
U
ser’s M

anual

HewTargetServer
User’s Manual

Rev.8.00 Nov 2010

All information contained in these materials, including products and product
specifications, represents information on the product at the time of publication and is
subject to change by Renesas Electronics Corporation without notice. Please review the
latest information published by Renesas Electronics Corporation through various means,
including the Renesas Electronics Corporation website (http://www.renesas.com).

www.renesas.com

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

Abstract

HEW Target Server (COM) is provided for the purpose of extending the functions of the
High-performance Embedded Workshop. Using Windows application development tools available on the
market, you can customize the High-performance Embedded Workshop and operate in conjunction with
other applications.
 This user's manual shows the basic information necessary to use the HEW Target Server (COM). For
details about the language specifications of and the method for using Windows application development
tools, refer to the user's manual included with your product or online help.

Trademarks

Microsoft, Visual Basic, Visual C++, Windows, and Windows Vista are either registered trademarks or
trademarks of Microsoft Corporation in the United States and/or other countries.
All other company and product names are registered trademarks or trademarks of their respective
companies.

Contents

[Contents]
1. Abstract.. 1

1.1 Development Tools Used...1
1.2 Methods To Be Called ..1

2. Preparing for Use of the HEW Target Server (COM) .. 2
2.1 Registering the HEW Target Server (COM) ..2

2.1.1 Registering EcxHewTargetServer.dll ...2
2.1.2 Registering HewTargetServer.exe in Your Registry ...3

3. Using the HEW Target Server (COM) ... 4
3.1 Sample Program...4
3.2 Creating a Program (Visual C++)...4

3.2.1 Generating a Project..4
3.2.2 Creating Buttons..5
3.2.3 Creating Source Code ...6

3.3 Creating a Program (Visual C++ 2005)..11
3.3.1 Generating a Project..11
3.3.2 Creating Buttons..12
3.3.3 Creating Source Code ...12

3.4 Creating a Program (Visual Basic 6.0)..15
3.4.1 Generating project ...15
3.4.2 Specification of Type Library..15
3.4.3 Generating Object..15
3.4.4 Method Access...16

3.5 Creating a Program (Visual Basic 2005)...18
3.5.1 Generating project ...18
3.5.2 Specification of Type Library..18
3.5.3 Generating Object..18
3.5.4 Method Access...19

3.6 Note on a Shift from Visual Basic 6.0 to Visual Basic .NET..21

4. Event Acquisition from the High-performance Embedded Workshop....................................... 22
4.1 Visual C++ Event Acquisition..22
4.2 Visual Basic Event Acquisition ...25

5. Method List .. 27
5.1 Method Outline (for only VC++)...27

5.1.1 CPU Control..27
5.1.2 Register...27
5.1.3 Memory ...28
5.1.4 Software Breaks...28
5.1.5 Variable Break ..28
5.1.6 Variable Trace ..28
5.1.7 Interrupt Condition ..29
5.1.8 Symbol ..29
5.1.9 Downloads..29
5.1.10 Start/Stop..29
5.1.11 Workspace..29
5.1.12 Configuration and session..30
5.1.13 Project...30
5.1.14 Build..30
5.1.15 Files...30
5.1.16 Coverage...31
5.1.17 Others ...31

5.2 Method Outline (for VB, VC++) ..32
5.2.1 CPU Control..32
5.2.2 Register...32
5.2.3 Memory ...32
5.2.4 Software Breaks...33
5.2.5 Variable Break ..33
5.2.6 Variable Trace ..33
5.2.7 Interrupt Condition ..33
5.2.8 Symbol ..34
5.2.9 Downloads..34
5.2.10 Start/Stop..34

 i

Contents

5.2.11 Workspace..34
5.2.12 Configuration and session..35
5.2.13 Project...35
5.2.14 Build..36
5.2.15 Files...37
5.2.16 Coverage...37
5.2.17 Others ...37

5.3 Method Details (for only VC++) ...38
5.3.1 CPU Control..38

GoTargetExec ..38
StopTargetExec ...39
ResetTargetExec ...40
InitializeTarget ...41
Step...42
StepRate...43
StepOver ..44
StepOut ..45
IsRunning...46

5.3.2 Register...47
GetPC ...47
SetPCAddress ...48
SetPCSource..49
TestSetPC ..50

5.3.3 Memory ...51
GetMemory...51
SetMemory...52
GetDirectMemory ..53

5.3.4 Software Breaks...54
SetPCBreakPt ..54
EnableBreakPt ...55
DeleteBreakPt ..56
GetAllBreakPt ..57
DeleteAllBreakPt ...58

5.3.5 Variable Break ..59
SetDataBreakpoint ..59
EnableDataBreakpoint ..60
DeleteDataBreakpoint ...61

5.3.6 Variable Trace ..62
SetSymbolTrace ..62
ExecuteSymbolTrace ..63
DeleteSymbolTrace ...64
SaveSymbolTraceData..65

5.3.7 Interrupt Condition ..66
SendTrigger ...66

5.3.8 Symbol ..67
GetRealTimeWatch..67
GetQuickWatch..68
SymbolToAddress...69
AddressToSymbol...70
GetLineFromAddr..71
GetAddrFromLine..72

5.3.9 Downloads..73
Download ...73
Unload ..74

5.3.10 Start/Stop..75
InvokeHew ...75
QuitHew..76

5.3.11 Workspace..77
OpenWorkspace ..77
CloseWorkspace ...78
SaveWorkspace...79

5.3.12 Configuration and session..80
SaveSession ..80
GetCurrentConfiguration..81
SetCurrentConfiguration ..82
GetConfigurations...83
GetCurrentSession..84

ii

Contents

SetCurrentSession ..85
GetSessions...86
GetCurrentProject ...87
SetCurrentProject..88
GetProjects ..89

5.3.13 Project...90
AddFile ...90
AddFiles ...91
DeleteFile ...92
DeleteFiles ...93

5.3.14 Build..94
BuildProject ...94
RebuildProject ...95
UpDateAllDependency..96
AddFileWithCompilerOption ..97

5.3.15 Files...98
OpenFileAtLine..98
GetSourceFiles ..99
GetDownloadModules...100
GetDependentFiles..101

5.3.16 Coverage...102
SetCoverageRange ...102
GetCoverageRange ...103
SetCoverageDisable..104
SetCoverageEnable...105
ClearCoverage...106
GetCoverageStatus ...107
LoadCoverage ...108
SaveCoverage..109

5.3.17 Others ...110
GetErrorString ...110
GetHewStatus .. 111
GetHewStatusEx..112
GetTargetName..113

5.4 Method Details (for VB, VC++)...114
5.4.1 CPU Control..114

GoTargetExec2 ..114
StopTargetExec2 ...115
ResetTargetExec2 ...116
InitializeTarget2 ...117
Step2...118
StepRate2...119
StepOver2 ..120
StepOut2 ..121
IsRunning2...122

5.4.2 Register...123
GetPC2 ...123
SetPCAddress2 ...124
SetPCSource2..125
TestSetPC2 ..126

5.4.3 Memory ...127
GetMemory2...127
SetMemory2...128
GetDirectMemory2 ..130

5.4.4 Software Breaks...131
SetPCBreakPt2 ..131
EnableBreakPt2 ...132
DeleteBreakPt2 ..133
GetAllBreakPt2 ..134
DeleteAllBreakPt2 ...135

5.4.5 Variable Break ..136
SetDataBreakpoint2 ..136
EnableDataBreakpoint2 ..137
DeleteDataBreakpoint2 ...138

5.4.6 Variable Trace ..139
SetSymbolTrace2 ..139
ExecuteSymbolTrace2 ..140

 iii

Contents

DeleteSymbolTrace2 ...141
SaveSymbolTraceData2..142

5.4.7 Interrupt Condition ..143
SendTrigger2 ...143

5.4.8 Symbol ..144
GetRealTimeWatch2..144
GetQuickWatch2..145
SymbolToAddress2...146
AddressToSymbol2...147
GetLineFromAddr2..148
GetAddrFromLine2..149

