiiiitieteieeieeieiestestste s et areare s et esieeee e eas oo a s s et e e n et anseseebe st eber e 56
10. SELECTING FUNCTIONS.........oicrieetirerrecertrasesessessstssesssssnssssrsnssessssersenssassssessssssssesssssassssssssssssssnsaess 57
10.1 DISPLAYING FUNCTIONS ..o iiiitiiieeieiite ettt et tete sttt et ene sttt eme b et assassae s an s 57
10.2 SPECIFYING FUNCTIONS ..ottt ettt ettt sttt en e 58

10.2.1 SeleCHNG @ FUNCHON ...ttt 58

1.

12,

10.2.2 Deleting @ FUNCHION..............coooiiiieit et
10.2.3 Setting @ FUNCHONccocooeiieiiet e
CONFIGURING THE USER INTERFACE...

111 ARRANGING WINDOWS ...c.ooiiiititteeieitieie et e ettt st e ree bttt sbaesassessmt s siessaesaseaesaeeasnresaness s saessassaansnnanea
1111 Minimizing WINGOWScocooiiiiiiiiieiciei et
11.1.2 AITANGING ICONS ..ot
1113 TiliNG WINUOWS ...t
11.1.4 Cascading WINOWS............c..cueiiriiie it

11.2 LOCATING CURRENTLY OPEN WINDOWS.......coveriiieieeniesieeneetitet e sissstesnsesessaesnsnaesas s saenasnssbasseeeas
11.2.1 Locating the Next WINndOw.............c.cccooiiiiiiiii et
11.2.2 Locating @ Specific WINAOWcccccoiimiiiiiiiii it

11.3 ENABLING/DISABLING THE STATUS BARcooiiitiiieieeiieieie sttt st srcnsene e

11.4 CUSTOMIZING THE TOOLBARcviuieienirtieietiriretesessetsaesstestonesnasssmsaeesbessansasseses e aesesssbe s ebs s te e seneene
11.4.1 OVErall ADPEAIAINCE.............ceooiieieiieee e e
11.4.2 Customizing Individual TOOIDAIS.........c...ccoccciiiiiiiiiiiiiiiei i
17.4.3 BUHON CAEQOIIBS...........ocuveeiieeeitieee ettt et
11.4.4 Adding @ Button t0 @ TOOIDAN...............ccccciiiiiiiiiiiiicee e
11.4.5 Positioning @ Button in @ TOOIDAF ..o
11.4.6 Removing a Button from @ TOOIDAr ..o

11.5 CUSTOMIZING THE FONTS ..ottt eteie ettt sttt sttt et e s s siesa s s an st nan et st b et b s

11.6 CUSTOMIZING THE FILE FILTERSoiititiieie ettt sttt sae s shs et sas s ebs s

11.7 SAVING A SESSION.....coiiiiiiieiitettiteeiesteteesesesaestesesse st st eeesesaeas e aeese e s s ass e s s eae s seas s b e b e s sb e s b e s st be e

11.8 LOADING A SESSION ...ooeiiitieeieteeeeeteeiteibeee e eeeetesee et ebeest s b e e eeesat st et e s e s bt s s beeae s e aaeeaeesn b s ass 2ot e mees et et

11.9 SETTING HDI OPTIONS......oociotietietteeieeeeeeeeeert et esa et et e st e e sseet s se et esssanae sarenesassa s rsarssae e e nnesnasbasnanans

11.10 SETTING THE DEFAULT INPUT RADIX.......coiiieiriiieriireieicrictenreseeeese s nmevesne s
MENUS

T2.1 FILE oottt et et e e aeeae et eae ek et s eae et ket e e e a bR oo R e s h bR SR s b bbb
T2.0.0 INBW SESSION... .ottt e ettt
12,172 LOBA SOSSION......c.oooeeeeeee e
T2.0.3 SV SOSSION......c.ooeoeeeeeee et
1214 SAVE SBSSION AS.....oo oo
12.1.5 LOAU PrOGIaAM... ..cooooiiot ettt ekt
F2.9.6 INHHANZO. ... e
T2.0.7 EXIt oo e s

122 DI ettt etttk n s it b e a R et e e AR S b R s eb etk e b
T2.2.0 UL oo e e et s
F2.2.2 CODY ..o oo e
F2.2.3 PASIB....oo oo
T2.2.4 FUNO. oo oo
T2.2.5 EVAIUALE.o e e

T2.8 VIEW oottt et et e et st e e s et e s s e ae s e a et e s e b e bR st e e d bR R s bbbt
1237 BroaKPOINESc.ocooioeeeiee e
1232 COMMANA LING ...t
12.3.3 DISASSEMDIYo
T2.3: 4 O AT ... e
F2.83.5 L@DEIS ..o
F2.3.6 LOCAIS ..o e
1237 MBIMOIY ... oo
12.3.8 Performance ANAIYSISccccoooiiiiiieie e
T2.3.9 REQISIBIS ..o
F2.3.00 SOUICE... oo ettt
T2.3.0T SEAHUS. ..o e
F2.3.02 TTACEC.......o oo e e
T2.3.183 WWALICH ..o e

P28 RUN oo ettt et et e e e e e e e et e ettt s e bttt et e E e s
1247 RESEECPUo e

vi Hitachi Debugging Interface User Manual

T2.4.2 GO oo 79
T2.4.3 RESOE GO ..o 79
T2.4.:4 GO TO CUISON ...ttt ettt 79
1245 SOEPC TO CUISO ...ttt e 79
T2.4.6 RUDN... oo ettt 80
T2.8.7 SEED IN oo e 80
T2.4.8 SEEP OVEN ..ottt 80
T2.8.9 SEED QUL ...t e 80
F2.4.70 SEOP... ..o 80
T2.8.97 HaAM.......o e e 80
125 IMEMORY w...ooeeiiietcte ettt e te ettt et et st s eat et etesees ekt e e e ae e etk e eh e e ek e e e et eteen et eae e n et an e ena 80
T2.5.7 ROITES ...t 80
T2.5.2 LOGQ......... oot 81
T2.5.3 SAVB... oo et 81
T2.5.4 VBIIIY ... oo 81
F2.5.5 TOSh .o 81
T2.5.6 Flllco oo et 81
T2.5.7 COPY . oo 81
T2.5.8 COMIPAIE... ...ocoioiiieieeteet etk bbbt &2
12.5.9 CONFIGUIE MAPD.........coooioieieiiiee e 82
12.5.10 CONfIGUIE OVEIIAY ..o 82
128 SETUP ...ttt ettt ettt et e e et ettt n st et e st et et e s et e s e st e b et e s e e a e R ee b e et es et st 82
T2.6.7 SHAUS BaA& ... e 82
T2.6.2 OPLIONS.cooviiiieieeeeee ettt 82
T2.6.3 RAUIX. ...t 82
T2.6.4 CUSIOIMUZE ...ttt ettt et 83
12.6.5 CONBIQUIE PIATOIITI.coooeoi et 83
127 WWINDOWooieveieieceeeeeeeeeee et etes et eaestese s e e sss s eteseesesese s e sessab et e ee s s arasabestabeaesnenesesesaramsr st anesastasescans s e 83
T2.7. 1 CASCAUC ...ttt e 83
F2.7.2 THO et 83
12.7.3 AITANGE ICOMS ... 83
T2.7.4 CIOSE All ..o et 84
D28 HELP ..ottt oot eb et et ae et ee e be bt e R e ea et b s ekttt b et en et eaensanas 84
T2.8.1 IIUBX oo 84
12,82 USING HEID ..o e 84
12.8.3 SEArCH fOr HEID ON........ooviiiieiieioe e 84
1284 ADOUL HDI. ..o 84
13. WINDOWS eteerestsaesararenesasasaresnasens 85
13,1 BREAKPOINTS. ..ottt et eteeeteteeteeeeaeeae e s en et esbetsese et sssebesse st eseseesseseebe s e ee s et eseateee s e e sesraneneeneaneaseanasssens 85
T34.T AU . e e e, 85
131,22 B e 85
1393 DBIBIG ... 85
13,94 DOIBIE Al 86
13.1.5 DiSADIB/ENADIE ... 86
1376 GO TO SOUICE ...ttt e 86
13.2 COMMAND LINE ...t ettt ettt ettt ettt ekt resaeemae s s b e sansee e em e ereas et e areene s ben s ben 86
1321 RUNBALCH FilB.......coooooeeeeee et 87
13.2.2 PUY oot 87
13.2.3 SEELOG FllB... ..o e 87
1324 LOGQUNG. ... oo e e 87
13,3 DISASSEMBLY ..ottt eeeeteeeeteeeeteee e eaeaae s eestetseseeseeses s s essatsesees e e eh e bt ee bt en s st e et s e 87
1337 COPY oo 89
13.3.2 SO AGUIESS.o 89
13.3.3 GO TO CUISON ...ttt 89
1334 SOEPC HEIC. ...t 89
13.3.5 InStant WaALCh.o e e 89

1336 AdDWALCH ... e e 89

Vii

13.4 IO REGISTERS......oitictiieteeeteeieeette ettt e ettt ee e et e essesetesee s et e atsssaaseeaeeeeaenseemeeemee e s e et e e smeeebeeabaesmeesrecenaannns 90
T34 COPY oottt et 90
D342 EQiticoooeoeeeeeeeeeeeeeeeee e et 90
13.4.3 EXPANA/COHAPDSE.............oeeeeeeeeeeeee et 90

1305 LABELS ..ottt ettt ettt s et et e te bt et re e Re s ae ekt et b s et et ebe e r e n e 91
T3.5.7 AU oo et s 91
TB.5.2 Bt oo e e s 92
TB.5.3 FiN. oo et 93
T84 DEIBLE ... 93
D355 DBIBIE Al e 93
TB5.6 LOAU. ... et 94
T3 B.7 SAVE....oooeeeeeee ettt e 95
T3.0.8 SAVE AS. .ottt 95

3.8 LOCALS ..ottt ettt et et ss et et et et eb et sea ettt ket e st e et etk e ettt nt et e e 95
TB.6.T COPY oot s 96
DB.6.2 B VAIUC. ... e 96
T3.6.3 RAUIK ..ottt et 96

13.7 MEMORY IMAPPING.......cvoititierteeeeeteeeteeeteteneeseettassessasessaeseseeasesteaaeseaatesseseaeteaabeanteassenesatennesaeenesaenesosas 96
TB.7. 0 AU .. ettt 96
13.7.2 EQit e e e e 97
TB.7.3 RSB ... ettt 97
TBT7.8 HEID. ...t 97

D3.8 IMIEMORY ...ttt ettt et ettt e bt e e e beeeteeatesseese e ae s e s eaeeeaeem e e s ot amaeematemte e aaeemneamte e anesanesarenneneas 97
T3.8.7 SOEAUUIOSSottt e 98
TB.8.2 LOAU. ..o e ettt 98
T3.8.3 SAVE.. ..o 98
T3 8.4 TS oo 98
D385 Flll. oo ettt 98
T3.8.6 COPY .. oo e 99
T3.8.7 COMPAIE... ...ttt e 99
TB.8.8 SCAICH ... oo 99
13.8.9 ASCIl/Byte/Word/Long/Single Float/Double FIoat................c.ccocooiivciiiiiiiiiiiiiiien . 99

13.9 PERFORMANCE ANALYSIS.....ooiiiiiiieitecerieieteteeeteesaeeee s e aseaesbaesase e eesbeesbeesseaae e saesemmeesrnesreeatssasansesases 99
1397 AQU RANGE. ..ot 100
13.9.2 EQIERANGE.ttt e 100
13.9.3 DeIBIE RANGE...... ..ot 100
13.9.4 RESEE COUNIS/TIMES ... 100
13.9.5 Delete Al RANGESccoooveeeeeeeeeeeee et e e 100
13.9.6 AnalysiS ENAbBIEU..............ooovoiiiiiieeie et 100

1B A0 REGISTERS ..oeeeeeeeeeeeteeee et et et et s e s eeeaeetaesaees e e s e s e es s esses s e st eaeeee b e teeae et e et e satesaestnenteareeneeaeestsasan 101
TB.T0.T COPY oot e 101
T3.T0.2 EQt. oo e e 101
T3.10.3 TOGGIE Bit ...ttt 101

13.11 SOURCE ettt eee et et er e e teeete st s s e e er e st e e ee e e et et e emteaeeas e e aneen e s b s e et e ebe et e Re e e nre et eb et nae 102
T3 07T COPY oo e 103
D3 TT.2 FING ..o e 103
T3.11.3 SOEAUAIOSS. ...t 103
D3.T7.4 SOELING. .. .o oo et 103
13175 GO TO CUISO ..o e ettt 103
T3.71.6 SEEPC HEIC.........oeoeeeee e 103
13777 INSEANE WAICH. .. oo 104
13118 AU WAELICH ..o 104
13.11.9 GO TODISASSEMBIY ...t 104

13,12 SYSTEM STATUS ... oottt ettt et ettt ettt e et et e et e e e smeemes s aas e at s st e eneenneans 104
T3.12.1 UDGAE oo 105
TB92.2 COPY .ot e 105

TB.13 TRACE ettt ettt e et e a e e et et e et e et e tsabt s es e st n ettt e et 105

T3A3 T FING. oo 106

vii Hitachi Debugging Interface User Manual
T3.13.2 FINA NEXL ... et 106
DB TB.3 FHOI ..ottt s 106
13134 ACQUISIHON. e 106
T3 T35 HAI ... e ettt 106
T3 3.6 RESLAI ... e ettt 106
13137 SNAPSRAOL ...t 106
T3 188 ClAI ... e e e e e s 106
T3.13.9 SAVE... oo et 107
13.13.10 VIBW SOUICE ... ettt et 107
13.13.11 THITE SOUICE.......oooeeeeeeeeeeeeee ettt 107
1314 WATCH ..ot ettt eeteeeteeeteeettestereseaseeaaeiateseteateaneaseaneeaneeneen e e nenneeae 107
T304 COPY oottt 108
T3 T4.2 DEIBLE ... e 108
TB.A4.3 DEIBLE Al e e 108
13144 AU WEAEICH. .. oo et ettt 108
T314.5 EQIEVAIUG. ... ettt e e e 108
DB 4.6 RABAIX ..o ettt ettt 108
APPENDIX A - SYSTEM MODULES........ooeerereereeteeetiererersssesssssssssssosnnssessasossasssssasssasssssss 109
APPENDIX B - COMMAND LINE INTERFACE 111
APPENDIX C - COMMAND LINE SUMMARY CHART 135
APPENDIX D - GUI COMMAND SUMMARY 137
APPENDIX E - /O REGISTER FILE FORMAT e 141

APPENDIX F - SYMBOL FILE FORMAT 145

Figures
Figure 3.1 Select Session DIalog BOXc..cociviriiiiiinenieec e 7
Figure 3.2 Memory Mapping WiNAOWc.ccieiiriiniinieiiiniiiiie sttt s es 9
Figure 3.3 Edit Memory Mapping Dialog BoX ..o 10
Figure 3.4 System Status WiNOW......ccooocirviiiiiiiiiiiiiii i 11
Figure 3.5 Load Program Dialog BoXcccociiiiiiiiiiiieinc i 12
Figure 3.6 Open DIalog BOX ..oc.vcciiiiiiiiiiii e e 12
Figure 3.7 File TYPe SEIECHION ...eoiiiiiieiiitiiiierte ettt ettt 13
Figure 4.1 SOUICE WINAOW ..oiiiiiiiiiecieiiter ettt ettt saa e et st e ne e e eae e et teenaee s 15
Figure 4.2 Disassembly WINAOWcooieiriiiniiiren ettt 16
Figure 4.3 Assembler Dialog BOX ... 17
Figure 4.4 Labels WINAOWcc.ccoiiiiiiiiiie et e 18
Figure 4.5 Label DIialog BOXccooiiiiiiiiiiiiii e 18
Figure 4.6 Set Address DIialog BOX ..ottt 19
Figure 4.7 Find DIalog BOX......c.coiiiiiieiieie ettt 20
Figure 5.1 Open Memory Window Dialog BOXccociiiiiiiiiiiii e 21
Figure 5.2 Memory Window (BYLES).......ccoiruiiiiiiiciiciese e e 21
Figure 5.3 Set Address DIalog BOXc..ocioiiriiiiiiiiiiie it 23
Figure 5.4 Edit DIalog BOXoouioiiiiiieicieee ittt e e s 24
Figure 5.5 Search Memory Dialog BoX ..o 25
Figure 5.6 Fill Memory Dialog BOXc.ociiiiiiiiiii i 26
Figure 5.7 Copy Memory Dialog BoX ... 27
Figure 5.8 Test Memory Dialog BOX ..o 27
Figure 5.9 Save Memory As Dialog BOX ..o 28
Figure 5.10 Load Memory Dialog BoX ..o 29
Figure 5.11 Verify S-Record File with Memory Dialog BOXccooiiiii 29
Figure 6.1 Highlighted Line Corresponding to PC Address.........coooiiiirinii 31
Figure 6.2 Step Program Dialog BOXcccoooiiiiiiiii s 34
Figure 7.1 Setting a Program Breakpoint 36
Figure 7.2 Breakpoints WindOW ... 37
Figure 7.3 Run Program Dialog BOX ... 40
Figure 8.1 TOOIP WACh oo e 43
Figure 82 Instant Watch Dialog BOX......ccoooiiiiiiiii 44
Figure 8.3 Add Watch Dialog BOX....ccooiiiiiie 45
Figure 8.4 Watch WIndOw ... 45
Figure 8.5 EXPanding @ WatCho..ooviioiiiiiiii it e 46
Figure 8.6 Edit Value Dialog BOX . .c..ooiiiiiiiiiiieiicee e 47
Figure 8.7 Locals WINAOWooiiiiiiii e e 47

x Hitachi Debugging Interface User Manual

Figure 8.8 RegiSters WINAOWccoviiiiiiiiiiiiiiecretet ettt 48
Figure 8.9 Expanding a Flag REZISIETcceoiiiiiiiiiiiie ittt e et 49
Figure 8.10 Register DIialog BOX.......cociiiiiiiiieiererteceetet et e s s 50
Figure 8.11 1/O RegiSters WiNAOWc.ccoiiiiiiiiinierieiiiitect ettt st s b e 52
Figure 8.12 Dialog Box for Modifying 1/0 Register CONtENtSccooevieeiriiiririiiic e 53
Figure 9.1 Overlay Dialog Box (8t OPENiNG)ccceovirieiiriinieiiieniitetiee ettt s s s 55
Figure 9.2 Overlay Dialog Box (Address Range Selected) ... 55
Figure 9.3 Overlay Dialog Box (Highest-Priority Section Group Selected)..........ccocueiveniiiiiiiiiin, 56
Figure 10.1 Select Function Dialog BOX ..o 57
Figure 11.1 Minimizing @ WINAOW.......ccccooiiiiiiiioniiiri et e e 60
Figure 11.2 Disassembly WindOW [COM......coiiiiiiiiiiiiiirci et 60
Figure 11.3 Icons Before AIrangementcoceieiieiinierieniiieneeiecrret ettt sttt are e s s 61
Figure 11.4 1cons After ATTANZEMENt........cciveieriiiiiiiiert ettt sttt s 62
Figure 11.5 Selecting @ WINAOW ...cc.coouiiiiiiiiiiiie ettt et 63
Figure 11.6 Customize Toolbar (Toolbars) Dialog BoX......cccccovviviiiiiiiiiiiiiiiini e 64
Figure 11.7 Customize Toolbar (Commands) Dialog BOXccocoovveniiiiiiiiiiiiii e 65
Figure 11.8 Font Dialog BOX.....cc.ueiiriiiniie e e s 67
Figure 11.9 Customize File Filter Dialog BOXcccccoiiiiiiiiiiiiniiiiiiiiiiniccc e 67
Figure 11.10 HDI Options (Session) Dialog BOX ..ottt 70
Figure 11.11 HDI Options (Confirmation) Dialog BOX.......ccccoceniviiiiiiiniiic, 71
Figure 11.12 HDI Options (Viewing) Dialog BOXcccoviniiieiiiiiniiiiiniit et 71
Figure 11,13 Setting RaAiX ...ccccoeiveiiiiiiiiieiete ettt st 72
FIGUIE 12,1 IMIENUS ...ttt ettt et sttt ea et sa s b e e e s s r e e sre e em e ereareareea s e ne s 75
Figure 13.1 Breakpoints WiNAOW......c..ccoiriieiiiiiiiiiiiin ittt 85
Figure 13.2 Command Line WIndowc..ccooiiiiiiiiiiiiiiiiii e 86
Figure 13.3 Disassembly WINAOWccoo.coieiiiiiiineiiiecne ettt 88
Figure 13.4 1/O Registers Window........cc.ccccovvvniininncniiiiiiie FES ST U POV UUROURRURRURRRIPURRIR 90
Figure 13.5 Labels WINOW ...c.cocooioiiiiiiiiiiiiei ettt b 91
Figure 13.6 Add Label DIialog BOX ..ccoiueouieieieiiiiiiccici et e s 92
Figure 13.7 Edit Label Dialog BOXccoiiiiiiiiiiiiin e 92
Figure 13.8 Find Label Containing Dialog BOXc.ccoviiniiiiiiiiii i 93
Figure 13.9 Message Box for Confirming Label Deletion ... 93
Figure 13.10 Message Box for Confirming All Label Deletion ... 94
Figure 13.11 Load Symbols Dialog BOXc.cociiiiiiiriiiiii ettt 94
Figure 13.12 L0Cals WINAOWcoooiiiiiiiiiiieeiie ittt et es e 95
Figure 13.13 Memory Mapping WINAOWc..ocociiiiiiiiiii e 96
Figure 13.14 Memory WINAOWocoiiiiiiiiecreiieniie ettt e ea e 97
Figure 13.15 Performance Analysis WindOWcccooiiiiiiiiiiiiiiiiic et 99
Figure 13.16 Registers WiNAOWcoiiiiiiiiii et 101

Xi

FIGUEE 13,17 SOUICE VIEW ..eeioiiiiiiiiiiiiite ittt sttt st evc st sa e s eas e sb st a s s b e st e s se s e ennae s 102
Figure 13.18 System Status WiINAOW.......cocoueoiiiiiiieiircin et s st sr e 104
Figure 13.19 Trace WINAOW.......lcoi oottt et st bt s 105
Figure 13.20 Watch WiNAOW ..ottt et 107

Figure A.1 HDI System ModUIESc..oeeiiiiiiiiiiiiciien e e e 109

Section 1

Introduction 1

1. Introduction

The Hitachi Debugging Interface (HDI) is a Graphical User Interface
intended to case the development and debugging of applications
written in C/C++ programming language and assembly-language for
Hitachi microcomputers. Its aim is to provide a powerful yet intuitive
way of accessing, observing and modifying the debugging platform in
which the application is running.