5.4.9 Downloads..150
Download2 ...150
Unload2 ..151

5.4.10 Start/Stop..152
InvokeHew2..152
QuitHew2..153
InvokeHewWithNoDialog ..154

5.4.11 Workspace..155
OpenWorkspace2 ..155
CloseWorkspace2 ...156
SaveWorkspace2...157
GetWorkSpaceDirectory ...158

5.4.12 Configuration and session..159
SaveSession2 ..159
GetCurrentConfiguration2..160
SetCurrentConfiguration2 ..161
GetConfigurations2...162
GetCurrentSession2..163
SetCurrentSession2 ..164
GetSessions2...165
GetCurrentProject2 ...166
SetCurrentProject2..167
GetProjects2 ..168

5.4.13 Project...169
AddFile2 ...169
AddFiles2 ...170
DeleteFile2 ...171
DeleteFiles2 ...172
AddProjectFileFolder ..173
RemoveProjectFileFolder ...174
AddFileToFolder..175

5.4.14 Build..176
BuildProject2 ...176
RebuildProject2 ...177
UpDateAllDependency2..178
AddFileWithCompilerOption2 ..179
GetLibraryOptions...180
SetLibraryOptions ...181
GetLibraryFilesForConfiguration...182
SetLibraryFilesForConfiguration ...183
GetIncludeFileDirectories...184
SetIncludeFileDirectories ...185
GetCpuAndToolChainData ...186
SetBuildExcludeFiles..188
SetBuildIncludeFiles ...189

5.4.15 Files...190
OpenFileAtLine2..190
GetSourceFiles2 ..191
GetDownloadModules2...192
GetDependentFiles2..193

5.4.16 Coverage...194
SetCoverageRange2 ...194
GetCoverageRange2 ...195
SetCoverageDisable2..196
SetCoverageEnable2...197
ClearCoverage2 ...198

iv

Contents

 v

GetCoverageStatus2 ...199
LoadCoverage2 ...200
SaveCoverage2..201

5.4.17 Others ...202
GetErrorString2 ...202
GetHewStatus2 ..203
GetHewStatusEx2..205
GetTargetName2..206
GetHewVersion..207
Command...208

5.5 Events Acquirable in the High-performance Embedded Workshop ..209

1

1.Abstract
HEW Target Server (COM) provides the interface to extend the functions of the High-performance
Embedded Workshop. Using this interface, you can create the customize window (application) for the
High-performance Embedded Workshop, and operate in conjunction with other applications.

HEW2.exe

EcxHewTargetServer.dll

HewTargetServer.exe

****.exe

****.dll

Supplied by the HEW

Developed by the user

Data communication in the HEW

Imports the HEW Target Server

1.1 Development Tools Used
To create customize windows or operate in conjunction with other applications, you need to use Windows
application development tools which support Microsoft's Visual Basic or Visual C++ or other COM.

 Many reference books are available on the market, as is the information necessary to create
applications.

 The kit comes standard with abundant GUI components. These GUI components can be used as

simulate components for the user system. Freeware and shareware control components (ActiveX
control) can also be used. Or you can create your original components using Visual Basic or Visual
C++.

1.2 Methods To Be Called
Various methods can be called through the HewTargetServer's COM interface, including those to control
execution of the microcomputer, set/reference memory or register contents, and set software breakpoints.

2.Preparing for Use of the HEW Target Server (COM)
To use the HEW Target Server (COM) to work in cooperation with external applications, you must first
enable it in the High-performance Embedded Workshop environment you are using.

This chapter explains how to register and enable the HEW Target Server (COM) functions.

2.1 Registering the HEW Target Server (COM)
In the initial state of the High-performance Embedded Workshop or Renesas' integrated development
environment, that is installed in your computer, the facilities necessary to use the HEW Target Server
(COM) functions, i.e., HewTargetServer.exe and EcxHewTargetServer.dll, are not registered yet. Therefore,
even when you launch an external application you've created by using the HEW Target Server (COM) you
cannot control the High-performance Embedded Workshop with it.

The following describes how to register HewTargetServer.exe in your Windows registry and how to register
EcxHewTargetServer.dll.

2.1.1 Registering EcxHewTargetServer.dll

1. Launch the High-performance Embedded Workshop, and the "Welcome" dialog box shown below
will appear. When this dialog box is displayed, click the Administration button in it.

2. The Tool Administration dialog box shown below will appear. In its registered component list, select
the Extension Components folder to open. In the initial state, you will see that HewTargetServer is
not registered. Next, click the Search Disk button.

3. When the Search Component Disk dialog box shown below is displayed, select the folder in which

the High-performance Embedded Workshop, or Renesas' integrated development environment, is
installed and click the Start button. The components that are installed in your computer will be
listed.

2

4. Select HewTargetServer from the listed components and click the Register button.

Registration of EcxHewTargetServer.dll is completed. Close the dialog boxes sequentially.

Note: If EcxHewTargetServer.dll becomes unnecessary after you registered it, be sure to unregister it.

2.1.2 Registering HewTargetServer.exe in Your Registry
From High-performance Embedded Workshop V.4.05, the installer automatically registers or removes
HewTargetServer.exe. You do not need to register or remove HewTargetServer.exe manually.
Install Manager Version 1.03 or later also automatically registers or removes HewTargetServer.exe as
required in switching to another High-performance Embedded Workshop.

However, if you have installed multiple High-performance Embedded Workshop by Install Manager and
intend to use Install Manager Version 1.02 or earlier to switch the active High-performance Embedded
Workshop, you should remove and register HewTargetSever.exe manually.

To remove and register HewTargetSever.exe:
Double-click on the ALL_UNREGISTERSERVER.bat file stored in the folder where you have installed the
currently active High-performance Embedded Workshop. HewTargetServer.exe will be removed from the
registry.
Then find the ALL_REGISTERSERVER.bat file stored in the folder in which you have installed the
High-performance Embedded Workshop that you wish to activate and double-click on it to execute.
HewTargetServer.exe will be registered in your registry.

If you are running the High-performance Embedded Workshop under Windows Vista, invoke the command
prompt as an administrator and enter the cd command to go to the folder where
ALL_REGISTERSERVER.bat/ ALL_UNREGISTERSERVER.bat is stored. Then execute the batch file.
(To invoke the command prompt as an administrator, select [All Programs -> Accessories] from the Start
menu, right-click on [Command Prompt], and select [Run as administrator].)

3

3.Using the HEW Target Server (COM)
This chapter describes how to use the HEW Target Server (COM) that is supplied for connection with
external applications. For details about the methods of the HEW Target Server (COM), refer to Section 5.2,
"Details of Methods. "

In this chapter specifically, you will learn how to create a customized window of the High-performance
Embedded Workshop by using Visual C++6.0. The explanation here uses the simple sample window shown
below as an example.

3.1 Sample Program
This sample program creates a window that when simulating the operation of a program created with the
High-performance Embedded Workshop you can use to start or stop execution of simulation from an
external window.

3.2 Creating a Program (Visual C++)
3.2.1 Generating a Project
Generate a new project with Visual C++. Select New from the File menu of Visual C++. The New wizard will
start. In this wizard, select MFC AppWizard (exe) and click the OK button.

Select MFC AppWizard (exe)

The project name in this example is TypeLibraryDemo2.

4

In Step 1 of MFC AppWizard, specify the type of application you want to create. In the example here we'll
create a "Dialog based" application. So select it and click the Next button.

In Step 2, select the check box titled "Automation. " Leave other options as set by default.

In the steps that follow, you can proceed with default settings without causing any problem.

3.2.2 Creating Buttons
When you finished creating a project, create buttons in a dialog box. The IDs and captions set for each
button you created are shown below.

ID Caption Notes
IDC_BUTTON_GO &Go -

IDC_BUTTON_STOP &Stop -
IDOK OK Default

IDCANCEL Cancel Default

5

3.2.3 Creating Source Code
Next, add statements to the source code that was generated when you created a project and use the HEW
Target Server (COM).

(1) Import HewTargetServer.exe.

File to correct: TypelibraryDemo2Dlg.h

//import type library
#import "..\Hew2\HewTargetServer.exe" no_namespace

The path to HewTargetServer.exe specified here differs with each environment used.
Specify the folder in which the compiler package is installed.