1.1 Key Features

Notes

e Windows® GUI for debugging

Intuitive interface

On-line help

Common “Look & Feel”

1. For detailed information about debugging platform hardware,
please refer to the separate Debugging Platform User’s Manual.

2. The HDI does not run on Windows” version 3.1.

2 Hitachi Debugging Interface User Manual

Section 2 System Overview 3

2. System Overview

HDI is a modular software system, utilizing self-contained modules
for specific tasks. These modules are linked to a general purpose
Graphical User Interface, which provides a common look & feel
independent of the particular modules with which the system is
configured.

2.1 User Interface

The HDI Graphical User Interface is a Windows® application that
presents the debugging platform to you and allows you to set up and
modify the system. Refer to a standard Windows® user manual for
details on how to operate within a Windows" application.

2.2 Data Entry

When entering numbers in any dialog box or ficld you can always
enter an expression instead of a simple number. This expression can
contain symbols and can use the operators in the C/C++ programming
languages. Use of C/C++ programming language features such as
arrays and structures is only available if an object reader that supports
C/C++ programming language debugging is in use.

In some dialogs, where there is a control expecting an End address, it
is possible to enter a range by prefixing the value with a + sign. This
will set the actual End address to be equal to the Start address plus the
entered the value.

2.2.1 Operators
The C/C++ programming language operators are available:

+a s *a /7 &a '7 /\’ ™ !a >>9 <<9 (VO, (7)’ <7 >7 <:7 >=, ==) &&-’ ||

2.2.2 Data Formats
Unprefixed data values will be taken as being in the default radix set
by the [Setup->Radix] menu option. The exception is count field

which use decimal values by default (independent of the current
default system radix).

Symbols may be used by name and ASCII character strings can be
entered if surrounded by single quote characters, e.g. ‘demo’.

4 Hitachi Debugging Interface User Manual

The following prefixes can be used to identify radices:

O’ Octal
B’ Binary
D’ Decimal

H’> Hexadecimal
0Ox Hexadecimal

The contents of a register may be used by specifying the register name,
prefixed by the # character, e.g.:

#R1, #ER3, #R4L

2.2.3 Precision

All mathematics in expression evaluation is done using 32 bits
(signed). Any values exceeding 32 bits are truncated.

2.2.4 Expression Examples

Buffer start + 0x1000

#R1 | B’10001101

((pointer + (2 * increment size)) & HFFFF0000) >> D15
! (flag ~ #ER4)

2.2.5 Symbol Format

You can specify and reference symbols in the same format as in
C/C++ programming language. Cast operators may be used together
with symbols, and you can reference data after its type has been
converted. Note the following limitations.

« Pointers can be specified up to four levels.
 Arrays can be specified up to three dimensions.
» No typedef name can be used.

2.2.6 Symbol Examples

Object.value //Specifies direct reference of a member (C/C++)

p Object->value //Specifies indirect reference ot a member (C/C++)
Class::value //Specifies reference of a member with class (C++)
*value //Specifies a pointer (C/C++)

array[0] //Specifies an array (C/C++)

Object.*value //Specifies reference of a pointer to member (C++)
::g value //Specifies reference of a global variable (C/C++)

Class::function(shnrt) NSpaﬁﬁesarnmnberﬁnwﬁon(C++)
(struct STR) *valuc //Specifies cast operation (C/C++)

Section 2 System Overview 5

2.3 Help

HDI has a standard Windows® context sensitive help system. This
provides on-line information about using the debugging system.

Help can be invoked by pressing the F1 key or via the Help menu.
Additionally, some windows and dialog boxes have a dedicated help
button to launch the help file at the appropriate content.

2.3.1 Context Sensitive Help
To get help on a specific item in the HDI help cursor can be used. To
enable the help cursor, press SHIFT+F1 or click the button on tool
bar.

Your cursor then changes to include a question mark. You can then
click on the item for which you require help and the help system will
be opened at the appropriate content.

6 Hitachi Debugging Interface User Manual

Section 3

Preparingto debug 7

3. Preparing to Debug

This section of the manual describes all the facilities that are available
in HDI for setting up the debugging platform ready to start debugging
your program. You will learn how to select and configure a
debugging platform with which to debug, and how to load your
program to be debugged.

3.1 Compiling for Debug

Note

In order to be able to debug your program at C/C++ source level, your
C/C++ program must be compiled and linked with the debug option
enabled. When this option is enabled, the compiler and linkage editor
put all the information necessary for debugging your C/C++ code into
the absolute file or management information file, which are then
usually called debug object files.

Make sure you have the debug option enabled on your compiler and
linker, when you generate an object file for debugging.

If your debug object file does not contain any debugging information,
then you can still load it into the debugging platform, but you will
only be able to debug at assembly-language level.

3.2 Selecting a Debugging Platform

When HDI is launched, it will display a splash screen and then create
its main window. The splash screen will clear to display the Select
Session dialog. Choose the ‘Create a new session on’ option; select
the appropriate debugging platform from the list; and click the [OK]
button. If you select the wrong platform this dialog can be launched
again by choosing the [File->New Session...] menu option.

Select Sessio

Figure 3.1 Select Session Dialog Box

8 Hitachi Debugging Interface User Manual

HDI will load the platform’s plug-in module and establish
communications with the debugging platform. As the module loads, it
will initialize any hardware or data structures and provide status
messages on the status bar as the initialization progresses. When the
debugging platform has been successfully initialized HDI will report
“Link up” on the status bar.

3.3 Configuring the Debugging Platform

Before you can load a program into your debugging platform you
must set it up to match your application’s system. The items that must
be set-up are typically device type, operating mode, clock speed and
the memory map. It is particularly important to set-up the memory
map, as you must have memory in the debugging platform to which
your user program will be loaded.

3.3.1 Setup

To set-up the debugging platform configuration choose the [Setup
->Configure Platform...] menu option. You will be presented with a
set-up dialog box specific to the debugging platform that you chose in
the Select Session dialog box.

Note For a detailed description of the features available in your debugging
platform; please refer to the separate Debugging Platform User’s Manual.
3.3.2 Mapping

For the debugger to correctly represent your user system, the memory
map must be set up. It needs to know which areas in the device’s
address space are RAM, ROM, on-chip registers or areas where there
1S N0 mMemory.

When you select the device type and mode in the debugging platform
configuration dialog, HDI will automatically set up the map for that
device and the mode in which the processor is operating. For example
in a device with internal ROM and RAM, the arcas where these are
located in the device’s memory map will be set by default.

Section 3

Preparing to debug 9

Map setting

If you are using a device that does not have internal memory, or a
device with external memory instead of, or in addition to, the internal
memory, then you must tell the debugging platform that you have
memory there. Also if you are trying to debug code with an emulator
and wish to have some memory available in the address map that does
not exist either internally in the device or externally in your user
system, then you can map some emulation memory from the emulator
to the address space for your application to use.

To edit the memory map configuration choose the [Memory-
>Configure Map...] menu item, or (for some platforms) via a pane on
the Configure Platform dialog. The dialog box shown will be
specific to the debugging platform that you chose in the Select
Session dialog box. But, for example, with a hardware in-circuit
emulator you will see something like:

0020000 OOFFEBFF Guarded

OFFEC0O0 OOFFFBFF Emulator Re
OFFFC0D0 O0OFFFE3F Guarded
OFFFE40 O0FFFF07 Emulator B¢
OFFFF08 00FFFFZ27 Guarded
OFFFF28 OOFFFFFF Emulator B¢

Figure 3.2 Memory Mapping Window

The Map Setting arca shows how the address space is currently
mapped. It lists all address ranges covering the entire address space
and the type of memory to which they are set - internal or external to
the emulator and any access restrictions they may have, e.g. read only
or guarded (no access). This includes those ranges set automatically
by HDI and those you have set or modified.

10 Hitachi Debugging Interface User Manual

Note

Additional information about the memory mapping can be viewed in
the System Status window's Memory pane. The Device
Configuration area shows how the memory in the device’s address
space is configured, according to the device type and mode selected in
the Configure Platform dialog box and any on-chip memory control
settings. The System Resources area shows the status of mapping
resources available to the system. For example in an emulator this
will show the address ranges to which emulation memory has been
allocated and which are currently available.

Clicking on the [Reset] button will set the system map setting back to
the default for the current device type and mode.

To modify a map setting, select it and click on the [Edit] button or
double-click on the map setting line.

Figure 3.3 Edit Memory Mapping Dialog Box

You will then be able to modify the start and end addresses of the
map range, and the memory type setting.

To add a new range click on the [Add] button, the Add Memory
Mapping dialog box will open (it is the same as the Edit Memory
Mapping dialog box but without any default values). Enter the start
and end addresses of the map range, and the memory type setting for
the new area. If the new range is in the middle of an existing range,
HDI will automatically adjust the new range.

Due to page length limitations in some emulators, the range addresses
may not exactly match the entered addresses.

Section 3 Preparing to debug 11

3.3.3 Status

To check the configuration and status of the debugging platform in
the System Status window choose the [View->Status] menu.

System Status

Target Device Configuration HES/Zxxx Advanced mode
ROM 00000CO0-000FFFFF
FAM OOFFOO000-O00FFFFFF

System Memory Resources No information

Loaded Memory Areas 00001412 00001430
0ooooooo 00000003
000000K4 00000067
00000120 00000123
00000148 0000014B
00000444 00000445
00001000 00001411
00001432 N000D1445

Figure 3.4 System Status Window

The System Status window is split into four panes:

1. Session - contains information about the current session including
the connected debugging platform and the names of loaded files.

2. Platform - contains information about the current status of the
debugging platform, typically including CPU type and mode; run
status; and timing information.

3. Memory - contains information about the current memory status
including the memory mapping resources and the areas used by the
currently loaded object file.

4. Events - contains information about the current event (breakpoint)
status, including resource information.

To update the status in the window on demand choose the [Update]
menu option from the popup menu.

3.4 Downloading a Program

Once you have made sure that there is memory in your system in
which to download your program, you can then proceed to download
a program to debug. To select an object file for debugging, choose the

12 Hitachi Debugging Interface User Manual

[File->Load Program...] menu option to open the Load Program
dialog box:

-Shdistutorialvh8shtutorial, abs

Figure 3.5 Load Program Dialog Box

The dialog includes a combo box containing a list of the previous four
downloaded files and controls to allow an offset address to be used
(suitable only for some object formats, e.g. S-Record) and to ecnable
verification of the load. Verification checks that data downloaded to
the platform can be correctly read back - this causes slower download
speeds, so it is recommended that you only verify if you suspect a
problem with memory or with the link file.

If the combo box does not include the file you require, it is possible to
either enter the file name directly into the edit area, or to use the
Browse button to search for the file you want to download.

] Tutorial.abs

T utonal. abs

Figure 3.6 Open Dialog Box

To select a file to download from the browser dialog, first select the
type of file to display in the list area by clicking in the Files of type
field (see also section 11.6 Customizing the File Filters) and then
click on the file type that you require.

Section 3

Preparing to debug 13

mat;*.a20.”.obj)

Figure 3.7 File Type Selection

The file list will then be updated with the files available, from which
your selection can be made. Directory and drive navigation is possible
using the standard windows file open dialog box controls, to the right
of the file list. Alternatively the file name can be typed into the File
name: field directly. The [OK] button will return to the Open Program
dialog with the File name field set to the path and file name of the
program you selected in the browser dialog.

Clicking the [OQpen] button after selecting a file will initiate the
downloading. During the download HDI will report progress on the
status bar.

14 Hitachi Debugging Interface User Manual

Section 4

Looking at your program 15

4. Looking at Your Program

Note

This section describes how to look at your program as source code
and assembly language mnemonics. HDI’s facilities for dealing with
code and symbol information are explained and you will be shown
how to look at text files in the user interface.

After a break occurs HDI displays the location of the program counter
(PC). In some cases, for example if a sysrof based project is moved
from its original path, then the source files may not be automatically
found. In this case HDI will try a list of paths previously used for this
session. If still unable to locate the source file, then you open the
source file in the [View->Source] menu dialog box. It allows you to
manually locate the file - this path will then be added to the internal
source path list for future reference.

4.1 Viewing the Code
4.1.1 Viewing Source Code

To look at your program’s source, choose the [View->Source...]
menu option; use the Ctrl+K accelerator; or click on the Source
Window toolbar button

Select your source file and click [Open], HDI opens a Source
window:

Header bar
00001012 _malin void main(void)
129 {
430
{31 00001018 if (MDCR.BIT.MD&!=0x6
3Z S printf{"gele
Breakpoint ~n 0oo0o01024 @ return;
34 }
Source code 435 00001026 1f(&YSCR.BYTELl=0x01)
{36 00001030 SYSCR.BYTE=0xl;
37
Address field 20 0D00D1038 BCRL.BIT.EAE = 0;
39
40 00anion4o 8TOP MODE () ;

Figure 41 Source Window

16 Hitachi Debugging Interface User Manual

The Source window is divided into two areas; the header bar area and
the main window area, and split vertically into five columns; Line,
Address, BP(Breakpoint), Label, and Source. The respective width of
each column can be adjusted by dragging the dividing line between
cach column title in the header bar. The cursor will change to ++ and
a vertical line will be displayed where the dividing line of the
columns will be. Release the mouse button when you are satisfied
with the column width and the display will be updated with the new
column width.

4.1.2 Viewing Assembly-Language Code

If you have a source file open, right-click to open the popup menu and
select Go to Disassembly to open a Disassembly window at the same
address as the current Source window.

If you do not have a source file, but wish to view code at assembly-
language level, either choose the [View->Disassembly...] menu
option; use the Ctrl+D accelerator; or click on the Disassembly
]. This will open a Set Address dialog in
which you can address to start disassembling.

The Disassembly window shows Address, BP(Breakpoint), Code -
showing the machine code values, Label and Assembler - showing the
disassembled mnemonics (with labels when available). Additionally
the final column contains any source line starting at that address, thus
providing mixed mode display.

100001012 L ERb, @-ER7 vo1d main(void)
00001016 OFF6 MOV.L ER7, ER6 i

400001018 6AZ800FF MOV.B @H"O00FFFF2E:32, ROL 1f(MDCR.BIT.MI "

J0000101e EB07 AND.B #H'07,ROL

j00001020 ABDE CMP. B #H"04, ROL
goooiozz 4702 BEQ @H"1026:58

100001024 403E BRA @H"1064:5 return;
00001026 SA2800FF MOV. B @H'00FFFF39:32, ROTL if(IYSCR.BYTE.
oooo1l02c AB01 CMP.B #H'01, ROL

1o0000102e 4708 BEQ @H"1038:8 o

100001030 F301 MOV.B #H'01, ROL 8Y3CR.BYTI
00001032 GAABO0FF MOV. B ROL, @H"00FFFF39:3Z

Figure 4.2

Disassembly Window

Section 4

Looking at your program 17

4.1.3 Modifying Assembly-Language Code

Address

You can modify the assembly-language code by double-clicking on
the instruction that you wish to change. The Assembler dialog box
will open:

Machine code

Disassembled
instruction

Note

Figure 4.3 Assembler Dialog Box

The address, machine code and disassembled instruction are
displayed. Type the new instruction or edit the old instruction in the
Mnemonic field. Clicking [OK] or pressing ENTER will assemble
the instruction into memory and move on to the next instruction.
Clicking [Cancel] or pressing ESC will close the dialog box.

The assembly-language display is disassembled from the actual
machine code in the debugging platform’s memory. If the memory
contents are changed the display will show the corresponding new
assembly-language code, but will not match the text shown in the
source display.

4.2 Looking at Labels

Note

Note

In addition to the debugging information that HDI uses to link your
program’s source code to the actual code in memory, the debug object

file also contains symbolic information. This is a table of text names

that represent an address in the program and is referred to as labels in
HDI. You will see symbols in the Label field on the line of the
corresponding address, and in the Assembler field as part of an
instruction’s operand.

An instruction’s operand is replaced with a label name if the operand
and label value match. If two or more labels have the same value, then
the label that comes first alphabetically will be displayed.

Wherever you can enter an address or value in an HDI edit control
you can use a label instead.

18 Hitachi Debugging Interface User Manual

4.2.1 Listing Labels

To see a list of all the labels defined in the current session open the
Labels window by choosing the [View->Labels] menu option.

p

H'00001012 main
H'000D0106A _STOP_MODE
H'O0000108E MASEKL
H'000010BA _DMAC RUN
H'00001180 MASKZ
H'O00011AC _DTC_REGS
H'0000129E _DTC SCI0_ACT
H'00001ZEZ _DTC_SCI0_RUN
H'00001316 _MASK3
H'00001342 _WDT RUN
H'00001358 DENDOA
H'0000136C WOVI
H'0000139E TXIO
H'000013C6 _COPY MEM
H'00DD1412 _INITSCT
H'0000145C __D_ROM

Figure 4.4 Labels Windo

You can view symbols sorted either alphabetically (by ASCII code) or
by address value by clicking on the respective column heading.

You can quickly set a software break at the entry point of a function
by double-clicking (or right-clicking and selecting Break on the BP
popup menu) in the BP column.

4.2.2 Adding a Label from a Source or Disassembly Window

You can quickly add a label from a Source or Disassembly window,
by double-clicking in the Label column at the address for which you
want to assign the Label. The Label dialog box opens for you to enter
the text.

Figure 4.5 Label Dialog Box

Section 4

Looking at your program 19

Note

Enter the label name text and click [OK], the label is added to the
label list with the address value contained in the Address column of
the corresponding line, and the Source window display is updated to
show the label. The [Clear] button can be used to remove the label.

This method can also be used for quickly modifying the text of
existing labels. When you double-click on the label in the Label
column, the text is copied into the edit box of the Label dialog box.
You can then edit it and the modified version is saved in the label list.
The Source window display is updated to show the new label.

To use added or modified labels again in later sessions, save them in a
file. For details, see section 13.5.8, Save As....

4.3 Looking at a Specific Address

When you are looking at your program in a Source window, you may
want to look at another area of your program’s code. Rather than
scrolling through a lot of code in the program, you can go directly to a
specific address. Double-click in the Address column, the Set Address
dialog box opens:

Set Address T

Figure 4.6 Set Address Dialog Box

Enter the address or symbol name in the edit box and either click on
[OK] or press ENTER. If the code at that address 1s in the same
source file, the Source window updates to show the code at the new
address. When an overloaded function or a class name is entered, the
Select Function dialog box opens for you to select a function. For
details, refer to section 10, Selecting Functions.

If the new address is in a source file that is already being viewed in a
Source window, that window is brought to the front and updated to
show the code at the new address.

20 Hitachi Debugging Interface User Manual

If the new address is in another source file, a new Source window
opens to show the code at that address. By default the new window
shows source if it 1s available. If no source is available for the new
address, then a Disassembly window shows assembly-language code.

4.3.1 Looking at the Current Program Counter Address

Wherever you can enter an address or value into HDI, you can also
enter an expression (see section 2.2, Data Entry). If you enter a register
name prefixed by the “#” character, the contents of that register will
be used as the value in the expression. Therefore if you open the Set
Address dialog box and enter the expression “#PC”, the Source or
Disassembly window display will go to the current PC address. It also
allows that you can display from an offset of the current PC by
entering an expression with the PC register plus an offset, e.g.,
“4PC+0x100.

4.4 Finding Text

You can search for a particular text string in the Source window using
the find option. To do this, choose the [Find...] menu option from the
popup menu, or use the Shift+F10 accelerator key.

Figure 4.7 Find Dialog Box

Enter the text that you wish to find and click [Find Next] or press
ENTER. The Source window will display the text (if found)
highlighted. To find the next occurrence of the text, click [Find Next}
or press ENTER again. To close the Find dialog box, click [Cancel]
or press ESC.

Section 5 Working with memory 21

5. Working with Memory

This section describes how to look at areas of memory in the CPU’s
address space. It will show you how to look at an area of memory in
different formats, fill, move and test a block of memory, and save,
load and verify an area of memory with a disk file.

5.1 Looking at an Area of Memory

To look at an area of memory, choose the [View->Memory...] menu
option; using the CtrHM accelerator; or clicking the Memory

Open Memory Windo

Figure 5.1 Open Memory Window Dialog Box

Type in the start address or equivalent symbol for the window display
in the Address field and select the required display format from the
Format list. Click [OK] or press ENTER, and the dialog box closes
and a Memory window opens:

Byte Memory - _Temp_Name

oo oo
oo oo

OFFECO4
OFFECOB

OFFECOC 00 00 oo

OFFEC10 0D 00 oo

OFFEC14 0O oo 0o
: 0o o

Figure 5.2 Memory Window (Bytes)

22 Hitachi Debugging Interface User Manual

There are two display columns excluding the address display column:

1. Data - The data read from the debugging platform. Where
supported it is read from physical memory at the displayed width.
Editing the data is supported.

2. Value - Data displayed in an alternative format. Editing is not
supported.

If you want to change the display format from the one you selected
when you opened the window, this can be done from the popup menu.

5.1.1 Displaying Memory as ASCII

To display and edit memory as ASCII characters, choose the [ASCII]
menu option from the popup menu and the display will be updated to
show the area of memory as ASCII characters.

5.1.2 Displaying Memory as Bytes
To display and edit memory as bytes, choose the [Byte] menu option

from the popup menu and the display will be updated to show the area
of memory as individual bytes as shown in figure 5.2.

5.1.3 Displaying Memory as Words

To display and edit memory as words, choose the [Word] menu
option from the popup menu and the display will be updated to show
the area of memory as 16 bit words.

5.1.4 Displaying Memory as Long words

To display and edit memory as long words, choose the [Long] menu
option from the popup menu and the display will be updated to show
the area of memory as 32 bit long words.

5.1.5 Displaying Memory as Single-Precision Floating Point

To display and edit memory as single-precision floating-point data,
choose the [Single float] menu option from the popup menu and the
display will be updated to show the area of memory as single-
precision floating-point data.

Section 5 Working with memory 23

5.1.6 Displaying Memory as Double-Precision Floating Point

To display and edit memory as double-precision floating-point data,
choose the [Double float] menu option from the popup menu and the
display will be updated to show the area of memory as double-
precision floating-point data.

5.1.7 Looking at a Different Area of Memory

If you want to change the area of memory that the Memory window is
displaying you can use the scroll bars. To quickly look at a new
address you can use the Set Address dialog box. This can be opened
either be choosing the [Set Address] menu option from the popup
menu or by double-clicking in the Address column.

Figure 5.3 Set Address Dialog Box

Enter the new address value, and click [OK] or press ENTER. The
dialog box closes and the Memory window display is updated with
the data at the new address. When an overloaded function or a class
name is entered, the Select Function dialog box opens for you to
select a function. For details, refer to section 10, Selecting Functions.

5.2 Modifying Memory Contents

There are two ways that you can change the contents of memory at an
address:

1. Quick edit method - allows you to enter values by typing directly
into the window, but is limited to ASCII (when displaying ASCII
format) or hexadecimal values only (when displaying all other
formats).

2. Full edit method - uses a dialog box to enter values as floating
point or evaluated expressions.

24 Hitachi Debugging Interface User Manual

5.2.1 Quick Edit

The quick way to change the contents of memory is to select the digit
that you wish to change, by clicking or dragging on it. You will see
the selected digit 1s highlighted. Type the new value for the digit, 1t
must be in the range 0-9, a-f (when displaying not ASCII format) or
the new value for ASCII, it must be ASCII (when displaying ASCII
format) . The new value is written into the digit and the cursor moves
on to the next digit in memory.

5.2.2 Full Edit

The full way to change the contents of memory is accessed via the
Edit dialog box. Move the cursor on the memory unit (depending on
your Memory window display choice) that you wish to change. Either
double-click on the memory unit, or press ENTER. The Edit dialog
box opens:

Figure 5.4 Edit Dialog Box

Like any other data entry field in HDI, you can enter a formatted
number or C/C++ expression (see section 2.2, Data Entry). When you
have entered the new number or expression, click the [OK] button or
press ENTER, the dialog box closes and the new value is written into
memory.

5.2.3 Selecting a Memory Range

If the memory address range is in the Memory window, you can select
the range by clicking on the first memory unit (depending on your
Memory window display choice) and dragging the mouse to the last
unit. The selected range is highlighted.

Section 5

Working with memory 25

5.3 Finding a Value in Memory

To find a value in memory you must open a Memory window, then
choose the [Search] menu option from the popup menu. Alternatively,
with a Memory window in focus, just press F3.

Figure 5.5 Search Memory Dialog Box

Enter the begin and end addresses of the range in which to search (if
an area of memory was selected in the Memory window then the
Begin and End address values will be filled in automatically) and the
data value to search for. The end address can also be prefixed by a '+
which will use the entered value as a range.

Select the search format (defaults to data display format) and click
[OK] or press ENTER. The dialog box closes and HDI searches the
range for the specified data. If the data is found, it will be highlighted
in the Memory window. If the data cannot be found, the caret position
in the Memory window remains unchanged and a message informing
you that the data could not be found is displayed on the message box.

5.4 Filling an Area of Memory with a Value

You can set the contents of a range of memory addresses to a value
using the memory fill feature.

26 Hitachi Debugging Interface User Manual

5.4.1 Filling a Range
To fill a range of memory with the same value, choose the [Fill...]
menu option on a Memory window's popup menu, or [Memory-
>Fill...] menu option. The Fill Memory dialog box opens:

Figure 5.6 Fill Memory Dialog Box

If an address range has been selected in the Memory window, the
specified begin and end address will be displayed. Select the format
from the Format drop list and enter the data value in the Data field.
Click the [OK] button or press ENTER, the dialog box closes and the
new value are written into the memory range.

5.5 Copying an Area of Memory

You can copy an area of memory using the memory copy feature.
Select a memory range (see section 5.2.3, Selecting a Memory Range),
choose the [Copy...] menu option from the popup menu. The Copy
Memory dialog box opens:

Section 5 Working with memory 27

Figure 5.7 Copy Memory Dialog Box

The source begin and end address specified in the Memory window
will be displayed in the Begin and End fields. Enter the destination
start address in the Destination field and click the [OK] button or
press ENTER, the dialog box closes and the memory block will be
copied to the new address.

5.6 Testing an Area of Memory

Note The exact test is target dependent. However, in all cases the current
contents of the memory will be overwritten - YOUR PROGRAM OR
DATA WILL BE ERASED.

You can test an area of memory in the address space using the
memory test feature. Select a memory range (see section 5.2.3, Selecting
a Memory Range), choose the [Test] menu option from the popup menu.
The Test Memory dialog box opens:

E TCSMEH‘IDW

Figure 5.8 Test Memory Dialog Box

28 Hitachi Debugging Interface User Manual

The start address and end address specified in the Memory window
will be displayed in the Begin and End fields. Click the [OK] button
or press ENTER, the dialog box closes and HDI will perform a test
on the memory range.

5.7 Saving an Area of Memory

You can save an area of memory in the address space to a disk file
using the save memory feature. Open the Save Memory As dialog box
by choosing the [Memory->Save...] menu option:

Save Memory As

Figure 5.9 Save Memory As Dialog Box

Enter the start and end addresses of the memory block that you wish
to save and a file name. The File name drop-list contains the previous
four file names used for saving memory, or a standard Save As dialog
can be launched by clicking the [Browse...] button. Click the [Save]
button or press ENTER, the dialog box closes and the memory block
will be saved to the disk as a Motorola S-Record format file. When
the file save is complete a confirmation message box may be
displayed (this can be switched off in the Confirmations tab on the
HDI Options dialog).

5.8 Loading an Area of Memory
To load an S-Record file to an area of memory without removing the
current debug information by using the load memory feature. Open
the Load Memory dialog box by choosing the [Memory->Load...]
menu option:

Section 5

Working with memory 29

Figure 5.10 Load Memory Dialog Box

You can offset the loading address from the address specified in the
S-Record by entering a value (positive or negative) in the Offset field.
Click the [Open] button or press ENTER, the dialog box closes and
the data loads into memory. When the file load is complete a
confirmation message box may be displayed (this can be switched off
in the Confirmations tab on the HDI Options dialog).

5.9 Verifying an Area of Memory

You can compare an area of memory against a previously saved block
of memory using the memory verify feature. Open the Verify S-
Record File with Memory dialog box by choosing the [Memory-
>Verify...] menu option:

Figure 5.11 Verify S-Record File with Memory Dialog Box

You can offset the verification address from the address specified in
the S-Record by entering a value (positive or negative) in the Offset
field. Click the [Open] button or press ENTER, the dialog box closes
and the file are verified. When the file verification is complete a
confirmation message box may be displayed (this can be switched off
in the Confirmations tab on the HDI Options dialog).

30 Hitachi Debugging Interface User Manual

Section 6 Executing your program 31

6. Executing Your Program

This section describes how you can execute your program’s code.
You will learn how to do this by either running your program
continuously or stepping single or multiple instructions at a time.

6.1 Running from Reset

To reset your user system and run your program from the Reset Vector
address choose the [Run->Reset Go] menu option, or click the Reset
Go toolbar button ||

The program will run until it hits a breakpoint or a break condition is
met. You can stop the program manually at any time by choosing the

[Run->Halt] menu option, or by clicking the Halt toolbar button [[&]].

Note The program will start running from whatever address is stored in the
Reset Vector location. Therefore it is important to make sure that this
location contains the address of your startup code.

6.2 Continuing Run

When your program is stopped and the debugger is in break mode, the
HDI will highlight the line in the Source and Disassembly windows
that correspond to the CPU’s current Program Counter (PC) address
value. This will be the next instruction to be executed if you perform
a step or continue running.

00001012 main 28 vold main(wvoid)

29 {
PC Location 30 '
pNop1018 o ol 1 E(MDORCBIT. MDE
32 /* printf |

Nooo1024 return;
1f(8Y3CR.BYTE!=

SY3CR.BYTE=

pooaonoon
ER7 oooooooo
PC ooio1e

BCRL.BIT.EAE =

STOF_MODE() ;

Figure 6.1 Highlighted Line Corresponding to PC
Address

32 Hitachi Debugging Interface User Manual

To continue running from the current PC address click the Go toolbar
button [[£f]], or choose the [Run->Go] menu option.

6.3 Running to the Cursor

The function and it by which only a part of the program is executed
provides the Go To Cursor feature to execute to a specific address.

< Using Go To Cursor

1. Make sure that a Source or Disassembly window is open showing
the address at which you wish to stop.

2. Position the text cursor on the address at which you wish to stop by
either clicking in the Address field or using the cursor keys.

3. Choose the [Go To Cursor] menu option from the popup menu.

The debugging platform will run your program from the current PC
value until it reaches the address indicated by the cursor’s position.

Notes 1. If your program never executes the code at this address, the program
will not stop. If this happens, program execution can be stopped by
pressing Esc, choosing the [Run->Halt] menu option, or clicking on
the ‘Halt’ toolbar button []].

2. The Go To Cursor feature requires a temporary breakpoint - if you
have already used all those available then the feature will not work,
and the menu option will be disabled.

6.4 Running to Several Points

When you want to perform something like the Go To Cursor
operation but the destination is outside the Source window, or want to
stop at several addresses, you can use HDI’s temporary breakpoint
feature (see section 7.5, Temporary Breakpoints).

Section 6 Executing your program 33

6.5 Single Step

When you are debugging your code it is very useful to be able to step
a single line or instruction at a time and examine the effect of that
instruction on the system. In the Source window, then a step operation
will step a single source line. In the Disassembly window, a step
operation will step a single assembly-language instruction. If the
instruction calls another function or subroutine, you have the option
to either step into or step over the function. If the instruction does not
perform a call, then either option will cause the debugger to execute
the instruction and stop at the next instruction.

6.5.1 Stepping Into a Function
If you choose to step into the function the debugger will execute the
call and stop at the first line or instruction of the function. To step
into the function either click the Step In toolbar button [[#]], or choose
the [Run->Step In] menu option.

6.5.2 Stepping Over a Function Call

If you choose to step over the function the debugger will execute the
call and all of the code in the function (and any function calls that that
function may make) and stop at the next line or instruction of the
calling function. To step over the function either click the Step Over

6.6 Stepping Out of a Function

During debugging, there are occasions when you may have entered a
function, finished stepping through the instructions that you want to
examine and would like to return to the calling function without
tediously stepping through all the remaining code in the function. Or
alternatively (and perhaps more usefully) you may have stepped into a
function by accident, when you meant to step over it and so want to
return to the calling function without stepping all the way through the
current function. You can do this with the Step Out feature.

To step out of the current function either click the Step Out toolbar
button [[@]], or choose the |[Run->Step Qut| menu option.

34 Hitachi Debugging Interface User Manual

6.7 Multiple Steps

Sometimes you may find it useful to step several instructions at a time.
You can do this by using the Step Program dialog box. The dialog
box also provides an automated step with a selectable delay between
steps. Open it by choosing the [Run-> Step...] menu option.

The Step Program dialog box is displayed:

tep Program

Figure 6.2 Step Program Dialog Box

Enter the number of steps in the Steps field , select whether you want
to step over function calls by the Step Over Calls check box, and
select whether to make one line of the source program correspond to
one step by the Source Level Step check box. If you are using the
feature for automated stepping, select the step rate from the list in the
Rate field. Click |OK] or press ENTER to start stepping.

Section 7 Stopping your program 35

7. Stopping Your Program

This section describes how you can halt execution of your
application’s code. This section describes how to do this directly by
using the halt command and by setting breakpoints at specific
locations in your code.

7.1 Halting Execution

When your program is running, the Halt toolbar button 1s enabled [|§]
(a red STOP sign), and when the program has stopped it is disabled

Z1] (the STOP sign is grayed out). To stop the program click on the
Halt toolbar button, push the ESC key, or choose the [Run->Halt]
menu option.

Your program’s execution is halted, with the message "Break = Stop"
displayed on the status bar. HDI will then update any open windows.

The last break cause can also be viewed in the Platform pane of the
System Status window.

7.2 Standard Breakpoints (PC Breakpoints)

When you are trying to debug your program you will want to be able
to stop the program running when it reaches a specific point or points
in your code. You can do this by setting a PC breakpoint on the line
or instruction at which to want the execution to stop. The following
instructions will show you how to quickly set and clear simple PC
breakpoints. More complex breakpoint operation can be done via the
Breakpoints window, which is discussed later.

2 To set a program (PC) breakpoint

1. Make sure that the Source window is open at the place you want to
set a program (PC) breakpoint.

2. Double-click in the BP column, or press F9, at the line showing the
address at which you want the program to stop.

3. You will see a circle and the word ‘Break’ appear in the column to
indicate that a program (PC) breakpoint has been set.

36 Hitachi Debugging Interface User Manual

Breakpoint set

0ooonoiniz _main vold main(wvoid)
{

DO0O01018 1f(MDCR.BIT.MD3!=0x
S* printf("gele

Note

o000 IT=3 ¢ return;

1
NDO010DZ6 1f(8YSCR.BYTEI=0x01)
opo01030 S3Y3CR.BYTE=0x1; .

0go01038 BCRL.BIT.EAE = 0O;

Figure 7.1 Setting a Program Breakpoint

Now when you run your program and it reaches the address at which
you set the program (PC) breakpoint, execution halts with the
message "Break = PC Breakpoint" displayed on the status bar, and the
Source window display is updated with the program (PC) breakpoint
line highlighted.

The line or instruction at which you set a program (PC) breakpoint 1s
not actually executed; the program stops just before it is about to
execute it. If you choose to Go or Step after stopping at the program
(PC) breakpoint, then the highlighted line will be the next instruction
to be executed.

7.2.1 Cycling Through Standard Breakpoints

By default the standard breakpoint will support the PC breakpoint
type. However, depending on the selected platform, more than one
type of standard breakpoint may be provided. It is possible to cycle
through these by ecither double-clicking in the BP column of the line
at which the program (PC) breakpoint is set or placing the text cursor
on the line and using the F9 key. The display will cycle through the
available standard breakpoint types - a color-coded circle and a
descriptive word will be shown in the BP column.

Section 7 Stopping your program 37

7.2.2 Clearing Standard Breakpoints

Right-click in the BP column to display a special Break popup menu
that lists all the standard breakpoint types for the current platform.
The currently selected break type will be shown with a check mark to
clear the breakpoint simply click the 'None' option.

Alternatively when all the standard breakpoints have been cycled
through, then the breakpoint is cleared.

7.3 The Breakpoints Window

The Breakpoints window allows you to access complex breakpoints
(if your debugging platform supports them) and gives you more
control over setting/clearing and enabling/disabling breakpoints. To
open the Breakpoints window choose the [View->Breakpoints] menu
option or click the Breakpoint Window toolbar button [[&]
visible.

A Breakpoints window opens.

reakpoints

Breakpoint

disabled TUTCORIAL.C/36 00001030 Type=PC
TUTORIAL.C/42 0000104Z Type=PC :

Breakpoint _Temp_Name O000ECOD Type=Read

enabled

Flgure 7.2 Breakpomts Wlndow

The window displays a list of the breakpoints set in the system. The
breakpoint list is divided horizontally into five columns; Enable,
File/Line, Symbol, Address, and Type. The respective widths of each
of the columns can be adjusted by clicking and dragging on the
dividing line between each column title in the header bar. The cursor
will change to «+ and a vertical line will be displayed at the dividing
line of the columns. Release the mouse button when you are satisfied
with the column width and the display will be updated with the new
column width.

7.3.1 Adding a Breakpoint

You can add a new breakpoint in the Breakpoints window by
choosing the JAdd...] menu option from the popup menu.

38 Hitachi Debugging Interface User Manual

Note

The Breakpoint/Event Properties dialog box will open in which you
can enter the type and parameters of the new breakpoint.

The Breakpoint/Event Properties dialog box 1s specific to the
debugging platform you have selected. Its appearance and operation
depend on the breakpoint features available in the debugging platform.
For details on debugging platform specific breakpoints, see the
separate Debugging Platform User’s Manual.

7.3.2 Modifying a Breakpoint

Note

To edit an existing breakpoint in the Breakpoints window, select the
breakpoint in the list by double-clicking, or by clicking on the line
corresponding to it and choose [Edit...] menu option from the popup
menu.

The Breakpoint/Event Properties dialog box will open in which you
can change the type and parameters of the selected breakpoint.

Breakpoint/Event Properties dialog box is specific to the debugging
platform you have selected. Its appearance and operation depend on
the breakpoint features available in the debugging platform. For
details on debugging platform specific breakpoints, see the separate
Debugging Platform User’s Manual.

7.3.3 Deleting a Breakpoint

To delete an existing breakpoint in the Breakpoints window, select
the breakpoint in the list by clicking on the line corresponding to it
and choose the [Delete] menu option from the popup menu.

The breakpoint is deleted and the window 1s updated.

7.3.4 Deleting All Breakpoints

To delete all of the breakpoints listed in the Breakpoints window
choose the [Delete All] menu option from the popup menu.

All breakpoints are deleted and the window is cleared.

Section 7 Stopping your program 39

7.4 Disabling Breakpoints

During the course of a debugging session you may find that you tend
to focus on particular areas of code for a period of time and then look
at other areas, but want to return to the previous ones afterwards.
When concentrating on these areas you will want to set breakpoints to
stop your program execution at useful points. If you have set these
breakpoints and wish to move on to another area of investigation, but
know that you will want to return to the current area later, it is
frustrating to have to delete all the breakpoints you have set only to
have to set them all again when you return. Fortunately, HDI eases
this problem by allowing you to disable breakpoints, while still
leaving them in the breakpoint list.

7.4.1 Disabling a Breakpoint
To disable an individual breakpoint, select the breakpoint in the list
by clicking on the line corresponding to it and choose the [Disable]
menu option from the popup menu.

Alternatively, double-click in the Enable column of the breakpoint
you need to disable.

The symbol in the Enable column is cleared to show that the
breakpoint is no longer enabled.

7.4.2 Enabling a Breakpoint
When you want to re-enable a breakpoint in the Breakpoints window
list, select the breakpoint in the list by clicking on the line
corresponding to it and choose the [Enable] menu option from the
popup menu.

Alternatively, double-click in the Enable column of the breakpoint
you need to enable.

The symbol in the Enable column is set to show that the breakpoint 1s
again enabled.

40 Hitachi Debugging Interface User Manual

7.5 Temporary Breakpoints

There are times when you may want to start running your program
and want it to stop if it hits one or more addresses, but do not want to
set permanent breakpoints at these addresses. For example you may
want to perform something like the Go To Cursor operation, but the
destination may be outside the Source window or you may want to
stop at several addresses. To do this you can use HDI’s temporary
breakpoint feature to run as it supports up to ten temporary
breakpoints that are cleared when you break. Temporary breakpoints
are set in the Run Program dialog box, which is opened by choosing
the [Run-> Run...] menu option.

The Run Program dialog box opens:

‘00001010
ain

OPY_MEM

Figure 7.3 Run Program Dialog Box

Enter the symbols or address values for the points at which you want
the program to stop (up to ten points) in the Stop At field. When an
overloaded function or a class name is entered, the Select Function
dialog box opens for you to select a function. For details, refer to

section 10, Selecting Functions.

Click the [Go PC] button to start running from the current Program
Counter address, as displayed in the Program Counter field. Click the
[Go Reset| button to reset the CPU and start running from the reset
vector address.

Section 7 Stopping your program 41

When the program halts the temporary breakpoints that you specified
are cleared from the current breakpoint list. However, when the dialog
is opened again, the list is retained in the Stop At field and will be set
again if you click the [Go PC] or [Go Reset] buttons.

7.6 Hardware Breakpoints(Event)

Note Hardware breakpoints are specific to the debugging platform you
have selected. Their operation depends on the breakpoint features
available in the debugging platform. For details on debugging
platform specific breakpoints, see the separate Debugging Platform
User’s Manual.

Section 8 Looking at variables 43

8. Looking at Variables

This section describes how to look at the variables and data objects
that your program uses. It shows you how to view variables, set up
watch items and look at the contents of the CPU’s general, FPU, DSP
and on-chip peripheral registers.

8.1 Tooltip Watch

The quickest way to look at a variable in your program is to use the
Tooltip Watch feature.

2 To use Tooltip Watch:

1. Open the Source window showing the variable that you want
to examine.

2. Rest the mouse cursor over the variable name that you want to
examine - a tooltip will appear near the variable containing
basic watch information for that variable.

¢ MEM 221 void COPY MEM(void)

222 {
223 unsi»g}ned short u;
224 for(u=0; u < sizeof(NAME); ut+)

225 * (TempzZ Name+ \ = * (NAME+u) ;
226
227 } u=H7EZ21

Figure 8.1 Tooltip Watch

8.2 Instant Watch

To look at the variable in more detail, use the Instant Watch feature.
< To use Instant Watch:

1. Open the Source window showing the variable that you want
to examine.

2. Click on the variable. You should see a cursor on the variable.

3. Choose the [Instant Watch] menu option from the popup
menu.

44 Hitachi Debugging Interface User Manual

The Instant Watch dialog box opens:

Instant Watch

-TempZ Marme = "Hitachi Micio 9
[B)=D72H
[11=D105"%
[2]=D"11E "

[3]=D0'97 &'
[4]=D193'¢’
[6]1=D0104 W'
[6]=D"105 %

Figure 8.2 Instant Watch Dialog Box

You can add this variable to the list of watch items in the Watch
window by clicking on the [Add Watch] button.

8.3 Using Watch Items

When you are debugging your program you may find it useful to be
able to look at variables of interest and see their values at different
times during the program. HDI allows you to open Watch windows,
which contain a list of variables and their values. To open a Watch
window choose the [View->Watch] menu option; or click on the
Watch Window toolbar button [[Z}

opens. Initially the contents of the window will be blank.

8.3.1 Adding a Watch

There arc two ways to add Watch items to the Watch window; the
quick method accessed from the Source window, and the full method
using the Add Watch dialog box in the Watch window.

Quick Method

The quickest way to add a variable to the Watch window is to use the
Add Watch feature.

Section 8 Looking at variables 45

< To use Add Watch from a Source Window:

1. Open the Source window showing the variable that you want
to examine.

2. Click on the variable. You should see a cursor on the variable.
3. Choose the [Add Watch] menu option from the popup menu.
The variable is added as a watch item and the Watch window updates.