(2) Declare a smart pointer as a member variable.

File to correct: TypelibraryDemo2Dlg.h

class CTypelibraryDemo2Dlg : public CDialog
{
...
public:
 //declare smart pointer
 IHewServer1Ptr pHewServer1;

};

(3) Create and initialize the smart pointer by a constructor.

File to correct: TypelibraryDemo2Dlg.cpp

// TODO: Add to this place when special initialization is desired.
// TODO: Add extra initialization here
try{
 //create smart pointer
 IHewServer1Ptr ptr(_uuidof(HewServer1));
 pHewServer1 = ptr;
}

6

(4) To ensure that the smart pointer will be discarded when a client terminates, add the statement shown
below.

File to correct: TypelibraryDemo2Dlg.cpp

CTest1Dlg::~CTest1Dlg()
{

// If there is an automation proxy for this dialog,
// the pointer to this dialog is returned to NULL,
// which indicates that the dialog has been deleted.

 if (m_pAutoProxy != NULL)
 m_pAutoProxy->m_pDialog = NULL;
 //destroy smart pointer
 pHewServer1 = NULL;

}
...
void CTypelibraryDemo2Dlg::OnClose()
{
 if (CanExit())
 CDialog::OnClose();

 //destroy smart pointer
 pHewServer1 = NULL;
}
...
void CTypelibraryDemo2Dlg::OnOK()
{
 if (CanExit())
 CDialog::OnOK();

 //destroy smart pointer
 pHewServer1 = NULL;
}
...
void CTypelibraryDemo2Dlg::OnCancel()
{
 if (CanExit())
 CDialog::OnCancel();

 //destroy smart pointer
 pHewServer1 = NULL;
}

7

(5) Next, add a function in ClassWizard that you want to be called when a button is clicked.

Select a button object and message and click the Add Function button. A null function like the one shown
below will be inserted into TypelibraryDemo2Dlg.cpp.

void CTypelibraryDemo2Dlg::OnButtonGo()
{
 // TODO: Add code for the control notification handler at this position.

}

Precautions:

To call the functions published for the High-performance Embedded Workshop, you must always use
try{} and/or catch{}. If an error occurs in an interface function call, you can use catch{} to get a COM error
from the COM system. If a COM error is issued when not using catch{}, the client program will cause an
application error to occur.
There are following three types of COM errors.

Custom error (errors issued by HewTargetServer.exe)

This error is included in the error returned by HewTargetServer.exe when it is invoked while the
High-performance Embedded Workshop is inactive, no targets are connected, or no load modules are
downloaded.

HEW error (errors issued by HEW2.exe)

If the High-performance Embedded Workshop returns an error, it is possible that some parameter of the
called interface is invalid. When the High-performance Embedded Workshop returned an error you can call
GetErrorString() to get the content of the error.

System error (errors issued by the COM system)

If an error is returned by the COM system, it means that the RPC (Remote Procedure Call) environment
has a problem or the communication between the client and HewTargetServer.exe has a problem.

8

(6) Create the OnButtonGo() function

File to correct: TypelibraryDemo2Dlg.cpp

void CTypelibraryDemo2Dlg::OnButtonGo()
{

 HRESULT hr = E_FAIL, hrErr = E_FAIL;
 CString s1;

 //calling HewTargetServer function
 try
 {
 hr = pHewServer1->GoTargetExec(); // Write the method for executing a program.

 }
 catch(_com_error e1)
 {
 if(e1.Description().length()>0) //display custom COM error
 AfxMessageBox(e1.Description());
 else
 {

 BSTR bstrErrStr;

 try
 {
 hrErr = pHewServer1->GetErrorString(e1.Error(), &bstrErrStr);
 // Write the method for getting the content of an error.
 }
 catch(_com_error e)
 {
 }
 if(SUCCEEDED(hrErr))
 {
 s1.Format("%s", CString(bstrErrStr));
 AfxMessageBox(s1);
 }
 else{ //display system error
 AfxMessageBox(e1.ErrorMessage());
 }
 }
 }
}

9

(7) Create the OnButtonStop() function

File to correct: TypelibraryDemo2Dlg.cpp

void CTypelibraryDemo2Dlg::OnButtonStop()
{

 HRESULT hr = E_FAIL, hrErr = E_FAIL;
 CString s1;

 //calling HewTargetServer function
 try
 {
 hr = pHewServer1->StopTargetExec(); // Add the method for stopping program
execution.
 }
 catch(_com_error e1)
 {
 if(e1.Description().length()>0) //display custom COM error
 AfxMessageBox(e1.Description());
 else
 {

 BSTR bstrErrStr;

 try
 {
 hrErr = pHewServer1->GetErrorString(e1.Error(), &bstrErrStr);
 // Write the method for getting the content of an error.
 }
 catch(_com_error e)
 {
 }
 if(SUCCEEDED(hrErr))
 {
 s1.Format("%s", CString(bstrErrStr));
 AfxMessageBox(s1);
 }
 else

{ //display system error
 AfxMessageBox(e1.ErrorMessage());
 }
 }
 }
}

10

3.3 Creating a Program (Visual C++ 2005)
3.3.1 Generating a Project
Generate a new project with Visual C++. Select [New]->[Project...] from the File menu of Visual C++. The

ew Project wizard will start. In this wizard, select MFC Application and click the OK button. N

Select:
MFC Application

The project name in this example is TypeLibraryDemo2.

In the "Welcome to the MFC Application Wizard", click the Next button.

In the "Application Type", select "Dialog based" and click the Next button.

11

In the "Advanced Features", select the check box titled "Automation. " Leave other options as set by
default.

In the steps that follow, you can proceed with default settings without causing any problem.

3.3.2 Creating Buttons
When you finished creating a project, create buttons in a dialog box. The IDs and captions set for each
button you created are shown below.

ID Caption Notes
IDC_BUTTON_GO &Go -

IDC_BUTTON_STOP &Stop -
IDOK OK Default

IDCANCEL Cancel Default

3.3.3 Creating Source Code
Next, add statements to the source code that was generated when you created a project and use the HEW
Target Server (COM).

(1) Import HewTargetServer.exe.

File to correct: TypelibraryDemo2Dlg.h

//import type library
#import "..\Hew2\HewTargetServer.exe" no_namespace

The path to HewTargetServer.exe specified here differs with each environment used.
Specify the folder in which the compiler package is installed.

(2) Declare a smart pointer as a member variable.

File to correct: TypelibraryDemo2Dlg.h

12

class CTypelibraryDemo2Dlg : public CDialog
{
...
public:
 //declare smart pointer
 IHewServer1Ptr pHewServer1;

};

(3) Create and initialize the smart pointer by a constructor.

File to correct: TypelibraryDemo2Dlg.cpp

// TODO: Add to this place when special initialization is desired.
// TODO: Add extra initialization here
try{
 //create smart pointer
 IHewServer1Ptr ptr(_uuidof(HewServer1));
 pHewServer1 = ptr;
}

(4) To ensure that the smart pointer will be discarded when a client terminates, add the statement shown
below.

File to correct: TypelibraryDemo2Dlg.cpp

CTest1Dlg::~CTest1Dlg()
{

// If there is an automation proxy for this dialog,
// the pointer to this dialog is returned to NULL,
// which indicates that the dialog has been deleted.

 if (m_pAutoProxy != NULL)
 m_pAutoProxy->m_pDialog = NULL;
 //destroy smart pointer
 pHewServer1 = NULL;

}
...
void CTypelibraryDemo2Dlg::OnClose()
{
 if (CanExit())
 CDialog::OnClose();

 //destroy smart pointer
 pHewServer1 = NULL;
}
...
void CTypelibraryDemo2Dlg::OnOK()
{
 if (CanExit())
 CDialog::OnOK();

 //destroy smart pointer
 pHewServer1 = NULL;
}
...
void CTypelibraryDemo2Dlg::OnCancel()
{
 if (CanExit())
 CDialog::OnCancel();

 //destroy smart pointer
 pHewServer1 = NULL;
}

13

(5) Next, add a function that you want to be called when a button is clicked.
(5-1) Right-click on the [CTypeLibraryDemo2Dlg] class in the [Class] view and select [Properties] from

the popup menu.
(5-2) Click on in the [Properties] pane to view a list of events.
(5-3) Click on [+] to the left of IDC_BUTTON_GO and select BN_CLICKED.
(5-4) Select <Add>OnBnClickedButtonGo from the drop-down menu.
(5-5) Add IDC_BUTTON_STOP in the same way (as in steps 5-3 and 5-4).

For Precautions, (6) Create the OnButtonGo() function, and subsequent procedures, see the descriptions

about Visual C++ 6.0 (3.2.3, Creating Source Code). If you wish to use a Unicode library, use the _T() macro
as a constant in the string.

Example: s1.Format(_T("%s"), CString(bstrErrStr));

14

3.4 Creating a Program (Visual Basic 6.0)
3.4.1 Generating project

Select Visual Basic Menu [File]->[New Project]. The "New Project" dialog box opens. Select
"Standard EXE" and click the "OK" button.

3.4.2 Specification of Type Library
Select Visual Basic Menu [Project]->[References...] and check "HEWTargetServer 1.7 Type Library". Type

library specification must be set for each project of Visual Basic.

3.4.3 Generating Object
Describe as follows on the VB code window. This code is the basic one for accessing the COM interface

of HEWTargetServer.

1: Dim WithEvents hts As HEWTargetServerLib.HewServer1
2:
3: Private Sub Form_Load()
4: Set hts = New HEWTargetServerLib.HewServer1
5: End Sub
6:
7: Private Sub Form_Unload(Cancel As Integer)
8: Set hts = Nothing
9: End Sub

Explanation of Each Line
1st line: Here, it is declared that the type of variable hts is "HEWTargetServerLib.HewServer1".

This is the COM interface name.
Also, designate the description of "WithEvents" to obtain the event occurring on the
High-performance Embedded Workshop side, such as Program execution start and program stop.
It is possible to change the variable name hts to any character string. The variable name hts can
be any name.

 3rd to 5th lines: This procedure (function) is called at applications startup (form open). Here, the object of
"HEWTargetServerLib.HewServer1" is substituted for variable hts. The method of
HEWTargetServer is accessed via this variable hts.

 7th to 9th lines: This procedure (function) is accessed at applications end (form closing). Here, the object of
variable hts is cancelled. If the object is cancelled, it will become impossible to call the method of
HEWTargetServer.

15

3.4.4 Method Access

Sample: Reset User Target
The following is the method of preparing the customized window for resetting the user target. In this
application, a single button control is used.
(1) Adding Button Control

Click the Command button of the tool box to create one button control on the form.

(2) Button Property Change

In the property window, alter the properties for the button control you created.

Reset Caption

btnReset (Name)

Contents Property

16

(3) Describe the button operation
Describe as follows in the code window. The bold-faced place indicates the additional part.

Dim WithEvents hts As HEWTARGETSERVERLib.HewServer1
Private Sub Form_Load()
 Set hts = New HEWTARGETSERVERLib.HewServer1
End Sub

Private Sub Form_Unload(Cancel As Integer)
 Set hts = Nothing
End Sub

Private Sub btnReset_Click()
 Dim rtn As Long
 On Error GoTo HTS_error
 rtn = HTS.GoTargetExec2
 Exit Sub
HTS_error:
 MsgBox Err.Description
End Sub

(4) Operation Check
Check for applications performance. First, startup High-performance Embedded Workshop. Next,

select Visual Basic Menu [EXEC]->[START], and execute applications. By clicking the Reset button in the
applications, the user target is reset.

17

3.5 Creating a Program (Visual Basic 2005)
3.5.1 Generating project

Select Visual Basic Menu [File]->[New Project]. The "New Project" dialog box opens. Select "Windows
Application" and click the "OK" button.

3.5.2 Specification of Type Library

Select Visual Basic Menu [Project]->[Add References...] and open the [COM] tabbed page. Then select
"HEWTargetServer 1.7 Type Library" and click the "OK" button. Type library specification must be set for
each project of Visual Basic.

3.5.3 Generating Object

Describe as follows on the VB code window. This code is the basic one for accessing the COM interface
of HEWTargetServer.

1: Public Class Form1
2: Dim WithEvents hts As HEWTARGETSERVERLib.HewServer1
3:
4: Private Sub Form1_Load(ByVal sender As Object, ByVal e As System.

EventArgs) Handles Me.Load
5: hts = New HEWTARGETSERVERLib.HewServer1
6: End Sub
7:
8: Private Sub Form1_FormClosed(ByVal sender As Object, ByVal e As

System.Windows.Forms.FormClosedEventArgs) Handles Me.FormClosed
9: HTS = Nothing

10: End Sub
11: End Class

Explanation of Each Line
2nd line: Here, it is declared that the type of variable hts is "HEWTargetServerLib.HewServer1".

This is the COM interface name.
Also, designate the description of "WithEvents" to obtain the event occurring on the
High-performance Embedded Workshop side, such as Program execution start and program stop.
It is possible to change the variable name hts to any character string. The variable name hts can
be any name.

 4th to 6th lines: This procedure (function) is called at applications startup (form open). Here, the object of
"HEWTargetServerLib.HewServer1" is substituted for variable hts. The method of
HEWTargetServer is accessed via this variable hts.

 8th to 10th lines: This procedure (function) is accessed at applications end (form closing). Here, the object of
variable hts is cancelled. If the object is cancelled, it will become impossible to call the method of
HEWTargetServer.

18

3.5.4 Method Access
Sample: Reset User Target
The following is the method of preparing the customized window for resetting the user target. In this
application, a single button control is used.
(1) Adding Button Control

Click the Command button of the tool box to create one button control on the form.

(2) Button Property Change

In the property window, alter the properties for the button control you created.

Reset Text

btnReset (Name)

Contents Property

19

(3) Describe the button operation
Add a function to be executed in response to clicking on the btnReset button (for details, see the help

information on VisualBasic).
Describe as follows in the code window. The bold-faced place indicates the additional part.

Public Class Form1
 Dim WithEvents hts As HEWTARGETSERVERLib.HewServer1

 Private Sub Form1_Load(ByVal sender As Object, ByVal e As System.EventArgs)
Handles Me.Load
 hts = New HEWTARGETSERVERLib.HewServer1
 End Sub

 Private Sub Form1_FormClosed(ByVal sender As Object, ByVal e As System.Windows.
Forms.FormClosedEventArgs) Handles Me.FormClosed
 HTS = Nothing
 End Sub

 Private Sub btnReset_Click(ByVal sender As System.Object, ByVal e As System.
EventArgs) Handles btnReset.Click
 Dim rtn As Integer
 Try
 rtn = hts.ResetTargetExec2()

 Catch ex As System.Runtime.InteropServices.COMException
 If ex.ErrorCode = &H8004FFFF Then
 MessageBox.Show("Hew Target is not linked up")
 ...
 Catch ex As Exception
 MessageBox.Show(ex.ToString())
 End Try

 End Sub
End Class

(4) Operation Check

Check for applications performance. First, startup High-performance Embedded Workshop. Next,
select Visual Basic Menu [Debug]->[Start with debugging], and execute applications. By clicking the
Reset button in the applications, the user target is reset.

20

3.6 Note on a Shift from Visual Basic 6.0 to Visual Basic .NET

If you have shifted from Visual Basic 6.0 to Visual Basic .NET and wish to use unstructured exception
handling (On Error) available in Visual Basic 6.0, modify the exception-handling section as follows.