Full Method

The full method uses a dialog that allows you to enter more complex
watch expressions, for example arrays, structures or pointers.

2 To use Add Watch from a Watch Window:
1. Open the Watch window.
2. Choose the [Add Watch] menu option from the popup menu.
The Add Watch dialog box opens:

Figure 8.3 Add Watch Dialog Box

Enter the name of the variable that you wish to watch and click [OK].
The variable is added to the Watch window.

Figure 8.4 Watch Window

Note If the variable that you have added is a local variable that is not
currently in scope, HDI will add it to the Watch window but its value
will be blank, or set to a question mark, ‘7.

46 Hitachi Debugging Interface User Manual

8.3.2 Expanding a Watch

If a watch item is a pointer, array, or structure, then you will see a
plus sign (+) expansion indicator to left of its name, this means that
you can expand the watch item. To expand a watch item, double-click
on it. The item expands to show the elements (in the case of structures
and arrays) or data value (in the case of pointers) indented by one tab
chracter, and the plus sign changes to a minus sign (-). If the elements
of the watch item also contain pointers, structures, or arrays then they
will also have expansion indicators next to them.

.. Watch Window
Ex;t)a:ded ="yi8
watc (0] b'1
[1] -D'3

Expansion [2] -Dt1z
indicator . . :

+Temp Name ="Hitachi Mioroe Systsms B

+TempZ Name ="Hitachi Micro 3ystems E
Collapsed x 0x0000105e
watch

Expanding a Watch

Figure 8.5

To collapse an expanded watch item, double-click on the item again.
The item’s elements will collapse back to the single item and the
minus sign changes back to a plus sign.

8.3.3 Modifying Radix for Watch ltem Display

To change the radix of watch item, select the corresponding item by
clicking it, and click the right mouse button on the item. Then a
popup menu will be displayed. Choose the [Radix] menu option from
the popup menu. Then choose the radix in which you wish the
selected watch item to be displayed. The value will be updated
immediately. (The [Setup->Radix] menu option from the main menu
is irrelevant to this radix modification.)

8.3.4 Changing a Watch Item’s Value

You may wish to change the value of a watch variable, e.g. for testing
purposes or if the value is incorrect due to a bug in your program. To
change a watch item’s value use the Edit Value function.

Section 8 Looking at variables 47

< Editing a watch item’s value:

1. Select the item to edit by clicking on it, you will see a flashing
cursor on the item.

2. Choose the [Edit Yalue] menu option from the popup menu.

The Edit Value dialog box opens:

| Edt 1l."autz:

Figure 8.6 Edit Value Dialog Box

Enter the new value or expression in the New Value field and click
[OK]. The Watch window is updated to show the new value.

8.3.5 Deleting a Watch

To delete a watch item, select it and choose the [Delete] menu option
from the popup menu. The item is deleted and the Watch window
updated.

Note Watch items that you have set in the Watch window can be saved in a

session file. See section 11, Configuring the User Interface.

8.4 Looking at Local Variables

To look at local variables, open the Locals window by choosing the
[View->Locals] menu option.

The Locals window opens:

Figure 8.7 Locals Window

48 Hitachi Debugging Interface User Manual

As you debug your program the Locals window will be updated,
following a step or break from run, to show current local variables
and their values. If a local variable is not initialized when defined,
then the value in the Locals window will be undefined until a value 1s
assigned to the local variable.

The local variable values and the radix for local variable display can
be modified in the same manner as in the Watch window.

8.5 Looking at Registers

If you are debugging at assembly-language level, using the Source
window in assembly language or mixed display, then you will
probably find it useful to see the contents of the CPU’s general, FPU
and DSP registers. You can do this using the Registers window.

ERD 00000000
ER1 00000000
ERZ 57705770
;; ER3 00000150

| ER4 57700000
. ERS 00000000
ERG OOFFFEBEB

ER7 DOFFFBED
: PC 001228
4+ CCR -0-—--Z2--

|+ E¥R - 111
: MACH 00000115
MACL TDFZESFF

Flgure 8.8 Registers Window

To open a Registers window choose the [View->Registers] menu
option or click the CPU Register Window toolbar button [E]].
Registers window opens showing all of the CPU’s general, FPU and
DSP registers and their values, displayed in hexadecimal.

Section 8 Looking at variables 49

8.5.1 Expanding a Bit Register

If a register is used to control or display status using flags at the bit
level, then you will see a plus sign (+) expansion indicator to left of
its name, this means that you can expand it. To do this, double-click
on the plus sign to show the flags indented by one tab character, and
the plus sign changes to a minus sign (-). If the flags have sub-groups,
for example register masks, they will also have expansion indicators
next to them.

Standard
Register

Expansion
indicator

Expanded
bit register

Figure 8.9 Expanding a Flag Register

To collapse an expanded flag register, double-click on the minus sign.
The flags collapse back to the single item and the minus sign changes
back to a plus sign.

8.5.2 Modifying Register Contents

There are two ways that you can change a register’s contents. The
quick edit method that allows you to enter values by typing directly
into the window, but is limited to hexadecimal values only. The full
edit method that requires you to enter values via a dialog box, but
allows you to enter values in any base and use complex expressions.

50 Hitachi Debugging Interface User Manual

Quick Edit

The quick way to change a register’s contents is to select the digit that
you wish to change, by clicking or dragging on it. You will see the
selected digit is highlighted. Type the new value for the digit; it must
be in the range 0-9 or a-f. The new value is written into the digit and
the cursor moves to the next digit in the register. When you enter a
value into the least significant digit of the register, the cursor moves
on to the most significant digit of the next register. If the digit of the
register display indicates a bit e.g. in the CPU condition code register
(CCR) then you can press SPACE to toggle the bit’s value.

Full Edit

The full way to change a register’s contents is accessed via a Register
dialog box. Open the Register dialog box in one of three ways:

1. Double-click the register you want to change.
2. Select the register you want to change, and press ENTER.

3. Select the register you want to change, and choose the
[Edit...] menu option from the popup menu.

Figure 8.10 Register Dialog Box

As in any other data entry field in HDI, you can enter a formatted
number or C/C++ expression (see section 2.2, Data Entry).

You can choose whether to modify the whole register contents(High
Word, Low Word.,etc), a masked area, floating or flag bits by
selecting an option from the drop list box (the contents of this list
depend on the CPU model and selected register).

When you have entered the new number or expression, click the [OK]
button or press ENTER, the dialog box closes and the new value is
written into the register.

Section 8 Looking at variables 51

8.5.3 Using Register Contents

It can be useful to be able to use the value contained in a CPU register
when you are entering a value elsewhere in HDI, for example when
displaying a specified address in the Source or Memory windows.
You can do this by specifying the register name prefixed by the “#”
character, e.g.: #R1, #PC, #R6L, or #ER3.

8.6 Looking at I/O

As well as a CPU and ROM/RAM, the microcomputer also contains
on-chip peripheral modules. The exact number and type of peripheral
modules differ between devices but typical modules are DMA
controllers, serial Communications interfaces, A/D converters,
integrated timer units, a bus state controller and a watchdog timer.
These on-chip peripherals are programmed by accessing registers
mapped to the micro-controller’s address space.

Since the setting up and use of these on-chip peripheral registers is
usually very important in an embedded micro-controller application, it
is useful to be able to look clearly at the contents of these registers.
The Memory window only allows you to look at data in memory as
byte, word, long word, single-precision floating-point, double-
precision floating-point, or ASCII values, so HDI also provides an
I/0 Registers window to ease inspection and setting up of these
registers.

8.6.1 Opening an I/O Registers Window

To open an /O Registers window select the [View->1/O Area] menu
option or click the I/O Register Window toolbar button [[Eg]]. The 1/O
register information is organized by modules that match the on-chip
peripherals. When an I/0 Registers window is first opened, only a list
of module names is displayed.

52 Hitachi Debugging Interface User Manual

Module name

Disabled module

1/Q reqisters

Bit information

TPower_Down_Mode_Registers
+DMA Channel Common

+DMA 0 Short Address Mode
+DMA 0 Full Address Mode
+DMA 1 Short Address_Mode
+DMaA 1 Full Address Mode
+Data Transfer Control
‘léwﬁzﬁ Tim&:wgulﬁfuﬁmit
+16 Bit Timer O

-16 Bit Timer 1

+
+

Register
address

Register name

OOFFFFED TCRI H'FF
DOFFFFE1 TMDR1 H'SD |
OOFFFFEZ TIORL H'FF

0 Ioa F

4 Tom e

OOFFFFE4 TIER1 H'FF

Register value

Figure 8.11 1/0 Registers Window

8.6.2 Expanding an I/O Register Display

To display the names, addresses and values of the I/O registers,
double-click on the module name or select the module name, by
clicking on it or using the cursor keys, and press ENTER. The
module display will expand to show the individual registers of that
peripheral module and their names, addresses and values. Double-
clicking (or pressing ENTER) again on the module name will close
the /O register display.

To display to bit level, expand the 1/O register in a similar way.

The bits are color coded as follows:

Black

Normal read/write

Red

Value changed since last update

Grey

Peripheral disabled (by peripheral control registers)

Section 8 Looking at variables 53

8.6.3 Modifying I/O Register Contents

To edit the value in an I/O register you can type hex values directly
into the view. To enter more complex expressions double-click or
press ENTER on the register to open a dialog box to modify the
register contents:

dit byte at

Figure 8.12 Dialog Box for Modifying I/0 Register
Contents

When you have entered the new number or expression, click the [OK]
button or press ENTER; the dialog box closes and the new value 1s
written into the register.

Note If you are using an emulator based debugging platform, when it reads
data from an /O register this can sometimes affect the operation of
your program. For example, reading a data register can cancel a
pending interrupt. Data is only read from I/O modules that have been
expanded in the I/O Registers window (so that the register values are
displayed). Therefore, as long as 1/0 modules are collapsed when they
no longer need to be displayed, this will not cause a problem. In order
to check whether this is affecting your program try running it without
the I/O Registers window. Also, note that having a Memory window
(or Disassembly window) open on the I/O area can have the same
effect.

Section 9 Overlay Function 55

9. Overlay Function

Programs making use of the overlay function can be debugged. This
section explains the settings for using the overlay function.

9.1 Displaying Section Group

When the overlay function is used, that is, when several section
groups are assigned to the same address range, the address ranges and
section groups are displayed in the Overlay dialog box.

Open the Overlay dialog box by choosing the [Setup->Oyerlay]
menu option.

01000-001023
0Z2000-00200B

Figure 9.1 Overlay Dialog Box (at Opening)

This dialog box has two areas: the Address list box and the Section
Name list box.

The Address list box displays the address ranges used by the overlay
function. Click to select one of the address ranges in the Address list
box.

01000-001023 sect0l,Psect
02000-002008 Psect0z,Psectcll
PzectDd,Psectl3

Figure 9.2 Overlay Dialog Box (Address Range Selected)

The Section Name list box displays the section groups assigned to the
sclected address range.

56 Hitachi Debugging Interface User Manual

9.2 Setting Section Group

Note

When using the overlay function, the highest-priority section group
must be selected in the Overlay dialog box; otherwise HDI will
operate incorrectly.

First click one of the address ranges displayed in the Address list box.
The section groups assigned to the selected address range will then be
displayed in the Section Name list box.

Click to select the section group with the highest-priority among the
displayed section groups.

02000-00200B

sect03,Psectld

Figure 9.3 Overlay Dialog Box (Highest-Priority Section
Group Selected)

After selecting a section group, clicking the [OK] button stores the
priority setting and closes the dialog box. Clicking the [Cancel]
button closes the dialog box without storing the priority setting.

Within the address range used by the overlay function, the debugging
information for the section specified in the Overlay dialog box is
referred to. Therefore, the same section of the currently loaded
program must be selected in the Overlay dialog box.

Section 10 Selecting functions 57

10. Selecting Functions

When selecting overloaded functions or member functions that can be
used in C++ programs, follow the description in this section.

10.1 Displaying Functions

Use the Select Function dialog box to display overloaded functions
and member functions.

A function can be selected in the following cases.

e When setting a breakpoint

e When specifying a function in the Run Program dialog box

e In the Set Address dialog box for opening the Source window
e In the Set Address dialog box for opening the Memory window
e When adding or modifying a symbol

e When specifying a function for performance analysis

When overloaded functions have the same specified function name, or
when a class name including a member function is specified, the
Select Function dialog box opens.

. :Func(long,char) . :Func(short char)
c:Func(long,char.int}
. :Funci{short , char)

. Func({long, char)

Figure 10.1 Select Function Dialog Box

58 Hitachi Debugging Interface User Manual

This dialog box has three areas.

e Sclect Function Name list box

Displays the overloaded functions or member functions and their
detailed information.

e Set Function Name list box
Displays the function to be set and their detailed information.

e Counter group edit box
All Function Displays the number of overloaded functions or
member functions.
Select Function Displays the number of functions displayed in
the Select Function Name list box.
Set Function Displays the number of functions displayed in
the Set Function Name list box.

10.2 Specifying Functions
Select overloaded functions or member functions in the Select
Function dialog box. Generally, one function can be selected at one
time; only for setting breakpoints, The breakpoint is set The plural
can be selected in the function setting by the Run Program dialog box
and setting the function of the performance analysis.

10.2.1 Selecting a Function

Click the function you wish to select in the Select Function Name list
box, and click the [>] button. You will see the selected function in the
Set Function Name list box. To select all functions in the Select
Function Name list box, click the [>>] button.

10.2.2 Deleting a Function
Click the function you wish to delete from the Set Function Name list
box, and click the [<] button. To delete all functions in the Set
Function Name list box, click the [<<| button.

10.2.3 Setting a Function

Click the [OK] button to set the functions displayed in the Set
Function Name list box. The functions are set and the Select Function
dialog box closes.

Section 10 Selecting functions 59

Clicking the [Cancel] button closes the dialog box without setting the
functions.

60 Hitachi Debugging Interface User Manual

11. Configuring the User Interface

When we designed the user interface for HDI we tried to make all the
frequently used operations quickly accessible and have related
operations grouped in a logical order. However, when you are in the
middle of a heavy debugging session you may find it more useful to
have a different arrangement of the user interface items or you may
just have a personal preference for the way you want it arranged. We
realize this and so HDI allows you to customize the user interface so
that you can be satisfied with the tool that you are using for
debugging your program. This section describes how you can arrange
the user interface windows, customize various aspects of the display
and save the configuration.

11.1 Arranging Windows

11.1.1 Minimizing Windows
If you have temporarily finished using an open window but want to be
able to look at it in its current state later, you can reduce it to an icon.
This is called minimizing the window. To minimize a window, either
click on the minimize button of the window, or choose the
Minimize| window menu option.

[02:14} (1ol a1 1= 1 LV R
‘Disassembly P:AUSERSALOUIS-NAAEXESA32BITAHBSTUTATUTORIAL

. v

00001016 OFF& MOV. L ER7, ER6G .
00001018 6A2800FF MOV. B @H"O0FFFF3B: 32, ROL if(MI
0000i0le EB07 AND.B #H'07,ROL
00001020 AB06 CMP. B #H'06, ROL
00001022 4702 EBEQ @H"10Z6:8
00001024 403E BRA @H'1064:8 B
000010Zé 6AZ300FF MOV. B @H'00FFFF39:32, ROL if (e
0oon102¢ AB01 CMP.B #H'01,ROL ‘
0po0N10Ze 4708 EEQ @HT1028:8
00001030 FB0O1 MOV. B #H'01,ROL

Minimize 00001032 6AABO0FF MOV. B ROL, @H'DOFFFF39:32 :

button 00001038 6AZS00FF BCLR.BE #5, @H O0FFFEDS: 32 BYRL . -
reRaTanwE Bal e S5 B A—RRP—MOBE+5 #POP .
00001042 5544 BSR @ MASK1:8 MASKI .
0oonin4a N BER. . @ DMAC RUM:3

Figure 11.1 Minimizing a Window

The window is minimized to an icon at the bottom left of the HDI
application window; for the above Disassembly window example the
icon Is:

195 Disassembl.

Figure 11.2 Disassembly Window Icon

Section 11 Configuring the user interface 61

Note You may not be able to see the icon if you have a window open over
the bottom of the screen.

To restore the icon back to a window, either double-click on the icon,
or choose the [Restore] menu option from the control menu.

11.1.2 Arranging Icons

Although the icons will be put at the bottom left of the HDI
application window by default when you minimize a window, you can
move them anywhere you like in the application window by simply
clicking and dragging them to a new position. When you restore the
icon to a window, the window will be at the same position that it was
in when you minimized it. Similarly, when you minimize it again, the
icon will be placed at the last position that you moved it to.

When you have many minimized windows as icons, the display can
look rather messy. To tidy up the icons, choose the |[Window-
>Arrange Icons] menu option.

The icons will be arranged in order from the bottom left of the
application window:

Byte MemofZs et i} bg

Figure 11.3 Icons Before Arrangement

62 Hitachi Debugging Interface User Manual

.- Byte Memorfe3

Figure 11.4 Icons After Arrangement

11.1.3 Tiling Windows

After some heavy debugging you may find that you have many
windows open on the screen. You can arrange all the windows in a
tile format with none of them overlapping each other using the Tile
function by choosing the [Window->Tile] menu option.

All currently open windows are arranged in a tile format. Windows
that are minimized to icons are not affected.

11.1.4 Cascading Windows
Open windows can also be arranged in a cascading format with only
their left and top border visible under the window in front of them by
choosing the [Window->Cascade] menu option. All currently open
windows are arranged in a cascading format. Windows that are
minimized to icons are not affected.

11.2 Locating Currently Open Windows

When you have many windows open in the HDI application window
it is quite easy to lose one of them behind the others. There are two
methods that you can use to find the lost window:

11.2.1 Locating the Next Window

To bring the next window in the window list to the front of the
display, choose |Next| from the window menu, or press CTRL+F6.
Repeating this operation will cycle selection of all windows (open
and minimized).

Section 11 Configuring the user interface 63

11.2.2 Locating a Specific Window

To select a specific window, choose from the list of windows (open
and minimized) at the bottom of the [Window] menu. The currently
selected window has a check mark next to it in the window list. In the
following example, the Disassembly window is the currently selected
window:

Figure 11.5 Selecting a Window

The window that you select will be brought to the front of the display.
If it is minimized the icon is restored to a window.

11.3 Enabling/Disabling the Status Bar

You can select whether or not the Status bar is displayed at the
bottom of the HDI application window; by default it will be displayed.
To disable display of the Status bar, choose the [Setup->Status Bar]|
menu option.

The Status bar will be disabled and removed from the HDI application
window display. To re-enable the Status bar display, choose the
[Setup->Status Bar] menu option again. The Status bar will be
enabled and added to the HDI application window display.

11.4 Customizing the Toolbar

To control the selection and arrangement of buttons displayed on the
toolbar, choose the [Setup->Customize->Toolbar...] menu option.

The Customize Toolbar dialog box opens and contains two panes.
The first pane 'Toolbars' is used to set the overall appearance of the
toolbars, while the second pane 'Commands' is used to set the
individual buttons in each toolbar.

64 Hitachi Debugging Interface User Manual

11.4.1 Overall Appearance

Note

Select the Toolbars pane to set the overall appearance of the toolbars:

Figure 11.6 Customize Toolbar (Toolbars) Dialog Box

The toolbars are listed in a multi-selection list box - to individually
switch off a toolbar, clear the check box next to the name (this name
is displayed in a mini-title bar when the toolbar is not attached to the
border of the main frame window).

The menu bar cannot be switched off.

If you need to conserve desktop area (for example, when using a
portable) then clear the 'Cool Look' check box to revert to the classic
Windows” 3.1 style menu and toolbars.

It is possible to add user-defined toolbars - click on the [New...]|
button and enter a name for your toolbar. This can be edited later in
the Toolbar Name edit box (feature only available for user defined
toolbars). The new toolbar, in this case called 'My Toolbar', will
appear floating at the top-left of the main frame but will have no
buttons. To add buttons, you will now have to customize your toolbar.

Section 11

Configuring the user interface 65

11.4.2 C

Button
categories

ustomizing Individual Toolbars

Customizing individual toolbars requires a mouse or other pointing
device - the feature is not available if only the keyboard is available.
This is because the toolbars only operate with a mouse, so
customizing them would be unnecessary unless you have a mouse.

Select the Commands pane to set the individual buttons in each
toolbar:

Buttons
available

Description
of button’s
operation

Figure 11.7 Customize Toolbar (Commands) Dialog Box

11.4.3 Button Categories

At the top left of the dialog box is a list of button categories. For each
category a list of buttons within that category will be displayed to the
right. Click on a button operation option in the list and you will see a
description of the button’s operation in the Button Description field.

11.4.4 Adding a Button to a Toolbar
< To add a button to a toolbar:

1. Select the button category from the button category list.

2. Select the button item from the operation list.

66 Hitachi Debugging Interface User Manual

3. Drag the button from the dialog to the toolbar location you
wish to add the new button.

The button is inserted into the toolbar..
11.4.5 Positioning a Button in a Toolbar
2 To move a button position in a toolbar:
1. Select the button in a toolbar.

2. Drag the button to the new position in the toolbar or another
toolbar.

Note Holding down the Ctrl key while dragging will copy the button.
11.4.6 Removing a Button from a Toolbar
< To remove a button in a toolbar:
1. Select the button in a toolbar.
2. Drag the button out of the toolbar (anywhere into the main

frame).

11.5 Customizing the Fonts

You can customize the display font for text style windows (e.g.
Source and Memory windows), or change the default font that is used
when a new window is opened.

Section 11 Configuring the user interface 67

To change the display font, choose the [Setup->Customize->Font]
menu option. This will launch the Font dialog box:

Courier
Courier New
Fixedsys
 MS LineDraw old ltalic

Terminal

Figure 11.8 Font Dialog Box

The dialog box is based on the standard Windows" font selection
dialog box, except that only fixed width fonts are listed in the Font
list box.

11.6 Customizing the File Filters

You can customize the file filters displayed in the Open dialogs.

To change the filters, choose the [Setup->Customize->File Filter]
menu option. This will launch the Customize File Filter dialog box:

Figure 11.9 Customize File Filter Dialog Box

Note Changes are made immediately when using this dialog. There is no
option to cancel changes made.

68 Hitachi Debugging Interface User Manual

< To edit an existing filter:
1. Select the file group from the File drop list.
2. Select the file type name from the Type drop combo.