(1) Unstructured Exception Handling in Visual Basic 6.0

HTS_error:
HTSErrorMsgBox Err.Description

End Sub

(2) Unstructured Exception Handling in Visual Basic .NET

HTS_error:
 strErrorMessage = ""
 If Err.Number = &H8004FFFF Then
 strErrorMessage = "Hew Target is not linked up"
 ElseIf Err.Number = &H80050000 Then
 strErrorMessage = "No module is downloaded"
 ElseIf Err.Number = &H80050001 Then
 strErrorMessage = "Invalid Break point handle"
 ElseIf Err.Number = &H80050002 Then
 strErrorMessage = "Error in pass in parameters"
 ElseIf Err.Number = &H80050003 Then
 strErrorMessage = "Invalid Begin and End address"
 ElseIf Err.Number = &H80050004 Then
 strErrorMessage = "No Interface"
 ElseIf Err.Number = &H80050005 Then
 strErrorMessage = "HEW was not found."
 Else
 HTS.GetErrorString2(Err.Number, strErrorMessage)
 End If

 HTSErrorMsgBox(strErrorMessage)
End Sub

21

4. Event Acquisition from the High-performance Embedded Workshop
When you've created a dialog-based application, you can use the method described below to get an event
(Event3_ToClient_Stop). The sample here displays a dialog box for the case where the target program has
stopped in the High-performance Embedded Workshop.

Note on acquisition of generated events:
The HEW target server uses flags not to issue specific events that frequently occur during execution of the
target program. The following events are not issued if the flag is active after the same event has already
been detected.

Event1_ToClient_TargetReset/Event5_ToClient_RegisterReset/Event8_ToClient_PlatformInitialize

Calling GetHewStatus() clears the flags. To acquire all events, call GetHewStatus() after each of the events
has been issued.

4.1 Visual C++ Event Acquisition
(1) Import HewTargetServer.exe.

File to correct: StdAfx.h

#import "HewTargetServer.exe" no_namespace named_guids

(2) Add AfxOleInit().

File to correct: CclientApp.cpp

BOOL CclientApp::InitInstance()
{
 AfxOleInit();

...

(3) Create and initialize a smart pointer by a constructor.

File to correct: CclientDig.cpp

#include "Afxctl.h"

...

CClientDlg::CClientDlg()
{

...
try{

 //creating smart pointer from new i/f: IhewServer2
 IHewServer2Ptr ptr(_uuidof(HewServer1));
 pHewServer1 = ptr;

}
catch(_com_error e)
{
}

(4) Declare the smart pointer as a member variable.

File to correct: ClientDig.h

#include "EventHandler.h"
...
public:

IHewServer2Ptr pHewServer1; //using smart pointer from new interface: IHewServer2
protected:

CEventHandler* m_pHandler;
DWORD m_dwCookie;

...

22

(5) Creation of an event acquisition file 1

File to correct: EventHandler.cpp (Create a new file)

// EventHandler.cpp : implementation file

#include "stdafx.h"
#include "EventHandler.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

IMPLEMENT_DYNCREATE(CEventHandler, CCmdTarget)

CEventHandler::CEventHandler()
{

 EnableAutomation();
}

CEventHandler::~CEventHandler()
{
}

void CEventHandler::OnFinalRelease()
{
 CCmdTarget::OnFinalRelease();
}

BEGIN_MESSAGE_MAP(CEventHandler, CCmdTarget)
 //{{AFX_MSG_MAP(CEventHandler)
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

BEGIN_DISPATCH_MAP(CEventHandler, CCmdTarget)
 //{{AFX_DISPATCH_MAP(CEventHandler)
 DISP_FUNCTION_ID(CEventHandler, "Event3_ToClient_Stop", 3, OnHewStatusStop, VT_EMPTY,
0) //}}AFX_DISPATCH_MAP
END_DISPATCH_MAP()

BEGIN_INTERFACE_MAP(CEventHandler, CCmdTarget)
 INTERFACE_PART(CEventHandler, DIID__IHewServer2Events, Dispatch)
END_INTERFACE_MAP()

///
// CEventHandler message handlers
void CEventHandler::OnHewStatusStop()
{
 AfxMessageBox("Event3_ToClient_Stop");
}

23

(6) Creation of an event acquisition file 2

File to correct: EventHandler.h (Create a new file)

#if !defined(AFX_EVENTHANDLER_H__0F96FDDD_7167_457D_8069_73D9AEFCDF49__INCLUDED_)
#define AFX_EVENTHANDLER_H__0F96FDDD_7167_457D_8069_73D9AEFCDF49__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000
// EventHandler.h : header file

///
// CEventHandler command target

class CEventHandler : public CCmdTarget
{
 DECLARE_DYNCREATE(CEventHandler)
 CEventHandler(); // protected constructor used by dynamic creation
public:
// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CEventHandler)
 public:
 virtual void OnFinalRelease();
 //}}AFX_VIRTUAL

// Implementation
public:
 virtual ~CEventHandler();

 // Generated message map functions
 //{{AFX_MSG(CEventHandler)
 afx_msg void OnHewStatusStop(); //event call back function
 //}}AFX_MSG

 DECLARE_MESSAGE_MAP()
 // Generated OLE dispatch map functions
 //{{AFX_DISPATCH(CEventHandler)
 // NOTE - the ClassWizard will add and remove member functions here.
 //}}AFX_DISPATCH
 DECLARE_DISPATCH_MAP()
 DECLARE_INTERFACE_MAP()
};
///
//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations immediately before the previous line.

#endif // !defined(AFX_EVENTHANDLER_H__0F96FDDD_7167_457D_8069_73D9AEFCDF49__INCLUDED_)

24

4.2 Visual Basic Event Acquisition

To obtain an event (program execution start, etc.) arising on the High-performance Embedded Workshop

side, use procedure hts_GotEventMessage. This procedure is a subroutine called out when the event
arising on the High-performance Embedded Workshop side was received. ("hts" at the head of the
procedure name denotes the variable name of the object designated at the head of the program.)

Visual Basic 6.0

Private Sub hts_GotEventMessage(ByVal action As Long)
End Sub

Visual Basic 2005

Private Sub hts_GotEventMessage(ByVal action As Integer)
End Sub

Event No. arising on the High-performance Embedded Workshop side is stored in parameter "action".

With this procedure, describe the processing to be executed where the event was received from
High-performance Embedded Workshop.

Sample: Get an event arising on High-performance Embedded Workshop side. The following is the
method of creating the customized window for getting an event arising on the High-performance
Embedded Workshop side and displaying its number (the figures below show examples of Visual Basic 6.0).
For this application, one label control is used.

(1) Add label control
Click on "Label" of the tool box and create one label control on the form.

(2) Change the property
In the property window, change the properties for the label control you created.

Property Contents
(Name) lblEventNo
Caption (nothing)

25

(3) Describe the operation when an event occurred
Describe as follows in the code window. The section in red indicates the addition part.

 Visual Basic 6.0

Dim WithEvents hts As HEWTARGETSERVERLib.HewServer1
Private Sub Form_Load()
 Set hts = New HEWTARGETSERVERLib.HewServer1
End Sub
Private Sub Form_Unload(Cancel As Integer)
 Set hts = Nothing
End Sub
Private Sub hts_GotEventMessage(ByVal action As Long)
 lblEventNo.Caption = action
End Sub

 Visual Basic 2005

Public Class Form1
 Dim WithEvents hts As HEWTARGETSERVERLib.HewServer1
 Private Sub Form1_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.Load
 hts = New HEWTARGETSERVERLib.HewServer1
 End Sub
 Private Sub Form1_FormClosed(ByVal sender As Object, ByVal e As System.Windows.
Forms.FormClosedEventArgs) Handles Me.FormClosed
 hts = Nothing
 End Sub
 Private Sub hts_GotEventMessage(ByVal action As Integer)

 lblEventNo.Caption = action
End Sub

End Class

(4) Check for action
Check the applications action. Startup High-performance Embedded Workshop, select Visual Basic
Menu [EXEC]->[START], and execute applications. By manipulating High-performance Embedded
Workshop (go/stop, etc.), the number of an event that occurred in its High-performance Embedded
Workshop is displayed.

26

5.Method List
HEW Target Server (COM) is disclosing the following method (function).

Notes:
(1) Support for VisualBasic6.0

The HEW target server for High-performance Embedded Workshop V.4.02 and later versions supports
VisualBasic6.0 (hereafter referred to as VB). Parameter types for existing methods have been changed
so that they can be used from VB. Names of these methods with their parameter type changed include
"2".
Example 1: Step(2, 1); // Existing VC++ method with DWORD-type parameters
Example 2: Step2(2, 1); // New VB/VC++ method with long-type parameters
Methods added from the High-performance Embedded Workshop can also be used from VB and VC++.