3. Click the |Edit...] button to open the Edit Filter dialog box.
The dialog title will display the file group that is being
changed. The edit controls on this dialog are limited to accept
only valid characters.

4. Change the filter name and/or extension. If more than one
extension is required, then separate each extension with a
semi-colon. For example:

.mot;.a20;*.a37
2 To enter a new filter:
1. Select the file group from the File drop list.

2. Click the |Add...] button to open the Add Filter dialog box.
The dialog title will display the file group that is being
changed. The edit controls on this dialog are limited to accept
only valid characters.

3. Enter a name for the filter type and the extensions you want to
use for the filter.

Note If the filter type entered matches an existing type, then the filter for
the existing type will be changed to the newly entered filter.

2 To remove a filter:
1. Select the file group from the File drop list.
2. Select the file type name from the Type drop combo.

3. The file type will be removed when the [Delete] button is
clicked.

Section 11 Configuring the user interface 69

11.7 Saving a Session

If you have downloaded user program into the debugging platform,
have the corresponding source files displayed and a number of
auxiliary windows open, then it can take some time to setup this
information the next time the program is loaded. To help with this,
HDI can save the current settings to a file.

If you are already using a named session, or want to create a session
with the same name as the current object file, choose the [File->Save
Session] menu option.

To save the current setting under a new name, choose the [File->Save
Session As...] menu option. This will launch a common file dialog
box prompting you for a file name. Up to three files are saved, an HDI
session file (*.hds); a target session file (*.hdt); and a watch session
file (*.hdw). The first includes the HDI interface settings, e.g. all the
open windows and their positions. The second includes the settings
specific to the debugging platform/user system, e.g. the name of the
debugging platform and its configuration. The third is only created if
a Watch window is open and it includes a list of the variables
currently being watched.

The session name is then displayed as the second entry in HDI's title
bar. For example, if you are using the H8 smart card simulator and the
session name is "MANUAL", then the title bar will contain the text:

“Hitachi Debugging Interface — MANUAL — H8/3103 Simulator”

Note The session file does not include symbol or memory information. To
use modified information again in later sessions, save the symbol and
memory information in appropriate files. For details, see section 5.7,
Saving an Area of Memory and section 13.5.8, Save As....

11.8 Loading a Session

To reload a saved session, choose the [File->Load Session...] menu
option. This will launch a standard Windows" file dialog box
prompting you for an HDI session file name (*.hds).

Any currently open windows will be closed, and the connection to the
debugging platform initialized. If user program has been downloaded
to the user system, then the status bar will display the percentage done.

70 Hitachi Debugging Interface User Manual

When the download is complete, windows will be opened and
refreshed to show the latest information from the user system.

11.9 Setting HDI Options

There are a number of settings available to help you to use the HDI
interface. Choosing the [Setup->QOptions...] menu option will launch
the HDI Options dialog box:

Figure 11.10 HDI Options (Session) Dialog Box

The 'On Exit' group of radio buttons automates saving the current
session when the program is shut down:

e Automatically save session - this will save the session information
in the current session file. If there is no current session file then
you will be prompted to enter an HDI session file name.

e Prompt for save session - this will always ask you if you want to
save the current session when the program shuts down. If you
select 'Yes', then the session information is saved in the current
session file. If there is no current session file then you will be
prompted to enter a session file name.

e Quit without asking - this shuts down the program and does not
prompt you, nor save the current session information.

Check the 'Load last session on startup' check box if you want to
automatically load the last saved session the next time the program is
started.

Section 11 Configuring the user interface 71

Splash screen
Download complete
... Load memory successful
I Verify memory successful

i Labels loaded
I Delete breakpaint
¢ Delete all breakpoints
[Delete PA range
Delete all PA ranges

Figure 11.11 HDI Options (Confirmation) Dialog Box

Confirmation message boxes can be switched off or on by using the
appropriate confirmation check box.

' HDI Options

Figure 11.12 HDI Options (Viewing) Dialog Box

The 'Tab Size' list box can be used to set the number of spaces that a
tab character will be expanded to within the views. Valid values are
between 2 and 8 - the best value will be the same as your normal
editor.

11.10 Setting the Default Input Radix

HDI can accept input in several numerical bases. The default 1s
hexadecimal (except Count fields which are always decimal), but you
can also use one of the prefixes described in section 2.2.2, Data Formats.
To improve usability, you can select one of these formats as the
default, i.e. you will not need to enter the corresponding prefix to use
that radix.

72 Hitachi Debugging Interface User Manual

To change the default radix, choose the [Setup->Radix] menu option.
This will display a list of possible numbering systems with a check
mark to the left of the current radix:

Hexadecimal

Figure 11.13 Setting Radix

Section 11 Configuring the user interface 73

Section 12 Menus 75

12. Menus
. . ® . .
This document uses the standard Microsoft” menu naming convention.
Menu title) Check mark
?g Hitachi Debugging Interface - MANUAL - EG000 H8S /2600 Emulator
Menu bar

Drop-down me

Menu option
Ellipsis . Cascading menu
Figure 12.T Méenus
Check marks indicate that the feature provided by the menu option 1s
selected.
Ellipsis indicates that selecting the menu option will open a dialog
box that requires extra information to be entered.
Refer to your Windows® user manual for details on how to use the
Windows® menu system.
12.1 File

The File menu is used for aspects of the program that access program
files.

12.1.1 New Session...

v Launches the Select Session dialog box allowmg the user to
select a new debugging platform.

12.1.2 Load Session...

% Launches the Select Session dialog box allowing the user to
load a session from a selected session file (*.hds extension). A session
file contains the debugging platform's settings, and the current
program and the position of open child windows (views) - it contains
symbols, breakpoints, or current register values.

12.1.3 Save Session

; Updates the session file for the current session file. If there is
no current session file defined, this acts in a similar manner to the
Save Session As... menu option.

76 Hitachi Debugging Interface User Manual

12.1.4 Save Session As...

Launches the Save As dialog box allowing the user to save the current
session details under a new file name. A session file contains the
debugging platform's settings, and the current program and the
position of open child windows (views) - it contains symbols,
breakpoints, or current register values.

12.1.5 Load Program...

Launches the Load Object File dialog box, allowing the user
to select an object file in either S-Record (*.mot; *.s20; and *.obj
extensions), SYSROF (*.abs extension), or ELF/DWARF (*.abs
extension) format and download it to the debugging platform's
memory. This will also load the symbols if they are available in the
selected file.

12.1.6 Initialize

This will attempt to re-initialize the debugging system. It
will close down any open child windows and shut down the link to
the debugging platform. If this is successful, an attempt to re-establish
the link to the debugging platform will be made. The message 'Link
up' will appear in the left-most box of the status bar if this is
successful. (See also section 12.4.1, Reset CPU)

12.1.7 Exit

This will close down the HDI. The actions that are carried out by the
HDI can be defined by the user in the 'On Exit' section of the HDI
Options dialog box. (See also section 12.6.2, Options...)

12.2 Edit

The Edit menu is used for aspects of the program that access or
modify data in the child windows and debugging platform.

12.2.1 Cut

Only available if a block is highlighted in a child window
whose contents can be modified.

This will remove the contents of the highlighted block from the
window and place it on the clipboard in the standard Windows”
manner.

Section 12 Menus 77

12.2.2 Copy

Only available if a block is highlighted in a child window.

This will copy the contents of the highlighted block to the clipboard
in the standard Windows® manner.

12.2.3 Paste

Only available if the contents of the child window can be
modified.

This will copy the contents of the Windows® clipboard into the child
window at the current cursor position.

12.2.4 Find...

Only available if the window contains text.

This will launch the Find dialog box allowing the user to enter a word
and locate occurrences within the text. If a match is found, the cursor
will move to the start of the word.

12.2.5 Evaluate...

Launches the Evaluate dialog box allowing the user to enter
a numeric expression, e.g. "(#pc + 205)*2", and display the result in
all currently supported radices.

12.3 View

The View menu is used to select and open new child windows. If the
menu option is grayed, then the features provided by the window are
not available with the current debugging platform.

12.3.1 Breakpomts

Ly | Opens the Breakpoints window allowing the user to view
and edit current breakpoints.

12.3.2 Command Line

i Opens the Command Line window allowing the user to enter
text based commands to control the debugging platform. These
commands can be piped in from a batch file, and the results piped out
to a log file, allowing automatic tests to be performed.

78 Hitachi Debugging Interface User Manual

12.3.3 Disassembly...

Launches the Set Address dialog box allowing the user to
specify the memory block position that you wish to view.

12.3.4 IIO Area

1 Opens the 1/0 Registers window allowing the user to control
the user systems on-chip input/output functionality, e.g. an interrupt
controller.

12.3.5 Labels

Launches the Labels window allowing the user to
manipulate the current program's symbols (labels).

12.3.6 Locals

Opens the Locals window allowing the user to view and edit
the values of the variables defined in the current function. The
contents are blank unless the PC is within a C/C++ source-level
function.

12.3.7 Memory

x Launches the Open Memory Window dialog box allowing
the user to specify a memory block and view format to display within
a Memory window.

12.3.8 Performance Analysis

=l Launches the Performance Analysis window allowing the
user to set up and view the number of times that particular sections of
the user program have been called.

12.3.9 Reglsters

Opens the Registers window allowing the user to view all
the current CPU registers and their contents.

12.3.10 Source

iy Launches the Open dialog box allowing the user to enter a
ﬁle name of the source file (in either C/C++ or assembly language
format) to view. If the source file is not included within the current
program or there is no debugging information for the file within the
'absolute' (*.abs) file, then the message "Cannot load program. No
Source level debugging available" 1s displayed.

Section 12 Menus 79

12.3.11 Status

Opens the System Status window allowing the user to view
the debugging platform's current status and the current session and
program names.

12.3.12 Trace

5 Opens the Trace window allowing the user to see the current
trace information.

12.3.13 Watch

Opens the Watch window allowing the user to enter C/C++-
source level variables and view and modify their contents.

12.4 Run

The Run menu controls the execution of the user program in the
debugging platform.

12.4.1 Reset CPU

Resets the user system hardware and sets the PC to the Reset
Vector address. (See also section 12.1.6, Initialize)

12.4.2 Go

Starts executing the user program at the current PC.

12.4.3 Reset Go

Resets the user system hardware and sets the PC to the Reset
Vector address before executing the user program.

12.4.4 Go To Cursor

Starts executing the user program at the current PC and
continues until the PC equals the address indicated by the current text
cursor (not mouse cursor) position.

12.4.5 Set PC To Cursor

Changes the value of the Program Counter (PC) to the
address at the row of the text cursor. Disabled if no address is
available for the current row.

80 Hitachi Debugging Interface User Manual

12.4.6 Run...

Launches the Run Program dialog box allowing the user to enter
temporary breakpoints before executing the user program.

12.4.7 Step In

Executes a block of user program before breaking. The size
of this block is normally a single instruction but may be set by the
user to more than one instruction or a C/C++-source line (see also
section 12.4.10, Step..). If a subroutine call is reached, then the
subroutine will be entered and the view is updated to include its code.

12.4.8 Step Over

Executes a block of user program before breaking. The size
of this block is normally a single instruction but can be set by the user
to more than one instruction or a C/C++-source line (see also section
12.4.10, Step...). If a subroutine call is reached, then the subroutine will
not be entered and sufficient user program will be executed to set the
current PC position to the next line in the current view.

12.4.9 Step Out

Executes sufficient user program to reach the end of the
current function and set the PC to the next line in the calling function
before breaking.

12.4.10 Step...

| Launches the Step Program dialog box allowing the user to
modify the settings for stepping.

12.4.11 Halt
Stops the execution of the user program.

12.5 Memory

The Memory menu is used for aspects of the program that access
memory.

12.5.1 Refresh
Forces a manual update of the contents of all open Memory windows.

Section 12 Menus 81

12.5.2 Load...

Launches the Load Memory File dialog box, allowing the
user to select an offset address in the memory area, and file name to
load from an S-Record format file on disk.

12.5.3 Save...

Launches the Save Memory As dialog box, allowing the user
to select a start and an end address in the memory area, to save to an
S-Record format file on disk. If a block of memory is highlighted in a
Memory window, these will be automatically entered as the start and
end addresses when the dialog box is displayed.

12.5.4 Verify...

Launches the Verify S-Record File with Memory dialog box,
allowmg the user to select a start and an end address in the memory
area to check against the contents of an S-Record file on disk.

12.5.5 Test...

Launches the Test Memory dialog box allowing the user to
specify a block of memory to test for correct read/write operation. The
exact test is target dependent. However, in all cases the current
contents of the memory will be overwritten - YOUR PROGRAM
AND DATA WILL BE ERASED.

12.5.6 Fill...

Launches the Fill Memory dialog box allowing the user to
fill a block of the debugging platform's memory with a value.

12.5.7 Copy...

= Launches the Copy Memory dialog box allowing the user to
copy a block of the debugging platform's memory to an address
within the same memory area. The blocks may overlap, in which case
any data within the overlapped region of the source block will be
overwritten.

82 Hitachi Debugging Interface User Manual

12.5.8 Compare...

Launches the Compare Memory dialog box, allowing the
user to select a start and an end address in the memory area, to check
against another area in memory. If a block of memory is highlighted
in a Memory window, these will be automatically entered as the start
and end addresses when the dialog box is displayed.

Similar to Verify memory, but compares two blocks in memory.

12.5.9 Conflgure Map...

: Opens the Memory Mapping window allowing the user to
view and (if supported) edit the debugging platform's current memory
map. In some debugging platforms, the Memory Map dialog box will
open.

12.5.10 Conflgure Overlay...

= Launches the Overlay dialog box. When the overlay function
is used, the target section group can be selected in the dialog box.

12.6 Setup

The Setup menu is used to modify the settings of the HDI user
interface, and the configuration of the debugging platform.

12.6.1 Status Bar

Toggles the status bar feature on and off. If the feature is enabled then
a check mark will be displayed to the left of the menu text.

12.6.2 Options...

Launches the HDI Options dialog box allowing the user to
modlfy the settings that are specific to the HDI (not debugging
platform dependent settings).

12.6.3 Radix

[Cascades a menu displaying a list of radix in which
the numeric values will be displayed and entered by default (without
entering the radix prefix). The current radix has a check mark to its
left and the associated toolbar button is locked down.

For example, if the current radix is decimal then the number ten will
be displayed as "10" and may be entered as "10", "mwa", "oxo0a", etc.;

Section 12 Menus 83

if the current radix is hexadecimal then the number ten will be

displayed as "oa" and entered as "a", "D’10", etc.
y s

12.6.4 Customize

Cascades a menu displaying a list of options that can
be customized by the user.

Toolbar :When this cascade menu option is selected, the Customize
dialog box is launched.

Font :When this cascade menu option is selected, the Font dialog box
is launched, allowing a fixed width font to be selected.

File Filter : When this cascade menu option is selected, the File Filter
dialog box is launched, allowing the browser file filters for Object,
Source and Memory files to be changed to match the user’s
requirements.

12.6.5 Configure Platform...

Launches a set-up dialog box specific to the selected
debugging platform. Refer to the debugging platform's user manual
for more detail about the options available in the dialog box.

12.7 Window

The Window menu modifies the display of currently open child
windows. The following menu options are always displayed, and a
numbered list of current child windows will be appended - the
topmost child window will have a check mark.

12.71 Cascade

Arranges the child windows in the standard cascade manner,
i.c. from the top left such that the title bar of each child window is
visible.

12.7.2 Tile

Arranges the child windows in the standard tile manner, i.e.
sizes each window such that all are displayed without overlapping.

12.7.3 Arrange Icons

Lines up any iconized windows neatly along the bottom of
the parent frame in the standard manner.

84 Hitachi Debugging Interface User Manual

12.7.4 Close All
Closes all the child windows.

12.8 Help

The Help menu accesses additional information on how to use the
functionality provided by HDL.

12.8.1 Index

Opens the main help file at the index.

12.8.2 Using Help

Opens a help file allowing the user to find out how to use Windows™
hypertext help system.

12.8.3 Search for Help on

Opens the main help file and launches the Search dialog box allowing
the user to enter and browse through the file's keywords.

12.8.4 About HDI

Launches the About HDI dialog box allowing the user to view the
version of HDI and the currently loaded DLLs.

Section 13 Windows 85

13. Windows

This section describes each child window type, the features that each
window supports and the options available through their associated
popup menu.

13.1 Bre

artup VECT 00000000 Type=FC
00000100 Type=Access.

Figure 13.1 Breakpoints Window

Allows the user to view and control current breakpoints and to view
the hardware breakpoint resources. For more information regarding
supported breakpoint types and resources, refer to the Debugging
Platform User’s Manual.

A popup menu containing the following options is available by right
clicking within the window.

13.1.1 Add...

Launches the Breakpoint/Event Properties dialog box allowing the
user to enter a new breakpoint. The dialog box is dependent on the
debugging platform.

13.1.2 Edit...

Only enabled if a breakpoint is selected. Launches the
Breakpoint/Event Properties dialog box allowing the user to modify
the properties of an existing breakpoint. The dialog box 1s dependent
on the debugging platform.

13.1.3 Delete

Only enabled if a breakpoint is selected. Removes the selected
breakpoint. To retain the details of the breakpoint but not have it
cause a break when its conditions are met, use the Disable option (see
section 13.1.5, Disable/Enable).

86 Hitachi Debugging Interface User Manual

13.1.4 Delete All
Removes all breakpoints from the list.

13.1.5 Disable/Enable

Only ecnabled if a breakpoint is selected. Toggles the selected
breakpoint between ecnabled and disabled (when disabled, a
breakpoint remains in the list, but does not cause a break when the
specified conditions are satisfied). When a breakpoint i1s enabled, a
check mark is shown to the left of the menu text (and a circle is
shown in the Enable column for the breakpoint).

13.1.6 Go To Source
Opens Source or Disassembly window at address of breakpoint.

13.2 Command Line

ommand Line

Figure 13.2 Command Line Window

Allows the user to control the debugging platform by sending text-
based commands instead of the window menus and commands. It is
useful if a series of predefined commands need to be sent to the
debugging platform by calling them from a batch file and, optionally,
recording the output in a log file. The command can be executed by
pressing 'Enter’ after the command is input to the text box (Or, the
Enter button in the right of the text box is clicked). For information
about the available commands, refer to the on-line help.

If available, the window title displays the current batch and log file
names separated by colons.

Section 13 Windows 87

The functionality of the toolbar buttons is identical to the popup menu
options shown below.

13.2.1 Run Batch File...

Launches the Run Batch File dialog box, allowing the user
to enter the name of an HDI command file (*.hdc). The batch file is
then run automatically. The name of the file is shown on the window
title bar.

13.2.2 Play

Runs the last entered HDI command file (*.hdc). It 1s
displayed in a recessed state while the batch file is running and can be
used to stop an executing batch file and return control to the user.

13.2.3 Set Log File...

i Launches the Open Log File dialog box, allowing the user to
enter the name of an HDI log file (*.log). The logging option 1is
automatically set and the name of the file shown on the window title
bar.

Opening a previous log file will ask the user if they wish to append or
over-write the current log.

13.2.4 Logging

Toggles logging to file on and off. When logging is active,
the button becomes effective. Note that the contents of the log file
cannot be viewed until logging is completed, or temporarily disabled
by clearing the check box. Re-enabling logging will append to the log
file.

13.3 Disassembly

This window is used to display code at the assembly-language level.

This window layout has a different layout to the Source window, with
an additional column Label which displays the symbol/label name (if
available) for that address. Assembler information is obtained by
disassembling the memory contents, and may be edited or viewed
directly from memory without requiring debug information from the
object file.

88 Hitachi Debugging Interface User Manual

|0pnoloes . 5574

P:AUSERSALOUIS-NAA

joo0001016 0FF6 MOV.L ER7, ER6
00001018 6A2800FF MOV. B @H'OOFFFF3B:32, ROL 1f (ML
0000101e ES07 AND.B #H'07,ROL "
D0001020 ABO6 CMP.E #H'06, ROL
00001022 4702 BEQ @H'1026:8 i
00001024 403E BRA @H'1064:8 e
00001026 6A2800FF MOV. B @H'O0FFFF39:32,ROL if(8y
pD000102¢ A801 CMP.B #H'01, ROL
00oo0102e 4708 BEQ @H'1038:8
00001030 FE01 MOV. B #H"01, ROL
00001032 6AABO0FF MOV. B ROL, @GH"OOFFFF39:32
00001038 6A3800FF BCLR.B #5, @H"00FFFED5S: 32
00001040 5528 @_STOP_MODE:8

00001042 554A @ MASK1:8

@ DMAC RUN:B. ..

It supports column-specific double-click actions:

BP - Toggles standard event types at that address.

Address - Launches the Set Address dialog box, allowing the user
to enter a new address. If the address is in a source file, then that
file will be opened in a new window (a current source view will be
brought into focus) with the cursor set to the specified address.
Finally, if the address does not correspond to a source file, then this
window will scroll to that location. When an overloaded function
or a class name is entered in the Set Address edit field, the Select
Function dialog box opens for you to select a function.

Code and Assembler - Launches the Assembler dialog box
allowing the user to modify the instruction at that address. Note
that changes to the machine code do not modify the source file, and
any changes will be lost at the end of the session.

Label - Launches the Label dialog box, allowing the user to enter a
new label, or to clear or edit the name of an existing label.

Source - Launches editor at location in source (set by optional
startup parameters in Windows" Start menu HDI shortcut).

Within the BP column a list of currently supported standard
breakpoint types can be displayed by right clicking. The currently
selected standard breakpoint is shown by a check mark to the left of
the menu text.

A popup menu containing the following options is available by right
clicking within the window, but outside the BP column:

Section 13 Windows 89

13.3.1 Copy

Only available if a block of text is highlighted. This copies
the highlighted text into the Windows" clipboard, allowing it to be
pasted into other applications.

13.3.2 Set Address...

Launches the Set Address dialog box, allowing the user to enter a new
start address. The window will be updated so that this is the first
address displayed in the top-left corner. When an overloaded function
or a class name is entered, the Select Function dialog box opens for
you to select a function.

13.3.3 Go To Cursor

= Commences to execute the user program starting from the
current PC address. The program will continue to run until the PC
reaches the address indicated by the text cursor (not the mouse cursor)
or another break condition is satisfied. Grayed if not supported by the
debugging platform.

13.3.4 Set PC Here

Changes the value of the PC to the address indicated by the text
cursor (not the mouse cursor).

13.3.5 Instant Watch...

Launches the Instant Watch dialog box with the name extracted from
the view at the current text cursor (not mouse cursor) position. Only
valid in the source column.

13.3.6 Add Watch

Adds the name extracted from the view at the current text cursor (not
mouse cursor) position to the list of watched variables. If a Watch
window is not open, then it is opened and brought to the top of the
child windows. Only valid in the source column.

90 Hitachi Debugging Interface User Manual

13.4 1/0 Reglsters

13.4.1 Copy

I!U Heglsters

e —

+DMA ChanneI Comnon
: DMA 0 Short Address _Mode
§+DMA 0 Full _Address Mode
DIt'IA__l_Short_Address_Mode
5+DMA_1_Full_Address_Mode
§+Data_’I‘ransfer_Control

{+t16 Bit Timer 0O
16 Bit Timer 1
| + OOFFFFEO TCR1 H'FF |
i + O0OFFFFEl TMDR1
- O00OFFFFEZ TIORL H'FF

0 Ioa

4 ICB
DDFFFFE4 TIE 1

Figure 13.4 1/0 Registers Window

Allows the user to view and control the user system hardware's on-
chip peripherals. The peripherals are organized by modules, and the
level of displayed detail can be changed with a '+' indicating that the
information may be expanded by double-clicking on the variable
name, and a '-' indicating that the information may be collapsed.

Double-click on the '+' and '-' character, or use the plus and minus
keys, to expand and contract the register information.

A popup menu containing the following options is available by right
clicking within the window:

: Only available if a block of text is highlighted. This copies
the highlighted text into the Windows" clipboard, allowing it to be
pasted into other applications.

13.4.2 Edit...

Launches a dialog box to modify the selected register’s contents.

13.4.3 Expand/Collapse

Expands/collapses the selected module.

Section 13 Windows 91

13.5 Labels

+ Labels

H'00001000 startup hoot
H*00001012 _main
H'0000106A STOP MODE
H'0000D108E MASK1

i H'000010BA _DMAC_RUN
H'00001180 MAGSEZ
H'000011AC _DTC_ REGSH
H'0000129E _DTC_SCIO_ACT
H'000012EZ _DTC_SCIO_RUN
H'00001316 MASEKES
H'00001342 WDT_RUN
H'00001358 DENDOA
HT0000136C WOVI
H'O000013%E _ TXIO
H'000013C6h _COPY MEM
H'00001412 TNITSCT
H'0000145¢C D ROM

Figure 13.5 Labels Window

You can view symbols sorted either alphabetically (by ASCII code) or
by address value by clicking on the respective column heading.

It supports column-specific double-click actions:

e BP - Toggles through the standard event types at that address.

e Value - Opens a Source window at the start of the function.
e Name - Launches the Edit Labels dialog box.

Within the BP column a list of currently supported standard
breakpoint types can be displayed by right clicking. The currently
selected standard breakpoint is shown by a check mark to the left of
the menu text.

A popup menu containing the following options is available by right
clicking within the window, but outside the BP column:

13.5.1 Add...
Launches the Add Label dialog box:

92 Hitachi Debugging Interface User Manual

Figure 13.6 Add Label Dialog Box

Enter the new label name into the Name field and the corresponding
value into the Value field and press [OK]. The Add Label dialog box
closes and the label list is updated to show the new label. When an
overloaded function or a class name is entered in the Value field, the
Select Function dialog box opens for you to select a function. For
details, refer to section 10, Selecting Functions.

13.5.2 Edit...
Launches the Edit Label dialog box:

Figure 13.7 Edit Label Dialog Box

Edit the label name and value as required and then press [OK] to save
the modified version in the label list. The list display is updated to
show the new label details. When an overloaded function or a class
name is entered in the Name field, the Select Function dialog box
opens for you to select a function. For details, refer to section 10,
Selecting Functions.

Section 13

Windows 93

13.5.3 Find...

Launches the Find Label Containing dialog box:

Figure 13.8 Find Label Containing Dialog Box

Enter all or part of the label name that you wish to find into the edit
box and click [OK] or press ENTER. The dialog box closes and HDI
searches the label list for a label name containing the text that you
entered.

Note Only the label is stored by 1024 characters of the start, therefore the
label name must not overlap mutually in 1024 characters or less.
Labels are case sensitive.
13.5.4 Delete

Deletes the currently selected label from the symbol list. Alternatively
use the Delete accelerator key. A confirmation message box appears:

Figure 13.9 Message Box for Confirming Label Deletion

If you click on the |[Yes] button the label is removed from label list
and the window display is updated. If the message box is not required
then do not select the Delete Label option of the Confirmation seat in
the HDI Options dialog box.

13.5.5 Delete All

Deletes all the labels from the list. A confirmation message box
appears:

94 Hitachi Debugging Interface User Manual

Figure 13.10 Message Box for Confirming All Label
Deletion

If you click on the [Yes] button all the labels are removed from the
HDI system’s symbol table and the list display will be cleared. If the
message box is not required then do not select the Delete All Labels
option of the Confirmation seat in the HDI Options dialog box.

13.5.6 Load...
Merges a symbol file into HDI's current symbol table. The Load
Symbols dialog box opens:

Figure 13.11 Load Symbols Dialog Box

Section 13 Windows 95

The dialog box operates like a standard Windows" open file dialog
box; select the file and click [Open] to start loading. The standard file
extension for symbol files is “.sym”. When the symbol loading is
complete a confirmation message box may be displayed showing how
many symbols have been loaded (this can be switched off in the
Confirmations tab on the HDI Options dialog).

13.5.7 Save
Saves HDI’s current symbol table to a symbol file.

13.5.8 Save As...
The Save Symbols dialog box operates like a standard Windows"
Save File As dialog box. Enter the name for the file in the File name
field and click [Open] to save HDI's current label list to a symbol file.

b2

The standard file extension for symbol files is “.sym”.

See Appendix F for symbol file format.

13.6 Locals

Figure 13.12 Locals Window

Allows the user to view and modify the values of all the local
variables. The contents of this window are blank unless the current
PC can be associated to a function containing local variables in the
source files via the debugging information available in the object file.

The variables are listed with a plus indicating that the information
may be expanded by double-clicking on the variable name, and a
minus indicating that the information may be collapsed. Alternatively,
the plus and minus keys may be used. For more information on the
display of information, refer to section 8.3.2, Expanding a Watch.

A popup menu containing the following options is available by right
clicking within the window:

96 Hitachi Debugging Interface User Manual

13.6.1 Copy

Only available if a block of text is highlighted. This copies
the highlighted text into the Windows® clipboard, allowing it to be
pasted into other applications.

13.6.2 Edit Value...
Launches a dialog box to modify the selected variable’s value.

13.6.3 Radix
Changes the radix for the selected local variable display.

0001FFFF Emulator

R
U0FFEBFF Guarded
00FFFBFF Emulator R
00FFFE3F Guarded
R
R

00FFFFO0?7 Emulator
00FFFF27 Guarded
00FFFFFF Emulator

Figure 13.13 Memory Mapping Window

Allows the user to view and modify the debugging platform's memory
map and to view its memory configuration and resources. The exact
memory map configuration available will depend on the debugging
platform selected, however, HDI includes a default dialog that can but
used by most platforms.

A popup menu containing the following options is available by right
clicking within the window.

13.7.1 Add...
Launches the Edit Memory Mapping dialog box allowing the user to
enter the details of a new memory area to add to the map. Grayed 1f
the debugging platform does not support editing of its maps.

Section 13 ’ Windows 97

- 13.7.2 Edit...

Launches the Edit Memory Mapping dialog box allowing the user to
modify the details of the currently selected memory map. Grayed if
the debugging platform does not support editing of its maps.

13.7.3 Reset

Returns the map information to the debugging platform's default
values. Grayed if the debugging platform does not support editing of
its maps.

13.7.4 Help
Launches the help file.

13.8 Memory

OFFECO4

{DOFFECOS

Figure 13.14 Memory Window

Allows the user to view and modify the contents of the debugging
platform's memory. Memory may be viewed in ASCII, byte, word,
long word, single-precision floating-point, and double-precision
floating-point formats, and the title bar indicates the current view
style and the address shown as the offset from the previous label
(symbol).

The contents of memory may be edited by either typing at the current
cursor position, or by double-clicking on a data item. The latter will
launch the Edit dialog box, allowing the user to enter a new value
using a complex expression. If the data at that address cannot be
modified (i.e. within ROM or guarded memory) then the message
"Invalid address value" 1s displayed.

98 Hitachi Debugging Interface User Manual

Double-clicking within the Address column will launch the Set
Address dialog box, allowing the user to enter an address. Clicking
the [OK] button will update the window so that the address entered in
the Set Address dialog box is the first address displayed in the top-left
corner.

A popup menu containing the following options is available by right
clicking within the window:

13.8.1 Set Address...

Launches the Set Address dialog box, allowing the user to enter a new
start address. The window will be updated so that this is the first
address displayed in the top-left corner. When an overloaded function
or a class name is entered, the Select Function dialog box opens for
you to select a function.

13.8.2 Load...

Launches the Load Memory dialog box, allowing the user to load to
the debugging platform's memory from an S-Record file (*.mot)
without deleting the current debug information. The offset field may
be used to move the address values specified in the file to a different
set of addresses. The optional verify flag can be used to check that the
information has been downloaded correctly.

13.8.3 Save...

Launches the Save Memory As dialog box, allowing the user to save a
block of the debugging platform's memory to an S-Record file (*.mot).
The start and end fields may be set similarly to the Search option(see
section 13.8.8, Search...).

13.8.4 Test...

Launches the Test Memory dialog box, allowing the user to validate a
block of memory within the debugging platform. The details of the
test depend on the debugging platform. The start and end fields may
be set similarly to the Search option(see section 13.8.8, Search...).

13.8.5 Fill...

Launches the Fill Memory dialog box, allowing the user to fill a block
of the debugging platform's memory with a specified value. The start
and end fields may be set similarly to the Search option(see sccrion
13.8.8, Search...).

Section 13 Windows 99

13.8.6 Copy...

Launches the Move Memory dialog box, allowing the user to copy a
block of memory within the debugging platform to another location
within the same memory space. The blocks may overlap. The start and
end fields may be set similarly to the Search option(see section 13.8.8,
Search...).

13.8.7 Compare...

Launches the Compare Memory dialog box, allowing the user to
select a start and an end address in the memory area, to check against
another area in memory. If a block of memory is highlighted in a
Memory window, these will be automatically entered as the start and
end addresses when the dialog box 1s displayed.

Similar to Verify memory, but compares two blocks in memory.

13.8.8 Search...

Launches the Search Memory dialog box, allowing the user to search
a block of the debugging platform's memory for a specified data value.
If a block of memory is highlighted, the start and end fields in the
dialog box will be filled automatically with the start and end
addresses corresponding to the highlighted block, respectively.

13.8.9 ASCII/Byte/Word/Long/Single Float/Double Float

A check mark next to these six options indicates the current view
format. The user may select a different option to change to that format.

13.9 Perform_an_c_e Analys:s

Performance Analysis

1 Zleep mode il 0%
Z Sub Sleep mode 0 0%
3 Watch mode il 0%
4 Other modes= 131 57%
5 Cther Addresses 39 43%

Flgure 13 15 Performance Analysns Wmdow

100 Hitachi Debugging Interface User Manual

Allows the user to view and control the performance analysis data.
The items displayed as default cannot be deleted or modified by the
user. The display contents and operation depend on the debugging
platform. See the supplied Debugging Platform User’s Manual for more
information. A popup menu containing the following options is
available by right clicking within the view area:

13.9.1 Add Range...

Launches the Add PA Range dialog box, allowing the user to add a
new user range based on either source lines or an address range. The
name of the range can be edited.

13.9.2 Edit Range...

Only enabled when the highlighting bar is on a user-defined range.
Launches the Edit PA Range dialog box, allowing the user to modify
the range's settings.

13.9.3 Delete Range

Only enabled when the highlighting bar is on a user-defined range.
Deletes the range and immediately recalculates the data for the other
ranges.

13.9.4 Reset Counts/Times
Clears the current performance analysis data.

13.9.5 Delete All Ranges

Deletes all the current user-defined ranges, and clears the perform-
ance analysis data.

13.9.6 Analysis Enabled
Toggles the collection of performance analysis data. When
performance analysis is active, a check mark is shown to the left of
the text.

Section 13 Windows 101

13.10 Registers

Figure 13.16 Registers Window

Allows the user to view and modify the current register values.

A popup menu containing the following options is available by right
clicking within the window:

13.10.1 Copy

Only available if a block of text is highlighted. This copies
the selected text into the Windows® clipboard, allowing it to be
pasted into other applications.

13.10.2 Edit...
Launches the Register dialog box, allowing the user to set the value of
the register indicated by the text cursor (not mouse cursor).

13.10.3 Toggle Bit

Only available if the text cursor is placed on a bit-field, e.g. a flag
within a status register. Changes the current state of the bit to its other
state, ¢.g. a set overflow flag can be cleared.

102 Hitachi Debugging Interface User Manual

13.11 Source

The Source window can be used to view any source file that was
included within the object file’s debug information - this may be
C/C++ and assembly language.

Tutonal.c

31 00001018 if(MDCR.BIT.MDS!=0x6
3z i* printf{"gele
33 00001024 & return;

134 }
35 000010Zs 1f{(g¥38CR.BYTE!=0x01}
36 000010320 3¥Y3CR.BYTE=0x1;
37 =
38 00001038 BCRL.BIT.EAE = 0; -
39
40 00001040 STOP_MODE () ;

Figure 13.17 Source View

It supports column-specific double-click actions:

e BP - Sets/clears a program (PC) breakpoint at that address.

e Address - Launches the Set Address dialog box, allowing the user
to enter a new address. If the address is within the range of this file,
then the view will scroll such that the cursor can be positioned
correctly. If the address is in a different source file, then that file
will be opened in a new window with the cursor set to the specified
address. Finally, if the address does not correspond to a source file,
then a new Disassembly window will be opened. When an
overloaded function or a class name is entered, the Select Function
dialog box opens for you to select a function.

e Label - Launches the Label dialog box, allowing the user to enter a
new label and edit the name of an existing label.

e Line - Launches the Set Line dialog box, allowing the user to go
directly to a line in the source file.

e Source - Opens the source file in the editor (specified in the Startup
menu HDI shortcut) at this source line.

Section 13 Windows 103

Within the BP column a list of currently supported standard
breakpoint types can be displayed by right clicking. The currently
selected standard breakpoint is shown by a check mark to the left of
the menu text.

A popup menu containing the following options is available by right
clicking in any of the other columns within the window:

13.11.1 Copy

Only available if a block of text is highlighted. This copies
the highlighted text into the Windows® clipboard, allowing it to be
pasted into other applications.

13.11.2 Find...

Launches the Find dialog box, allowing the user to search
the source file for a string.

13.11.3 Set Address...

Launches the Set Address dialog box, allowing the user to enter a new
start address. The window will be updated so that this is the first
address displayed in the top-left corner. When an overloaded function
or a class name is entered, the Select Function dialog box opens for
you to select a function.

13.11.4 Set Line...

Launches the Set Line dialog box, allowing the user to display and
move the text cursor (not the mouse cursor) to a specific line.

13.11.5 Go To Cursor

Commences to execute the user program starting from the
current PC address. The program will continue to run until the PC
reaches the address indicated by the text cursor (not the mouse cursor)
or another break condition is satistied. Grayed if not supported by the
debugging platform.

13.11.6 Set PC Here

Changes the value of the PC to the address indicated by the text
cursor (not the mouse cursor).

104 Hitachi Debugging Interface User Manual

13.11.7 Instant Watch...

Launches the Instant Watch dialog box with the name extracted from
the view at the current text cursor (not mouse cursor) position.

13.11.8 Add Watch

Adds the name extracted from the view at the current text cursor (not
mouse cursor) position to the list of watched variables. If the Watch
window is not open, then it is opened and brought to the top of the
child windows.

13.11.9 Go To Disassembly

Opens a Disassembly view at the address matching the current source
line.

13.12 System Status

Target Device Configuration H88/Zxxx Advanced mode
ROM 000COO0OO0-000FFFFF
rAM O00FFOOOO0O-0OOFFFFFF

Jystem Memory Resources No information

Loaded Memory Areas 00001412 00001450
00oocoo0o ooooooo3
00000064 pooooo0ea7?
00000120 ooooo1z3
ooooo148 0000014B
ooon04.a4 ooDD04AS
00001000 0ooo1411
00001422 000014A5

Figure 13.18 System Status Window

Allows the user to view the current status of the debugging platform.
See the supplied Debugging Platform User’s Manual for more information.

Section 13 Windows 105

The System Status window is split into four panes:

1. Session - contains information about the current session including
the connected debugging platform and the names of loaded files.

2. Platform - contains information about the current status of the
debugging platform, typically including CPU type and mode; run
status; and timing information.

3. Memory - contains information about the current memory status
including the memory mapping resources and the areas used by the
currently loaded object file.

4. Events - contains information about the current event (breakpoint)
status, including resource information.

A popup menu containing the following options is available by right
clicking within the window:

13.12.1 Update
Updates the displayed data.

13.12.2 Copy

Only available if a block of text is highlighted. This copies
the highlighted text into the Windows® clipboard, allowing it to be
pasted into other applications.

13.13 Trace

-3 00:00: - i
-z 00:00:00.0000020 1000 7a07 IF ROM 00 startup_StartUp .DATA W H'?2;MOV_L #$H'FFFBFC, S'.»
-1 00:00:00.0000040 1002 OOff IF ROM 0D .DATA. W H'0(:
o 00:00:00.0000060 1004 fbfc IF ROM 00 MOV .B $H'1

S s T T e 4

Figure 13.19 Trace Window

Allows the user to view the sequence of instructions leading up to the
debugging platform's current status. The exact view will depend on
the selected debugging platform - in the above picture the target
returns only a single column, but uses spaces to columnize the data.
Other platforms may return multiple columns with different headings.

106 Hitachi Debugging Interface User Manual

13.13.1

13.13.2

13.13.3

13.13.4

13.13.5

13.13.6

13.13.7

13.13.8

Double-clicking on a row will open the Source or Disassembly view
for the address.

When mouse's right button is clicked in the window, the pop-up menu
is displayed. The following options are included in this menu.

Find...

Launches the Trace Search dialog box, allowing the user to search the
current trace buffer for a specific trace record.

Find Next

If a find operation is successful, and the item found is non-unique,
then this will move to the next similar item.

Filter...

Launches the Filter Trace dialog box, allowing the user to mask out
all unnecessary trace entries.

Acquisition...

Launches the Trace Acquisition dialog box, allowing the user to
define the area of user program to be traced. This is useful to focus
tracing on problem areas.

Halt

Stops tracing data and updates the trace information without stopping
execution of the user program.

Restart

Starts tracing data.

Snapshot

Updates the trace information to show the debugging platform's
current status without stopping user program execution.

Clear

Empties the trace buffer in the debugging platform. If more than one
trace window is open, all Trace windows will be cleared as they all
access the same buffer.

Section 13

Windows 107

13.13.9 Save...

Launches the Save As file dialog box, allowing the user to save the
contents of the trace buffer as a text file. It is possible to define a
numeric range based on the Cycle number or to save the complete
buffer (saving the complete buffer may take several minutes). Note
that this file cannot be reloaded into the trace buffer.

13.13.10 View Source

Opens a Source or Disassembly window for the address.

13.13.11 Trim Source

Removes white space from the left side of the source.

13.14 Watch

[1] -D'5
[2] -priz :
+Temp Name ="Hitachi Micro Systems
+TempZ Name ="Hitachi Micro 3ystems E
x 0x0000105e :

Figure 13.20 Watch Window

Allows the user to view and modify C/C++-source level variables.
The contents of this window are blank unless the current user
program can be associated to a C/C++-source file via the debugging
information available in the absolute file (*.abs).

The vanables are listed with a plus indicating that the information
may be expanded by double-clicking on the variable name, and a
minus indicating that the information may be collapsed. Alternatively,
the plus and minus keys may be used.

A popup menu containing the following options is available by right
clicking within the windows:

108 Hitachi Debugging Interface User Manual

13.14.1

13.14.2

13.14.3

13.14.4

13.14.5

13.14.6

Copy

Only available if a block of text is highlighted. This copies
the highlighted text into the Windows" clipboard, allowing it to be
pasted into other applications.
Delete
Removes the variable indicated by the text cursor (not the mouse
cursor) from the Watch window.
Delete All
Removes all the variables from the Watch window.
Add Watch...
Launches the Add Watch dialog box, allowing the user to enter a
variable or expression to be watched.
Edit Value...
Launches the Edit Watch dialog box, allowing the user to change the
variable's value. Particular care should be taken when the value of a
pointer is changed as it may no longer point to valid data.
Radix

Modifies the radix for the selected watch item display.

Appendix A System Modules 109

Appendix A - System Modules

The following section describes the architecture of the HDI

debugging system.
HDI
graphical
user
interface
IDebugging -]
|platform |
i |
| N |
| 10 file |
| N
| ST~ T N~
o Ny Ny N
| [Monitor 1 Emulator) (Simulator) |
| \\ /N /N - /|
I — - =
User User code
system (object file)

hardware

Figure A1 HDI System Modules

In normal operation, the user program will be placed directly into the
target hardware (for example as an EPROM). HDI uses this
information to provide a Windows®-based debugging system.

To decrease the learning curve when swapping between different
debugging platforms and/or user system hardware, HDI provides a
single unified interface (the GUI) and a family of target specific
modules. Normally, the user will only interact with the standard GUI -
once the appropriate target module has been selected, the rest of the
system configures itself automatically by loading the appropriate
modules.

110 Hitachi Debugging Interface User Manual

Graphical User Interface

This is the main HDI.LEXE program that runs under Windows". It uses
familiar Windows® operations, with menus and windows to give a
user-friendly view into the debugging system. The GUI is the only
contact between the user and the rest of the system, it processes
commands and provides the required information about the user
program. It also provides the interface between the module DLLs and
the host file system, i.e., the PC.

Object DLL

When creating the user program, a compiler will generate an absolute
object file. This file contains the actual machine code and data that the
microcomputer processes to execute the functions making up the
target application. In order to debug the user program as original
source code, the compiler must provide more information to the
debugger. For this reason, nearly all compilers have a debug option
that puts all the information necessary for debugging your source
code into the absolute file, which is usually called a debug object file.