(2) Difference between GetMemory() and GetDirectMemory()
GetMemory() acquires data from the cache memory, while GetDirectMemory() acquires data from
memory in the MCU. To acquire data during execution of the user program, use GetDirectMemory().
When the debugger in use does not support caching, the operation of GetMemory() and
GetDirectMemory() is the same.

(3) Invoking multiple High-performance Embedded Workshop
When multiple High-performance Embedded Workshop are invoked, the HEW target server cannot
distinguish them. These High-performance Embedded Workshop will thus perform the same
operation.

(4) Path for HewTargetServer.exe
If the path for HewTargetServer.exe has changed (e.g., by re-installation of the High-performance
Embedded Workshop), use the registration tool (ALL_REGISTERSERVER.bat) to register
HewTargetServer.exe again.
(For details, refer to Section 2.1.2, " Registering HewTargetServer.exe in Your Registry".)

5.1 Method Outline (for only VC++)
5.1.1 CPU Control

Method Name Parameter Description Page
GoTargetExec (Nothing) Executes a program. P38
StopTargetExec (Nothing) Stops program execution. P39
ResetTargetExec (Nothing) Resets the debugger environment. P40
InitializeTarget (Nothing) Initializes the debugger environment. P41
Step [in] DWORD _eMode

[in] DWORD _dWStep
Step executes the target program. P42

StepRate [in] DWORD _dwRate Sets a speed at which the program is
single-stepped.

P43

StepOver [in] DWORD _eMode
[in] DWORD _dwStep

Runs a program by stepping-over instructions or
source lines.

P44

StepOut [in] DWORD _eMode Runs a program by stepping-out instructions or
source lines.

P45

IsRunning [out] long* p_bRunning Determines whether or not the current user
program is running.

P46

5.1.2 Register

Method Name Parameter Description Page
GetPC [out] DWORD *p_dwPC Gets the current program counter value. P47
SetPCAddress [in] ADDR aPCAddr Sets the program counter. P48
SetPCSource [in] BSTR bstrFileName

[in] LINENO LineNum
Sets the program counter by specifying a source
file and line.

P49

TestSetPC [out] long* p_bSetPCState Determines whether or not the PC (program
counter) value can be set.

P50

27

5.1.3 Memory
Method Name Parameter Description Page
GetMemory [in] ADDR _aBegin

[in] ADDR _aEnd
[in] WORD _wDisplayWidth
[out] SAGEARRAY(BYTE)* _ppbyBuff

Gets a memory data. P51

SetMemory [in] ADDR _aBegin
[in] ADDR _aEnd
[in] WORD _wDisplayWidth
[in] SAGEARRAY(BYTE) _ppbyBuff

Sets a memory data. P52

GetDirectMemory [in] ADDR _aBegin
[in] ADDR _aEnd
[in] WORD _wDisplayWidth
[out] SAGEARRAY(BYTE)* _ppbyBuff

Gets a direct memory data. P53

5.1.4 Software Br aks e

Method Name Parameter Description Page
SetPCBreakPt [in] ADDR _aPCBreakAddr

[out] BHANDLE* p_Bhandle
Registers the software breakpoint. P54

EnableBreakPt [in] BHANDLE p_Bhandle
[in] VARIANT_BOOL bEnable

Enable or disable the software breakpoint. P55

DeleteBreakPt [in] BHANDLE BHandle Delete the software breakpoint. P56
GetAllBreakPt [out] long *p_index

[out] VARIANT *p_vAllBreakPt
Gets the software breakpoints that have been
set.

P57

DeleteAllBreakPt (Nothing) Deletes the software breakpoints that have been
set.

P58

5.1.5 Variable Break

Method Name Parameter Description Page
SetDataBreakpoint [in] DWORD _aSymbol

[in] DWORD _eSize
[in] DWORD _eType
[in] DWORD _dwData
[out] DWORD *p_dwBreakDataNo

Registers the data breakpoint. P59

EnableDataBreakpoint [in] DWORD dwBreakDataNo
[in] VARIANT_BOOL _bEnable

Enables or disables the data breakpoint. P60

DeleteDataBreakpoint [in] DWORD dwBreakDataNo Delete the data breakpoint. P61

5.1.6 Variable Tra e c

Method Name Parameter Description Page
SetSymbolTrace [in] ADDR _aSymbol

[in] DWORD _eConditon
[in] DWORD _eSize
[in] DWORD _eType
[in] DWORD _dwData
[out] DWORD *p_dwTraceNo

Sets the variable trace conditions. P62

ExecuteSymbolTrace [in] VARIANT_BOOL _bEnable Enables or disables the variable traces. P63
DeleteSymbolTrace [in] DWORD _dwTrace Deletes the variable trace conditions. P64
SaveSymbolTraceData [in] BSTR _bstrFileName Saves the variable trace result to a specified

file.
P65

28

5.1.7 Interrupt Co dition n
Method Name Parameter Description Page
SendTrigger [in] DWORD _dwTriggerNo

[in] DWORD _dwTriggerType1
[in] DWORD _dwTriggerType2
[in] DWORD _dwPriority

Sets interrupt conditions. P66

5.1.8 Symbol

Method Name Parameter Description Page
GetRealTimeWatch [in] ADDR _aSymbol

[in] DWORD _eSize
[out] DWORD *p_dwValue

Gets the real-time watch. P67

GetQuickWatch [in] BSTR bstrVarName
[out] DWORD* p_dwValueSize
[out] BSTR* bstrByValue
[out] EobjectTypeServer* p_eType
[out] BSTR* bstrVariableAllocation

Gets the value that corresponds to a
string character.

P68

SymbolToAddress [in] BSTR bstrSymbolName
[out] ADDR* p_aSymbolAddr

Converts from symbol to address. P69

AddressToSymbol [in] ADDR aSymbolAddr
[out] BSTR* p_bstrSymbolName

Converts from address to symbol. P70

GetLineFromAddr [in] ADDR _aLineAddr
[out] BSTR* p_bstrFileName
[out] LINEO* p_LineNo

Gets the source file name and the line
number corresponding to the specified
address.

P71

GetAddrFromLine [in] BSTR bstrFileName
[in] LINENO LineNo
[out] ADDR* p_aLineAddr

Gets the address of specified source line
information.

P72

5.1.9 Downloads

Method Name Parameter Description Page
Download [in] BSTR _bstrFileName Downloads the target program. P73
Unload [in] BSTR _bstrFileName Unloads the target program. P74

5.1.10 Start/Stop

Method Name Parameter Description Page
InvokeHew (Nothing) Starts a High-performance Embedded

Workshop application.
P75

QuitHew (Nothing) Closes a High-performance Embedded
Workshop application.

P76

5.1.11 Workspace

Method Name Parameter Description Page
OpenWorkspace [in] BSTR _bstrFileName Opens a workspace. P77
CloseWorkspace [in] DWORD _dwIgnoreChanges Closes the workspace. P78
SaveWorkspace (Nothing) Saves the workspace. P79

29

5.1.12 Configura on and session ti

Method Name Parameter Description Page
SaveSession (Nothing) Saves the session file. P80
GetCurrentConfiguration [out] BSTR

*p_bstrCurrentConfigurationName
Gets the current build
configuration.

P81

SetCurrentConfiguration [in] BSTR _bstrConfiguration Sets a build configuration. P82
GetConfigurations [out] BSTR *p_strConfigurations Gets registered build

configurations.
P83

GetCurrentSession [out] BSTR *p_bstrCurrentSessionName Gets the current debug session. P84
SetCurrentSession [in] BSTR _bstrSession Sets a debug session. P85
GetSessions [out] BSTR *p_bstrSessions Gets registered debug sessions. P86
GetCurrentProject [out] BSTR *p_bstrCurrentProjectName Gets the current project. P87
GetProjects [out] BSTR *p_bstrProjectNames Gets all project names. P89
SetCurrentProject [in] BSTR _bstrProjectName Sets the active project. P88

5.1.13 Project

Method Name Parameter Description Page
AddFile [in] BSTR _bstrFileName Adds a file to the project. P90
AddFiles [in] BSTR _bstrFileName Adds multiple files to the project. P91
DeleteFile [in] BSTR _bstrFileName Deletes a file from the project. P92
DeleteFiles [in] BSTR _bstrFileName Deletes multiple files from the project. P93

5.1.14 Build

Method Name Parameter Description Page
BuildProject (Nothing) Builds a project. P94
RebuildProject (Nothing) Rebuilds a project. P95
UpDateAllDependency (Nothing) Updates all dependency relations. P96
AddFileWithCompilerOption [in] BSTR _bstrFileName

[in] BSTR
_bstrIncludeDirectories
[in] BSTR _bstrDefines

Adds a file after setting compiler options for
the project.