The object DLL extracts this information from the object file for
display to the user. Since the format of data is compiler dependent,
more than one object DLL may be present in the HDI directory - HDI
will try each in turn until it finds one that can understand the object
file's format.

CPUDLL

The CPU DLL module contains information specific to the target
microcomputer. For example, it contains the number and types of
registers available to the microcomputer. It also translates the raw
machine code in the target into more familiar assembly-language
mnemonics displayed in the Source window, and vice versa.

Target DLL

The target DLL informs HDI about the debugging platform's
capabilities and selects the correct CPU DLL. Since some capabilitics
of the debugging platform cannot be generic (for example, target
configuration), the target DLL also includes extensions to the
standard GUI to provide the user with access to these capabilities.

For a detailed description of the features available using your target
DLL., refer to the supplied Debugging Platform User’s Manual.

Appendix B Command Line Interface 111

Appendix B - Command Line Interface
HDI Built-in Commands

The following is a list of the standard HDI built in commands.

I(COMMENT)

Abbreviation: none

Description:
Allows a comment to be entered, useful for documenting batch & log files.

Syntax:
! <text>

Parameter Type Description

<text> Text Output text
Example:

! Start of test routine Outputs comment 'Start of test routine' into the
Command Line window (and to the log file, if
logging is active).

ACCESS

Abbreviation: AC

Description:
Sets or displays the illegal access handling.

Syntax:
access [<state>]
Parameter Type Description
none Displays the current setting
<state> Keyword Action to be taken on illegal access
break Break emulation (default setting)
none No action

lllegal accesses are writes to protected areas during RUN, writes to internal ROM,
or any access to an unmapped area of memory.

Example:
ACCESS break Break on guarded/write-protected access. (default
setting).
AC Displays current illegal access handing.

AC none Sets no action on an illegal access.

112 Hitachi Debugging Interface User Manual

ANALYSIS

Abbreviation: AN

Description:
Enables/disables performance analysis. Counts are not automatically reset before
running.
Syntax:
an [<state>]
Parameter Type Description
none Displays the analysis state
<state> Keyword Enables/disables analysis
enable Enables analysis
disable Disables analysis
reset Resets analysis counts
Example:
ANALYSIS Displays analysis state.
AN enable Enables analysis.
AN disable Disables analysis.
AN reset Resets analysis counts.

ANALYSIS RANGE
Abbreviation: AR

Description:

Sets performance analysis range, or displays performance analysis ranges if no
parameters are specified. The syntax depends on the debugging platform. See the
supplied Debugging Platform User’s Manual.

Syntax:
ar [<start> <end> [<name>]]
Parameter Type Description
none Displays all analysis ranges
<start> Numeric Start address of range
<end> Numeric End address of range
<name> String User range description
Example:
ANALYSIS RANGE H’0 Defines a performance analysis range from
H’ 100 address H°0 to H*100.

AR H’1000 H’3FFF

AR

Defines a performance analysis range from
H* 1000 to H*3FFF.

Displays the current analysis ranges set.

Appendix B Command Line Interface 113

ANALYSIS_RANGE_DELETE
Abbreviation: AD
Description:

Deletes the specified performance analysis range, or all ranges if no parameters
are specified (it does not ask for confirmation).

Syntax:
ad [<index>]
Parameter Type Description
none Deletes all analysis ranges
<index> Numeric Index number of range to delete
Example:
ANALYSIS RANGE Deletes the analysis range with index number 6
_DELETE 6 from the system.
AD Deletes all user defined analysis ranges.
ASSEMBLE

Abbreviation: AS

Description:
Assembles instructions into memory. In assembly mode, "' exits, "' steps back a
byte, the ENTER key steps forward a byte.

Syntax:
as <address>
Parameter Type Description
<address> Numeric Address at which to start assembling

Example:
AS H’1000 Starts assembling from H’1000.

ASSERT

Abbreviation: none

Description:

Checks if an expression is true or false. It can be used to terminate the batch file
when the expression is false. If the expression is false, an error is returned. This
command can be used to write test harnesses for subroutines.

114 Hitachi Debugging Interface User Manual

Syntax:
assert <expression>
Parameter Type Description

<expression> Expression Expression to be checked

Example:
ASSERT #R0O == 0x100 Returns an error if RO does not contain 0x100.

DISASSEMBLE

Abbreviation: DA

Description:
Disassembles memory contents to assembly-language code. Disassembly display
is fully symbolic.
Syntax:
da <address> [<length>]

Parameter Type Description

<address> Numeric Start address

<length> Numeric Number of instructions (optional, default = 16)
Example:

DISASSEMBLE H’100 5 Disassembles 5 lines of code starting at H>100.

DA H’3E00 20 Disassembles 20 lines of code starting at H’3E00.

ERASE

Abbreviation: ER

Description:
Clears the Command Line window

Syntax:
er
Parameter Type Description
none Clears the Command Line window
Example:

ER Clears the Command Line window.

Appendix B

Command Line Interface 115

EVALUATE
Abbreviation: EV

Description:

Provides a calculator function, evaluating simple and complex expressions, with
parentheses, mixed radices, and symbols. All operators have the same precedence
but parentheses may be used to change the order of evaluation. The operators have
the same meaning as in C/C++. Expressions can also be used in any command
where a number is required, but they cannot contain spaces since these are used to
separate parameters. Register names may be used, but must always be prefixed by
the ‘#” character. The result is displayed in hexadecimal, decimal, octal, or binary.

Note: It is not possible to evaluate expressions containing C/C++ variable,
structure, or array references.

Syntax:
ev <expression>
Parameter Type Description

<expression> Expression Expression to be evaluated

Valid operators:

&& logical || logical OR << left arithmetic | >> right
AND shift arithmetic
shift
+ addition - subtraction * multiplication / division
% modulo | bitwise OR & Dbitwise AND ~ bitwise
NOT
A bitwise ! logical NOT | == equal to = unequal to
exclusive
OR
> greater than | < less than >= greater than or | <= less than or
equal to equal to

Example:

EV H'123 + (D73 | B’10)

EV #R2H * #R2L

Result: H’16E D’366 O°556

B’00000000000000000000000101101110
Result; H’121 D289 0441
B’00000000000000000000000100100001

116 Hitachi Debugging Interface User Manual

FILE_LOAD
Abbreviation: FL

Description:

Loads an object code file to memory with, or without, the specified offset.
Existing symbols are cleared, but the new ones will override any existing ones
with the same names. If an offset is specified this will be added to the symbols.
The file extension default is .MOT.

Syntax:
fl <filename> [<offset>] [<state>]
Parameter Type Description
<filename> String File name
<offset> Numeric Offset to be added to load address (optional,
default = 0)
<state> Keyword Verify flag (optional, default = V)
\Y Verity
N No verify
Example:
FILE LOAD Loads S-Record file "testfile.a22".
ANBINARYWTESTFILE.A22

FL ANOTHER.MOT H’200 Loads Motorola S-Record file "another.mot"
with an offset of H’200 bytes.

FILE_SAVE
Abbreviation: FS

Description:

Saves memory area to a file. The data is saved in Motorola S-Record format. The
user is warned if about to overwrite an existing file.

The file extension default is .MOT. Symbols are not automatically saved.

Syntax:
fs <filename> <start> <end>
Parameter Type Description
<filename> String File name
<start> Numeric Start address
<end> Numeric End address
Example:
FILE SAVE TESTFILE.MOT Saves address range H’0-H’2013 as
H’0 H*2013 Motorola S-Record file "TESTFILE.MOT".

FS D:WUSERVWANOTHER.A22 Saves address range H'4000-H 4FFF as S-
H’4000 H’4FFF Record format file "ANOTHER.A22".

Appendix B Command Line Interface 117

FILE_VERIFY

Abbreviation: FV

Description:
Verifies file contents against memory. The file data must be in a Motorola S-
Record format. The file extension default is .MOT.

Syntax:
fv <filename> [<offset>]

Parameter Type Description

<filename> String File name

<offset> Numeric Offset to be added to file address (optional,
default = 0)

Example:

FILE VERIFY Verifies S-Record file "TEST.A22" against

ANBINARYWTEST.A22 memory.

FV ANOTHER 200 Verifies Motorola S-Record file
"ANOTHER.MOT" against memory with an
offset of H’200 bytes.

GO

Abbreviation: GO

Description:

Runs object code (the user program).

While the user program is running, only the Performance Analysis window is
updated.

When execution stops, the register values and reason for break are displayed.

Syntax:
go [<state>] [<address>]
Parameter Type Description
<state> Keyword Specifies whether or not to continue command
processing during program execution (optional,
default = wait)
wait Causes command processing to wait until
program stops
continue Continues command processing during execution
<address> Numeric Start address for PC (optional, default = PC

value)

118 Hitachi Debugging Interface User Manual

Wait is the default and this causes command processing to wait until program
stops running.

Continue allows you to continue to enter commands (but they may not work
depending on the facilities of the debugging platform).

Example:
GO Runs the user program from the current PC value
(does not continue command processing).

GO CONTINUE H’1000 Runs the user program from H’1000 (continues
command processing).

GO_RESET
Abbreviation: GR

Description:

Runs the user program starting at the address specified in the reset vector.

While the user program is running, only the Performance Analysis window is
updated.

Syntax:
gr [<state>]
Parameter Type Description
<state> Keyword Specifies whether or not to continue command

processing during program execution (optional,
default = wait)

wait Causes command processing to wait until
program stops
continue Continues command processing during execution

Wait is the default and this causes command processing to wait until program
stops running.

Continue allows you to continue to enter commands (but they may not work
depending on the facilities of the debugging platform)

Example:
GR Runs the user program starting at the address
specified in the reset vector (does not continue
command processing).

Appendix B Command Line Interface 119

GO _TILL
Abbreviation: GT

Description:

Runs the debugging platform program from the current PC with temporary
breakpoints. This command takes multiple addresses as parameters, and these are
used to set temporary PC breakpoints (these breakpoints only exist for the
duration of the command).

Syntax:
gt [<state>] <address>...
Parameter Type Description
<state> Keyword Specifies whether or not to continue command
processing during program execution (optional,
default = wait)
wait Causes command processing to wait until
program stops
continue Continues command processing during execution
<address>... Numeric Temporary breakpoint address (list)

Wait is the default and this causes command processing to wait until program
stops running

Continue allows you to continue to enter commands (but they may not work
depending on the facilities of the debugging platform)

Example:
GO _TILL H’1000 Runs emulation until the PC reaches address
H’1000.
HALT

Abbreviation: HA

Description:
Halts the user program (can be used after a "go continue” command).

Syntax:
ha
Parameter Type Description
none Halts the user program
Example:

HA Halts the user program.

120 Hitachi Debugging Interface User Manual

HELP
Abbreviation: HE

Description:

Opens a window displaying the help file.

For context sensitive help, the F1 key should be pressed. Help on a particular
command can be retrieved by entering HELP or HE followed by the command
name at the command line.

Syntax:
he [<command>]

Parameter Type Description

none Displays the contents of the help

<command> String Displays the help for the specified command
Example:

HE Displays the contents of the help.

HE GO Displays help for the GO command.

INITIALISE

Abbreviation: IN

Description:
Initializes HDI (including debugging platform) and the user system (as if you had
reselected the target DLL). All breakpoints, memory mapping, etc. are reset.

Syntax:
in
Parameter Type Description
none Initialized HDI
Example:
IN Initializes HDI.
INTERRUPTS

Abbreviation: IR
Description:
Enables or disables interrupts or sets the interrupt priority level of the CPU. This

command operates by changing the CPU status register (SR or CCR).

Note: Some debugging platforms do not support this command.

Appendix B Command Line Interface 121
Syntax:
ir [<state>|<level>]
Parameter Type Description
none Displays the current interrupt state
<state> Keyword Enables or disables interrupts
enable Enables interrupts
disable Disables interrupts
<level> Numeric Sets the interrupt priority level
Example:
IR Displays the CPU interrupt status
IR ENABLE Enables all interrupts
IR DISABLE Disables all interrupts (except NMI).
IR 5 Sets interrupt priority level 5.
LOG

Abbreviation: LO

Description:

Controls logging of command output to file. If no parameters are specified,
logging status is displayed. If an existing file is specified, you will be warned; 1f
you answer 'No', data will be appended to the existing file, otherwise the file will
be truncated. Logging is only supported for the command line interface.

Syntax:
lo [<state>|<filename>]
Parameter Type Description
none Displays logging status
<state> Keyword Starts or suspends logging
+ Starts logging
- Suspends logging
<filename> Numeric Specifies the logging output file
Example:
LOG TEST Logs the output to the list box in file TEST.
LO - Suspends logging.
LOG + Resumes logging.
LOG Displays logging status

122 Hitachi Debugging Interface User Manual

MAP_DISPLAY
Abbreviation: MA

Description:
Displays memory mapping.

Syntax:
ma
Parameter Type Description

none Displays the current memory mapping

Example:
MA Displays the current memory mapping.

MEMORY_DISPLAY

Abbreviation: MD

Description:
Displays memory contents.

Syntax:
md <address> [<length>] [<mode>]
Parameter Type Description
<address> Numeric Start address
<length> Numeric Length (optional, default = H’100 bytes)
<mode> Keyword Display format (optional, default = byte)
byte Displays as bytes
word Displays as words (2 bytes)
long Displays as long words (4 bytes)
ascii Displays as ASCII
single Displays as single-precision floating-point
double Displays as double-precision floating-point
Example:
MEMORY DISPLAY Dumps H’100 bytes of memory starting at
H’C000 H’ 100 WORD H*C000 in the word format.
MEMORY_DISPLAY Dumps H’FF bytes of memory starting at H 1000

H’1000 H’FF in the byte format

Appendix B

Command Line Interface 123

MEMORY_EDIT

Abbreviation: ME

Description:

Allows memory contents to be modified. When editing memory the current
location may be modified in a similar way to that described in the ASSEMBLE

command description.

When editing, " exits edit mode, V' goes back a unit, and blank line goes forward

without change.

Syntax:

me <address> [<mode>] [<state>]

Parameter Type Description
<address> Numeric Address to edit
<mode> Keyword Format (optional, default = byte)
byte Edits as bytes
word Edits as words
long Edits as long words
ascit Edits as ASCII
single Edits as single-precision floating-point
double Edits as double-precision floating-point
<state> Keyword Verity flag (optional, default = V)
\% Verify
N No verify
Example:

ME H’1000 WORD

Modifies memory contents as words starting
from H’1000 (with verification)

124 Hitachi Debugging Interface User Manual

MEMORY_FILL

Abbreviation: MF

Description:

Fills an area of memory.

Syntax:
mf <start> <end> <data> [<mode>] [<state>]
Parameter Type Description
<start> Numeric Start address
<end> Numeric End address
<data> Numeric Data value
<mode> Keyword Data size (optional, default = byte)
byte Byte
word Word
long Long word
single Single-precision floating-point
double Double-precision floating-point
<state> Keyword Verify flag (optional, default = V)
\ Verify
N No verify
Example:

MEMORY_FILL H’C000
H’COFF H’55AA WORD

MF H’5000 H’7FFF H’21

MEMORY_MOVE

Abbreviation: MV

Description:
Moves memory.

Fills memory from H*C000 to H’COFF with word
data H'55AA.

Fills memory from H’5000 to H’7FFF with data
H21.

Syntax:
mv <start> <end> <dest> [<state>]
Parameter Type Description
<start> Numeric Source start address
<end> Numeric Source end address (including this address)
<dest> Numeric Destination start address
<state> Keyword Verify flag (optional, default = V)
\4 Verify
N No verify

Appendix B Command Line Interface 125

Example:
MEMORY_MOVE H’1000 H’1FFF H’2000 Moves area H’1000-H’ I FFF to
H’2000.
MV H’FB80 H’FF7F H’3000 Moves area H’FB80-H’FF7F to
H’3000.

MEMORY_TEST
Abbreviation: MT

Description:
A full read/write/verify test 1s performed on the address range specified,
destroying the original contents. The test will access the memory according to the
map settings.

Syntax:
mt <start> <end>

Parameter Type Description

<start> Numeric Start address

<end> Numeric End address (including this address)
Example:

MEMORY _TEST H’8000 Tests from H’8000 to H’BFFF.

H’BFFF

MT H’4000 H’5000 Tests integrity from H*4000 to H*5000.

QUIT

Abbreviation: QU

Description:
Exits HDI. Closes log file if open.

Syntax:
qu
Parameter Type Description
none ' Exits HDI
Example:

QU Exits HDL.

126 Hitachi Debugging Interface User Manual

RADIX

Abbreviation: RA

Description:
Sets default input radix. If no parameters are specified, the current radix is
displayed. Radix can be changed by using B*/H’/D’/O’ before numeric data.

Syntax:
ra [<mode>]
Parameter Type Description
none Displays current radix
<mode> Keyword Sets radix to specified type
H Sets radix to hexadecimal
D Sets radix to decimal
O Sets radix to octal
B Sets radix to binary
Example:
RADIX Displays the current radix.
RA H Sets the radix to hexadecimal.

REGISTER_DISPLAY
Abbreviation: RD

Description:
Displays CPU register values.

Syntax:
rd
Parameter Type Description
none Displays all register values
Example:
RD Displays all register values.

REGISTER_SET
Abbreviation: RS

Description:
Changes the contents of a register.

Appendix B Command Line Interface 127

Syntax:
rs <register> <value> <mode>
Parameter Type Description
<register> Keyword Register name
<value> Numeric Register value
<mode> Keyword Data size (default = register size)
byte Byte
word Word
long Long word
single Single-precision floating-point
double Double-precision floating-point
Example:
RS PC _StartUp Sets the program counter to the address defined
by the symbol _StartUp
RS RO H’1234 WORD Sets word data H’1234 to RO.
RESET

Abbreviation: RE

Description:
Resets the microprocessor. All register values are set to the initial state for the
device. Memory mapping and breakpoints are not affected.

Syntax:
re
Parameter Type Description
none Resets the microprocessor
Example:

RE Resets the microprocessor.

128 Hitachi Debugging Interface User Manual

SLEEP

Abbreviation: none

Description:
Delays command execution for a specified number of milliseconds.

Syntax:
sleep <milliseconds>
Parameter Type Description

< milliseconds > Numeric Delayed time (millisecond)

Default radix (it is not always decimal) is used, if you do not specify D’.
Example:
SLEEP D’9000 Delays for 9 seconds.
STEP
Abbreviation: ST
Description:

Single-step (source line or instruction) execution.
Performs a specified number of instructions, from current PC.

Default is stepping by lines if source debugging is available. Count defaultis 1.

Syntax:
st [<mode>] [<count>]
Parameter Type Description
<mode> Keyword Type of stepping (optional)
instruction Steps by assembly instruction
line Steps by source code line
<count> Numeric Number of steps (optional, default = 1)
Example:
STEP 9 Steps code for 9 steps.
STEP_OUT

Abbreviation: SP

Description:

Step the program out of the current function. (i.e., a step up). This works for both

assembly-language and source level debugging.

Appendix B Command Line Interface 129

Syntax:
Sp
Parameter Type Description
none Steps the program out of the current function

Example:
SP Steps the program out of the current function.

STEP_OVER

Abbreviation: SO

Description:
Step-over (function call, source line or instruction) execution.
Performs a specified number of instructions, from current PC.

This command differs from STEP in that it does not perform single-step operation
in subroutines or interrupt routines. These are executed at full speed.

Syntax:
so [<mode>] [<count>]
Parameter Type Description
<mode> Keyword Type of stepping (optional)
instruction Steps by assembly instruction
line Step by source code line
<count> Numeric Number of steps (optional, default = 1)
Example:
SO Steps over 1-step code.
STEP_RATE

Abbreviation: SR

Description:
Controls the speed of stepping in the STEP and STEP_OVER commands. A rate
of 6 causes the fastest stepping. A value of 1 is the slowest.

Syntax:
sr <rate>
Parameter Type Description
none Displays the step rate
<rate> Numeric Step rate 1 to 6 (6 = tastest)
Example:
SR Displays the current step rate.

SR 6 Specifies the fastest step rate.

130 Hitachi Debugging Interface User Manual

SUBMIT

Abbreviation: SU

Description:
Executes a file of commands. Nested submit files are permitted. Any error aborts
the file. The [stop] button terminates the process.

Syntax:
su <filename>
Parameter Type Description
<filename> String File name
Example:
SUBMIT Processes the file COMMAND.HDC.
COMMAND.HDC
SU A:SETUP.TXT Processes the file SETUP.TXT on drive A:.
SYMBOL_ADD

Abbreviation: SA

Description:
Adds a symbol, or changes an existing one.

Syntax:
sa <symbol> <value>
Parameter Type Description
<symbol> String Symbol name
<value> Numeric Value
Example:

SYMBOL ADD start H’1000 Defines start to be H'1000.

SA END OF TABLE 1000 Defines END_OF TABLE to be 1000 using
current default radix.

Appendix B Command Line Interface 131

SYMBOL_CLEAR

Abbreviation: SC

Description:
Deletes a symbol. If no parameters are specified, deletes all symbols (after
confirmation).
Syntax:
s¢ [<symbol>]
Parameter Type Description
none Deletes all symbols
<symbol> String Symbol name
Example:
SYMBOL CLEAR Deletes all symbols (after confirmation).
SC start Deletes the symbol ‘start’.

SYMBOL LOAD
Abbreviation: SL

Description:

Loads symbols from file. File must be in XLINK Pentica-b format (i.e. 'XXXXH
name'). The symbols are added to the existing symbol table. The symbol file
extension default is .SYM.

Syntax:
sl <filename>
Parameter Type Description
<filename> String File name
Example:

SYMBOL _LOAD TEST.SYM Loads the file TEST.SYM.
SLMY_CODE.SYM Loads the file MY _CODE.SYM.

132 Hitachi Debugging Interface User Manual

SYMBOL_SAVE
Abbreviation: SS

Description:

Saves symbols to a file in XLINK Pentica-b format. The symbol file extension
default is .SYM. If the file name already exists, then a prompt to overwrite the file

is displayed.

Syntax:
ss <filename>
Parameter Type

Description

<filename> String

File name

Example:
SYMBOL SAVE TEST

SS MY _CODE.SYM

SYMBOL _VIEW
Abbreviation: SV

Description:

Saves symbol table to TEST.SYM.
Saves the symbol table to MY _CODE.SYM.

Displays all defined symbols, or those containing the case sensitive string pattern.

Syntax:
sv [<pattern>]
Parameter Type Description
none Displays all symbols
<pattern> String Displays the symbols including the specified
string pattern
Example:

SYMBOL_ VIEW BUFFER Displays all symbols containing the word

SV

BUFFER.
Displays all the symbols.

Appendix B Command Line Interface 133

TRACE
Abbreviation: TR

Description:

Displays the trace buffer contents. If no trace delay is set, the last (most recently
executed) cycle in the buffer is 0, and older cycles have negative values. If trace
delay is set, the cycle on which the level 1 breakpoint occurred will be 0 and the
most recent cycle will have the trace delay value.

Syntax:
tr [<start rec> [<count>]]
Parameter Type Description
<start rec> Numeric Offset (optional, default = most recent cycle - 9)
<count> Numeric Count (optional, default - 10)
Example:
TR -105 Displays five lines of trace buffer contents

starting from cycle -10.

134 Hitachi Debugging Interface User Manual

Debugging Platform-Specific Commands

The following lists the debugging platform-specific commands - typically for
breakpoints, tracing, memory mapping, and configuration. Refer to the supplied
Debugging Platform User’s Manual for details.

ANALYSIS RANGE
BREAKPOINT
BREAKPOINT CLEAR
BREAKPOINT DISPLAY
BREAKPOINT ENABLE
BREAKPOINT SEQUENCE
BREAK_ACCESS
BREAK_CLEAR
BREAK_DATA
BREAK_DISPLAY
BREAK_ENABLE
BREAK_REGISTER
BREAK_SEQUENCE
CLOCK

DEVICE_TYPE
MAP_SET

MODE

REFRESH

TEST EMULATOR
TIMER
TRACE_ACQUISITION
TRACE_COMPARE
TRACE_SAVE

TRACE SEARCH
USER_SIGNAL

Appendix C Command Line Summary Chart 135

Appendix C - Command Line Summary Chart

Long name Short name Description

! - Comment

ACCESS AC Sets action on illegal access

ANALYSIS AN Enables or disables performance analysis

ANALYSIS RANGE AR Sets or displays performance analysis ranges

ANALYSIS RANGE DELETE AD Deletes a performance analysis range

ASSEMBLE AS Assembles instructions into memory

ASSERT - Checks if an expression is true or false

BREAKPOINT BP Sets a breakpoint

BREAKPOINT CLEAR BC Clears a breakpoint or all breakpoints

BREAKPOINT DISPLAY BD Displays breakpoints

BREAKPOINT ENABLE BE Enables or disables one or all breakpoints

BREAKPOINT SEQUENCE BS Defines the events which arm or reset an
event

BREAK _ACCESS BA Sets a memory range access as a breakpoint

BREAK CLEAR BC Deletes a breakpoint

BREAK DATA BD Sets a memory data value as a break condition

BREAK DISPLAY BI Displays breakpoints

BREAK ENABLE BE Enables or disables one or all breakpoints

BREAK REGISTER BR Sets a register value as a break condition

BREAK SEQUENCE BS Sets sequential breakpoints

CLOCK CK Sets emulator CPU clock rate

DEVICE TYPE DE Selects device type to emulate

DISASSEMBLE DA Disassembles memory contents

ERASE ER Clears the Command Line window

EVALUATE EV Evaluates an expression

FILE LOAD FL Loads an object (program) file

FILE SAVE FS Saves memory to a file

FILE VERIFY FV Verifies file contents against memory

GO GO Runs program

GO_RESET GR Runs program from reset

GO_TILL GT Runs program until temporary breakpoint

HALT HA Halts program

HELP HE Gets help for command line or help on a
command

INITIALISE IN Initializes HDI and debugging platform
system

INTERRUPTS IR Enables or disables debugging platform
system interrupts

LOG LO Controls command output logging

MAP_ DISPLAY MA Displays memory mapping

MAP_SET MS Sets up memory mapping

MEMORY DISPLAY MD Displays memory contents

MEMORY _EDIT ME Modifies memory contents

MEMORY FILL MF Fills a memory area

136 Hitachi Debugging Interface User Manual

Long name
MEMORY_ MOVE
MEMORY_ TEST
MODE

QUIT

RADIX

REFRESH
REGISTER_DISPLAY
REGISTER_SET
RESET

SLEEP

STEP

STEP_OUT
STEP_OVER

STEP RATE
SUBMIT
SYMBOL_ADD
SYMBOL_CLEAR
SYMBOL_LOAD
SYMBOL SAVE
SYMBOL_VIEW
TEST EMULATOR
TIMER

TRACE

TRACE ACQUISITION
TRACE_COMPARE

TRACE_SAVE
TRACE_SEARCH
USER_SIGNALS

Short name Description

MV
MT
MO
QU
RA
RF
RD
RS
RE

ST

Sp

SO
SR
SU
SA
SC
SL
SS

SV
TE
TI

TR
TA
TC

TV
TS
US

Moves a block of memory

Tests a block of memory

Sets or displays CPU mode

Exits HDI

Sets default input radix

Refreshes memory-related window contents
Displays CPU register values

Changes CPU register contents

Resets CPU

Delays command execution.

Steps program (by instructions or source
lines)

Steps out of the current function

Steps program, not stepping into functions
Sets rate of stepping

Executes a file of commands

Defines a symbol

Deletes a symbol or all symbols

Loads symbols from a file

Saves symbols to a file

Displays symbols

Tests emulator hardware

Sets or displays the timer resolution
Displays trace buffer contents

Sets or displays trace acquisition parameters
Compares a saved trace file with the current
trace data

Saves the trace data to a file in binary format
Searches trace data

Enables or disables user signals (NMI, Reset,
etc.)

Appendix D GUI Command Summary Chart 137

Appendix D - GUI Command Summary

Menu Item Accelerator Toolbar Graphic
File New Session... Ctrl+N

Load Session... Ctrl+O

Save Session Ctrl+S

Save Session As...

Load Program...

Initialize
Exit Alt+F4
Edit Cut Ctrl+X
Copy Ctrl+C
Paste Ctrl+V
Find F3
Evaluate
View Toolbar
Status bar
Breakpoint Ctrl+B
Command Line Ctrl+L
Disassembly... Ctri+D
I/O Area Ctrl+1
Labels Ctrl+A
Locals Ctrl+Shift+W
Memory... Ctrl+M
Performance Analysis Ctrl+P

Registers Ctrl+R

138 Hitachi Debugging Interface User Manual

Menu Item Accelerator Toolbar Graphic

Source... Ctrl+K

Status Ctrl+U

Trace Ctrl+T

Watch Ctrl+W
Run Reset CPU

Go F5

Reset Go Shift+F5

Go To Cursor

Set PC To Cursor

Run...

Step In F&

Step Over F7

Step Out

Step...

Halt Esc
Memory Refresh F12

Load...

Save...

Verify...

Test...

Fill...

Copy...

Compare...

Search. ..

Appendix D

GUI Command Summary Chart 139

Menu

Item

Configure Map...

Configure Overlay...

Accelerator

Toolbar Graphic

Setup

Options. ..

Radix (Input) >
Hexadecimal
Decimal
Octal
Binary

Customize >
Toolbar...
Font...

File Filter...

Configure Platform...

Window

Cascade
Tile

Arrange Icons

Close All

Help

Index

Using Help

Search for Help on

About HDI

F1

140 Hitachi Debugging Interface User Manual

Appendix E |O File Format 141

Appendix E - I/O Register File Format

HDI formats the I/O Registers window based on information it finds
in an I/O Register definition file. When you select a debugging
platform using the [Setup->Configure Platform...] menu option,
HDI will look for a “<device>.10" file corresponding to the selected
device and load it if it exists. This file is a formatted text file that
describes the 1/0 modules and the address and size of their registers.
You can edit this file, with a text editor, to add support for memory
mapped registers or peripherals you may have specific to your
application e.g. registers in an ASIC device mapped into the
microcomputer’s address space.

File format

Each module name must be defined in the [Modules] definition
section and the numbering of each module must be sequential. Each
module corresponds to a register definition section and within the
section each entry defines an /O register.

The ‘BaseAddress’ definition is for devices where the location of /O
registers moves in the address space depending on the CPU mode. In
this case, the ‘BaseAddress’ value is the base address of the 1/O
registers in one specific mode and the addresses used in the register
definitions are the address locations of the registers in the same mode.
When the 1/O register file is actually used, the ‘BaseAddress’ value 1s
subtracted from the defined register address and the resultant offset
added to the relevant base address for the selected mode.

Each module has a section that defines the registers forming it along
with an optional dependency, the dependency is checked to see if the
module is enabled or not. Each register name must be defined in the
section and the numbering of each register must be sequential. The
dependency is entered in the section as dep=<reg> <bit> <value>.

1. <reg> is the register id of the dependency.
2. <bit> is the bit position within the register.

3. <value> is the value that the bit must be for the module to be
enabled.

The [Register] definition entry is entered in the format id=<name>
<address> [<size> [<absolute>[<format>[<bitfields>]]]].

142 Hitachi Debugging Interface User Manual

1. <name> register name to be displayed.
2. <address> address of the register.

3. <size> which may be B, W or L for byte, word, or long word
(default is byte).

4. <absolute> which can be set to A if the register 1s at an absolute
address. This is only relevant if the [/O area address range moves
about on the CPU in different modes. In this case, if a register is
defined as absolute the base address offset calculation 1s not
performed and the specified address is used directly.

5. <format> Format for register output. Valid values are H for
Hexadecimal, D for decimal, and B for binary.

6. <bitfields> section defining the bits within the register.

Bitfield sections define the bits within a register each entry is of the
type bit<no>=<name>.

1. <no> is the bit number.
2. <name> is a symbolic name of the bit.

Comment lines are allowed and must start with a *“;” character.

Example on next page.

Appendix E |O File Format

143

Comment

Example:

; H85/2655 Series I/0 Register Definitions File

Modules —_[Modules]

BaseAddress=0
Modulel=Power Down Mode Registers
Module2=DMA Channel Common
Module3=DMA O Short Address Mode

Moduled42=Bus Controller
Moduled43=System Control
L Moduled44=Interrupt Controller

Module [* [DMA Channel Common]

definition | reg0=regDMAWER
regl=regDMATCR
reg2=regDMABCRH/SAM
reg3=regDMARCRL/SAM
reg4=regDMABCRH/FAM
reg5=regDMABCRL/FAM

|_dep= regMSTPCRH 7 O

Register |

Bit

Value

Register [regDMAWER]

definition

Reaister name

id=DMAWER Oxffff00 B A H dmawer bitfilelds

Address

Size

Absolute address flaa

Format

Bitfields

Bitfields
definition

[dmawer bitfields]
bit0=WEOA
bitl1=WEOB
bit2=WE1A
bit3=WE1B

144 Hitachi Debugging Interface User Manual

Appendix F

Symbol File Format 145

Appendix F - Symbol File Format

In order for HDI to be able to understand and decode the symbol file
correctly, the file must be formatted as a Pentica-B file:

1. The file must be a plain ASCII text file.
2. The file must start with the word “BEGIN”.

3. Each symbol must be on a separate line with the value first, in
hexadecimal terminated by an “H”, followed by a space then the
symbol text.

4. The file must end with the word “END”’.

Example:

BEGIN
11FAH
11FCH
11FEH
1200H
END

Symbol name 1
Symbol name 2
Symbol name 3
Symbol name 4

	Cover
	Preface
	Contents
	1. INTRODUCTION
	1.1 KEY FEATURES

	2. SYSTEM OVERVIEW
	2.1 USER INTERFACE
	2.2 DATA ENTRY
	2.2.1 Operators
	2.2.2 Data Formats
	2.2.3 Precision
	2.2.4 Expression Examples
	2.2.5 Symbol Format
	2.2.6 Symbol Examples

	2.3 HELP
	2.3.1 Cpntext Sensitive Help

	3. PREPARING TO DEBUG
	3.1 COMPILING FOR DEBUG
	3.2 SELECTING A DEBUGGING PLATFORM
	3.3 CONFIGURING THE DEBUGGING PLATFORM
	3.3.1 Setup
	3.3.2 Mapping
	3.3.3 Status

	3.4 DOWNLOADING A PROGRAM

	4. LOOKING AT YOUR PROGRAM
	4.1 VIEWING THE CODE
	4.1.1 Viewing Source Code
	4.1.2 Viewing Assembly-Language Code
	4.1.3 Modifying Assembly-Language Code

	4.2 LOOKING AT LABELS
	4.2.1 Listing Labels
	4.2.2 Adding a Label from a Source or Disassembly Window

	4.3 LOOKING AT A SPECIFIC ADDRESS
	4.3.1 Looking at the Current Program Counter Address

	4.4 FINDING TEXT

	5. WORKING WITH MEMORY
	5.1 LOOKING AT AN AREA OF MEMORY
	5.1.1 Displaying Memory as ASCII
	5.1.2 Displaying Memory as Bytes
	5.1.3 Displaying Memory as Words
	5.1.4 Displaying Memory as Long words
	5.1.5 Displaying Memory as Single-Precision Floating Point
	5.1.6 Displaying Memory as Double-Precision Floating Point
	5.1.7 Looking at a Different Area of Memory

	5.2 MODIFYING MEMORY CONTENTS
	5.2.1 Quick Edit
	5.2.2 Full Edit
	5.2.3 Selecting a Memory Range

	5.3 FINDING A VALUE IN MEMORY
	5.4 FILLING AN AREA OF MEMORY WITH A VALUE
	5.4.1 Filling a Range

	5.5 COPYING AN AREA OF MEMORY
	5.6 TESTING AN AREA OF MEMORY
	5.7 SAVING AN AREA OF MEMORY
	5.8 LOADING AN AREA OF MEMORY
	5.9 VERIFYING AN AREA OF MEMORY

	6. EXECUTING YOUR PROGRAM
	6.1 RUNNING FROM RESET
	6.2 CONTINUING RUN
	6.3 RUNNING TO THE CURSOR
	6.4 RUNNING TO SEVERAL POINTS
	6.5 SINGLE STEP
	6.5.1 Stepping Into a Function
	6.5.2 Stepping Over a Function Call

	6.6 STEPPING OUT OF A FUNCTION
	6.7 MULTIPLE STEPS

	7. STOPPING YOUR PROGRAM
	7.1 HALTING EXECUTION
	7.2 STANDARD BREAKPOINTS(PC BREAKPOINTS)
	7.2.1 Cycling Through Standard Breakpoints
	7.2.2 Clearing Standard Breakpoints

	7.3 THE BREAKPOINTS WINDOW
	7.3.1 Adding a Breakpoint
	7.3.2 Modifying a Breakpoint
	7.3.3 Deleting a Breakpoint
	7.3.4 Deleting All Breakpoints

	7.4 DISABLING BREAKPOINTS
	7.4.1 Disabling a Breakpoint
	7.4.2 Enabling a Breakpoint

	7.5 TEMPORARY BREAKPOINTS
	7.6 HARDWARE BREAKPOINTS(EVENT)

	8. LOOKING AT VARIABLES
	8.1 TOOLTIP WATCH
	8.2 INSTANT WATCH
	8.3 USING WATCH ITEMS
	8.3.1 Adding a Watch
	8.3.2 Expanding a Watch
	8.3.3 Modifying Radix for Watch Item Display
	8.3.4 Changing a Watch Item's Value
	8.3.5 Deleting a Watch

	8.4 LOOKING AT LOCAL VARIABLES
	8.5 LOOKING AT REGISTERS
	8.5.1 Expanding a Bit Register
	8.5.2 Modifying Register Contents
	8.5.3 Using Register Contents

	8.6 LOOKING AT I/O
	8.6.1 Opening an I/O Registers Window
	8.6.2 Expanding an I/O Register Display
	8.6.3 Modifying I/O Register Contents

	9. OVERLAY FUNCTION
	9.1 DISPLAYING SECTION GROUP
	9.2 SETTING SECTION GROUP

	10. SELECTING FUNCTIONS
	10.1 DISPLAYING FUNCTIONS
	10.2 SPECIFYING FUNCTIONS
	10.2.1 Selecting a Function
	10.2.2 Deleting a Function
	10.2.3 Setting a Function

	11. CONFIGURING THE USER INTERFACE
	11.1 ARRANGING WINDOWS
	11.1.1 Minimizing Windows
	11.1.2 Arranging Icons
	11.1.3 Tiling Windows
	11.1.4 Cascading Windows

	11.2 LOCATING CURRENTLY OPEN WINDOWS
	11.2.1 Locating the Next Window
	11.2.2 Locating a Specific Window

	11.3 ENABLING/DISABLING THE STATUS BAR
	11.4 CUSTOMIZING THE TOOLBAR
	11.4.1 Overall Appearance
	11.4.2 Customizing Individual Toolbars
	11.4.3 Button Categories
	11.4.4 Adding a Button to a Toolbar
	11.4.5 Positioning a Button in a Toolbar
	11.4.6 Removing a Button form a Toolbar

	11.5 CUSTOMIZING THE FONTS
	11.6 CUSTOMIZING THE FILE FILTERS
	11.7 SAVING A SESSION
	11.8 LOADING A SESSION
	11.9 SETTING HDI OPTIONS
	11.10 SETTING THE DEFAULT INPUT RADIX

	12. MENUS
	12.1 FILE
	12.1.1 New Session...
	12.1.2 Load Session...
	12.1.3 Save Session
	12.1.4 Save Session As...
	12.1.5 Load Program...
	12.1.6 Initialize
	12.1.7 Exit

	12.2 EDIT
	12.2.1 Cut
	12.2.2 Copy
	12.2.3 Paste
	12.2.4 Find...
	12.2.5 Evaluate...

	12.3 VIEW
	12.3.1 Breakpoints
	12.3.2 Command Line
	12.3.3 Disassembly...
	12.3.4 I/O Area
	12.3.5 Labels
	12.3.6 Locals
	12.3.7 Memory...
	12.3.8 Performance Analysis
	12.3.9 Registers
	12.3.10 Source...
	12.3.11 Status
	12.3.12 Trace
	12.3.13 Watch

	12.4 RUN
	12.4.1 Reset CPU
	12.4.2 Go
	12.4.3 Reset Go
	12.4.4 Go To Cursor
	12.4.5 Set PC To Cursor
	12.4.6 Run...
	12.4.7 Step In
	12.4.8 Step Over
	12.4.9 Step Out
	12.4.10 Step...
	12.4.11 Halt

	12.5 MEMORY
	12.5.1 Refresh
	12.5.2 Load...
	12.5.3 Save...
	12.5.4 Verify...
	12.5.5 Test...
	12.5.6 Fill...
	12.5.7 Copy...
	12.5.8 Compare...
	12.5.9 Configure Map...
	12.5.10 Configure Overlay...

	12.6 SETUP
	12.6.1 Status Bar
	12.6.2 Options...
	12.6.3 Radix
	12.6.4 Customize
	12.6.5 Configure Platform...

	12.7 WINDOW
	12.7.1 Cascade
	12.7.2 Tile
	12.7.3 Arrange Icons
	12.7.4 Close All

	12.8 HELP
	12.8.1 Index
	12.8.2 Using Help
	12.8.3 Search for Help on
	12.8.4 About HDI

	13. WINDOWS
	13.1 BREAKPOINTS
	13.1.1 Add...
	13.1.2 Edit...
	13.1.3 Delete
	13.1.4 Delete All
	13.1.5 Disable/Enable
	13.1.6 Go To Source

	13.2 COMMAND LINE
	13.2.1 Run Batch File...
	13.2.2 Play
	13.2.3 Set Log File...
	13.2.4 Logging

	13.3 DISASSEMBLY
	13.3.1 Copy
	13.3.2 Set Address...
	13.3.3 Go To Cursor
	13.3.4 Set PC Here
	13.3.5 Instant Watch...
	13.3.6 Add Watch

	13.4 I/O REGISTERS
	13.4.1 Copy
	13.4.2 Edit...
	13.4.3 Expand/Collapse

	13.5 LABELS
	13.5.1 Add...
	13.5.2 Edit...
	13.5.3 Find...
	13.5.4 Delete
	13.5.5 Delete All
	13.5.6 Load...
	13.5.7 Save
	13.5.8 Save As...

	13.6 LOCALS
	13.6.1 Copy
	13.6.2 Edit Value...
	13.6.3 Radix

	13.7 MEMORY MAPPING
	13.7.1 Add...
	13.7.2 Edit...
	13.7.3 Reset
	13.7.4 Help

	13.8 MEMORY
	13.8.1 Set Address...
	13.8.2 Load...
	13.8.3 Save...
	13.8.4 Test...
	13.8.5 Fill...
	13.8.6 Copy...
	13.8.7 Compare...
	13.8.8 Search...
	13.8.9 ASCII/Byte/Word/Long/Single Float/Double Float

	13.9 PERFORMANCE ANALYSIS
	13.9.1 Add Range...
	13.9.2 Edit Range...
	13.9.3 Delete Range
	13.9.4 Reset Counts/Times
	13.9.5 Delete All Ranges
	13.9.6 Analysis Enabled

	13.10 REGISTERS
	13.10.1 Copy
	13.10.2 Edit...
	13.10.3 Toggle Bit

	13.11 SOURCE
	13.11.1 Copy
	13.11.2 Find...
	13.11.3 Set Address...
	13.11.4 Set Line...
	13.11.5 Go To Cursor
	13.11.6 Set PC Here
	13.11.7 Instant Watch...
	13.11.8 Add Watch
	13.11.9 Go To Disassembly

	13.12 SYSTEM STATUS
	13.12.1 Update
	13.12.2 Copy

	13.13 TRACE
	13.13.1 Find...
	13.13.2 Find Next
	13.13.3 Filter...
	13.13.4 Acquisition...
	13.13.5 Halt
	13.13.6 Restart
	13.13.7 Snapshot
	13.13.8 Clear
	13.13.9 Save...
	13.13.10 View Source
	13.13.11 Trim Source

	13.14 WATCH
	13.14.1 Copy
	13.14.2 Delete
	13.14.3 Delete All
	13.14.4 Add Watch...
	13.14.5 Edit Value...
	13.14.6 Radix

	APPENDIX A - SYSTEM MODULES
	APPENDIX B - COMMAND LINE INTERFACE
	APPENDIX C - COMMAND LINE SUMMARY CHART
	APPENDIX D - GUI COMMAND SUMMARY
	APPENDIX E - I/O REGISTER FILE FORMAT
	APPENDIX F - SYMBOL FILE FORMAT