P97

5.1.15 Files

Method Name Parameter Description Page
OpenFileAtLine [in] BSTR _bstrOpenFileName

[in] int _iLine
Opens a file by specifying the file name and
line number.

P98

GetSourceFiles [out] BSTR *p_bstrSourceFiles Gets source file names. P99
GetDownloadModules [out] BSTR

*p_bstrDownloadModules
Gets module file names. P100

GetDependentFiles [out] BSTR
*p_bstrDependentFiles

Gets dependent file names. P101

30

5.1.16 Coverage
Method Name Parameter Description Page

SetCoverageRange [in] DWORD dwStartAddress
[in] DWORD dwEndAddress

Sets a coverage range. P102

GetCoverageRange [out] DWORD *p_dwStartAddress
[out] DWORD *p_dwEndAddress

Gets data from a coverage range. P103

SetCoverageDisable (Nothing) Disables the coverage function. P104
SetCoverageEnable (Nothing) Enables the coverage function. P105
ClearCoverage (Nothing) Clears the coverage information. P106
GetCoverageStatus [out] int *p_iStatus Gets the coverage status information. P107
LoadCoverage [in] BSTR _bstrLoadFileName Loads the coverage information. P108
SaveCoverage [in] BSTR _bstrSaveFileName Saves the coverage information. P109

5.1.17 Others

Method Name Parameter Description Page
GetErrorString [in] HRESULT _IError

[out] BSTR* _pbstrError
Gets an error string occurred in a method call. P110

GetHewStatus [out] int* p_iTargetReset
[out] int* p_iTaStatus
[out] int* p_iMemoryReset
[out] int* p_iRegisterReset
[out] int* iPlatformInitialize
[out] int* p_iLoadingStatus

Gets status. P111

GetHewStatusEx [out] int *p_iInvokeHew
[out] int *p_iOpenWorkspace
[out] int *p_iBuildProject

Gets the status information (on initiation,
opening a workspace, and build).

P112

GetTargetName [out] BSTR* p_bstrName Gets a target name. P113

31

5.2 Method Outline (for VB, VC++)
5.2.1 CPU Control

Method Name Parameter Description Page
GoTargetExec2 (Nothing) Executes a program. P114
StopTargetExec2 (Nothing) Stops program execution. P115
ResetTargetExec2 (Nothing) Resets the debugger environment. P116
InitializeTarget2 (Nothing) Initializes the debugger environment. P117
Step2 [in] long _lMode

[in] long _lStep
Step executes the target program. P118

StepRate2 [in] long _lRate Sets a speed at which the program is
single-stepped.

P119

StepOver2 [in] long _lMode
[in] long _lStep

Runs a program by stepping-over instructions or
source lines.

P120

StepOut2 [in] long _lMode Runs a program by stepping-out instructions or
source lines.

P121

IsRunning2 [out] long * p_lRunning Determines whether or not the current user
program is running.

P122

5.2.2 Register

Method Name Parameter Description Page
GetPC2 [out] long *p_lPC Gets the current program counter value. P123
SetPCAddress2 [in] long lPCAddr Sets the program counter. P124
SetPCSource2 [in] BSTR bstrFileName

[in] long lLineNum
Sets the program counter by specifying a source
file and line.

P125

TestSetPC2 [out] long* p_lSetPCState Determines whether or not the PC (program
counter) value can be set.

P126

5.2.3 Memory

Method Name Parameter Description Page
GetMemory2 [in] long lBegin

[in] long lEnd
[in] long lDisplayWidth
[out] VARIANT *p_vMemData

Gets a memory data. P127

SetMemory2 [in] long lBegin
[in] long lEnd
[in] long lDisplayWidth
[in] VARIANT vMemData

Sets a memory data. P128

GetDirectMemory2 [in] long lBegin
[in] long lEnd
[in] long lDisplayWidth
[out] VARIANT *p_vMemData

Gets a direct memory data. P130

32

5.2.4 Software Br aks e
Method Name Parameter Description Page
SetPCBreakPt2 [in] long lPCBreakAddr

[out] long *p_lHandle
Registers the software breakpoint. P131

EnableBreakPt2 [in] long lHandle
[in] long lEnable

Enable or disable the software breakpoint. P132

DeleteBreakPt2 [in] long lHandle Delete the software breakpoint. P133
GetAllBreakPt2 [out] long *p_index

[out] VARIANT *p_vAllBreakPt
Gets the software breakpoints that have been set. P134

DeleteAllBreakPt2 (Nothing) Deletes the software breakpoints that have been
set.

P135

5.2.5 Variable Break

Method Name Parameter Description Page
SetDataBreakpoint2 [in] long _lSymbol

[in] long _lSize
[in] long _lType
[in] long _lData
[out] long *p_lBreakDataNo

Registers the data breakpoint. P136

EnableDataBreakpoint2 [in] long lDataBreakNo
[in] long _lEnable

Enables or disables the data breakpoint. P137

DeleteDataBreakpoint2 [in] long lDataBreakNo Delete the data breakpoint. P138

5.2.6 Variable Tra e c

Method Name Parameter Description Page
SetSymbolTrace2 [in] long _lSymbol

[in] long _lConditon
[in] long _lSize
[in] long _lType
[in] long _lData
[out] long *p_lTraceNo

Sets the variable trace conditions. P139

ExecuteSymbolTrace2 [in] long _lEnable Enables or disables the variable traces. P140
DeleteSymbolTrace2 [in] long _lTraceNo Deletes the variable trace conditions. P141
SaveSymbolTraceDeta2 [in] BSTR _bstrFileName Saves the variable trace result to a specified file. P142

5.2.7 Interrupt Co dition n

Method Name Parameter Description Page
SendTrigger2 [in] long _lTriggerNo

[in] long _lTriggerType1
[in] long _lTriggerType2
[in] long _lPriority

Sets interrupt conditions. P143

33

5.2.8 Symbol
Method Name Parameter Description Page
GetRealTimeWatch2 [in] long _lSymbol

[in] long _lSize
[out] long *p_lValue

Gets the real-time watch. P144

GetQuickWatch2 [in] BSTR bstrVarName
[out] long *p_lValueSize
[out] BSTR *bstrByValue
[out] long *p_lType
[out] BSTR *bstrTypeName
[out] BSTR *bstrVarAllocation

Gets the value that corresponds to a string
character.

P145

SymbolToAddress2 [in] BSTR bstrSymbolName
[out] long *p_lSymbolAddr

Converts from symbol to address. P146

AddressToSymbol2 [in] long lSymbolAddr
[out] BSTR *p_bstrSymbolName

Converts from address to symbol. P147

GetLineFromAddr2 [in] long lLineAddr
[out] BSTR *p_bstrFileName
[out] long *p_lLineNo

Gets the source file name and the line number
corresponding to the specified address.

P148

GetAddrFromLine2 [in] BSTR bstrFileName
[in] long lLineNo
[out] long *p_lLineAddr

Gets the address of specified source line
information.

P149

5.2.9 Downloads

Method Name Parameter Description Page
Download2 [in] BSTR _bstrFileName Downloads the target program. P150
Unload2 [in] BSTR _bstrFileName Unloads the target program. P151

5.2.10 Start/Stop

Method Name Parameter Description Page
InvokeHew2 (Nothing) Starts a High-performance Embedded

Workshop application.
P152

QuitHew2 (Nothing) Closes a High-performance Embedded
Workshop application.

P153

InvokeHewWithNoDialog (Nothing) Invokes the High-performance
Embedded Workshop application
without opening the [Welcome!] dialog
box.

P154

5.2.11 Workspace

Method Name Parameter Description Page
OpenWorkspace2 [in] BSTR _bstrFileName Opens a workspace. P155
CloseWorkspace2 [in] long _lIgnoreChanges Closes the workspace. P156
SaveWorkspace2 (Nothing) Saves the workspace. P157
GetWorkSpaceDirectory [out] BSTR

*_pbstrCurrentWorkspaceDirectory
Gets the absolute path of the current
workspace.

P158

34

5.2.12 Configura on and session ti

Method Name Parameter Description Page
SaveSession2 (Nothing) Saves the session file. P159
GetCurrentConfiguration2 [out] BSTR

*p_bstrCurrentConfigurationName
Gets the current build configuration. P160

SetCurrentConfiguration2 [in] BSTR _bstrConfiguration Sets a build configuration. P161
GetConfigurations2 [out] BSTR *p_strConfigurations Gets registered build configurations. P162
GetCurrentSession2 [out] BSTR

*p_bstrCurrentSessionName
Gets the current debug session. P163

SetCurrentSession2 [in] BSTR _bstrSession Sets a debug session. P164
GetSessions2 [out] BSTR *p_bstrSessions Gets registered debug sessions. P165
GetCurrentProject2 [out] BSTR

*p_bstrCurrentProjectName
Gets the current project. P166

GetProjects2 [out] BSTR *p_bstrProjectNames Gets all project names. P168
SetCurrentProject2 [in] BSTR _bstrProjectName Sets the active project. P167

5.2.13 Project

Method Name Parameter Description Page
AddFile2 [in] BSTR _bstrFileName Adds a file to the project. P169
AddFiles2 [in] BSTR _bstrFileName Adds multiple files to the project. P170
DeleteFile2 [in] BSTR _bstrFileName Deletes a file from the project. P171
DeleteFiles2 [in] BSTR _bstrFileName Deletes multiple files from the project. P172
AddProjectFileFolder [in] BSTR _bstrFolderName Adds a folder to the Projects tree. P173
RemoveProjectFileFolder [in] BSTR _bstrFolderName Deletes a folder from the Projects tree. P174
AddFileToFolder [in] BSTR _bstrFileName

[in] BSTR _bstrFolderName
Adds a file to a specific folder under the
Projects tree.

P175

35

5.2.14 Build
Method Name Parameter Description Page
BuildProject2 (Nothing) Builds a project. P176
RebuildProject2 (Nothing) Rebuilds a project. P177
UpDateAllDependency2 (Nothing) Updates all dependency relations. P178
AddFileWithCompilerOption2 [in] BSTR _bstrAddFileName

[in] BSTR _bstrIncludeDirectories
[in] BSTR _bstrDefines

Adds a file after setting compiler
options for the project.

P179

GetLibraryOptions [out] BSTR *p_bstrLibraryOption Acquires the library options for the
linker in the current project.

P180

SetLibraryOptions [in] BSTR _bstrLibraryOption Sets library options for the linker in
the current project.

P181

GetLibraryFilesForConfiguration [in] BSTR _bstrProjectName
[in] BSTR _bstrConfiguration
[out] BSTR *_pbstrLibraryFiles

Gets library options from a specific
configuration in a specific project.

P182

SetLibraryFilesForConfiguration [in] BSTR _bstrProjectName
[in] BSTR _bstrConfiguration
[in] BSTR _bstrLibraryFiles

Sets library options for a specific
configuration in a specific project.

P183

GetIncludeFileDirectories [in] BSTR _bstrProjectName
[in] BSTR _bstrConfiguration
[in] BSTR _bstrFileName
[out] VARIANT
*_pvtIncludeDirectories

Gets include file options from a file
of a specific configuration in a
specific project.

P184

SetIncludeFileDirectories [in] BSTR _bstrProjectName
[in] BSTR _bstrConfiguration
[in] BSTR _bstrFileName
[in] VARIANT
_vtIncludeDirectories
[in] long _lSettingMode

Sets include file options for a file of
a specific configuration in a specific
project.

P185

GetCpuAndToolChainData [in] BSTR _bstrProjectName
[out] BSTR *_pbstrCPUFamily
[out] BSTR *_pbstrCPUSeries
[out] BSTR *_pbstrCPUType
[out] BSTR
*_pbstrToolChainFamily
[out] BSTR
*_pbstrToolChainName
[out] BSTR
*_pbstrToolChainVersion

Gets the family name, series name,
and type name of the CPU, and the
family name, name, and version
number of the compiler in a specific
project.

P186

SetBuildExcludeFiles [in] BSTR _bstrFileNames Excludes the specified file from
building.

P188

SetBuildIncludeFiles [in] BSTR _bstrFileNames Includes the specified file in
building.

P189

36

5.2.15 Files
Method Name Parameter Description Page
OpenFileAtLine2 [in] BSTR _bstrOpenFileName

[in] long _lLine
Opens a file by specifying the file name and
line number.

P190

GetSourceFiles2 [out] BSTR *p_bstrSourceFiles Gets source file names. P191
GetDownloadModules2 [out] BSTR

*p_bstrDownloadModules
Gets module file names. P192

GetDependentFiles2 [out] BSTR *p_bstrDependentFiles Gets dependent file names. P193

5.2.16 Coverage

Method Name Parameter Description Page
SetCoverageRange2 [in] long _lStartAddress

[in] long _lEndAddress
Sets a coverage range. P194

GetCoverageRange2 [out] long *p_lStartAddress
[out] long *p_lEndAddress

Gets data from a coverage range. P195

SetCoverageDisable2 (Nothing) Disables the coverage function. P196
SetCoverageEnable2 (Nothing) Enables the coverage function. P197
ClearCoverage2 (Nothing) Clears the coverage information. P198
GetCoverageStatus2 [out] long *p_lStatus Gets the coverage status information. P199
LoadCoverage2 [in] BSTR _bstrLoadFileName Loads the coverage information. P200
SaveCoverage2 [in] BSTR _bstrSaveFileName Saves the coverage information. P201

5.2.17 Others

Method Name Parameter Description Page
GetErrorString2 [in] long IError

[out] BSTR *p_bstrError
Gets an error string occurred in a method
call.

P202

GetHewStatus2 [out] long *p_lTargetReset
[out] long *p_lTagetExecStatus
[out] long *p_lMemoryReset
[out] long *p_lRegisterReset
[out] long *p_lLinkStatus
[out] long *p_lPlatformInitialize
[out] long *p_lLoadingStatus

Gets status. P203

GetHewStatusEx2 [out] long *p_lInvokeHew
[out] long *p_lOpenWorkspace
[out] long *p_lBuildProject

Gets the status information (on initiation,
opening a workspace, and build).

P205

GetTargetName2 [out] BSTR *p_bstrName Gets a target name. P206
GetHewVersion [out] BSTR *p_bstrHewVersion Gets the version number of the

High-performance Embedded Workshop.
P207

Command [in] BSTR _bstrCommandLine
[out]BSTR *p_bCommandMessage

Executes a High-performance Embedded
Workshop command.

P208

37

5.3 Method Details (for only VC++)
5.3.1 CPU Control
GoTargetExec

Description

Executes a program from the current program position.

Parameters

There is no parameter.

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example

 HRESULT hr = E_FAIL;

 try
 {

hr = pHewServer1->GoTargetExec();
}

38

StopTargetExec

Description

Stops program execution.

Parameters

There is no parameter.

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example

 HRESULT hr = E_FAIL;

 try
 {
 hr = pHewServer1->StopTargetExec();
 }

39

ResetTargetExec

Description

Resets the debugger environment that is run as the target.

Parameters

There is no parameter.

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example

HRESULT hr = E_FAIL;

 try
 {
 hr = pHewServer1->ResetTargetExec();
 }

40

InitializeTarget

Description

Initializes the debugger environment that is run as the target.

Parameters

There is no parameter.

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example

HRESULT hr = E_FAIL;

try
{

 hr = pHewServer1->InitializeTarget();
 }

41

Step

Description

Step executes the target program.

Parameters

Attribute Type Content
[in] DWORD _eMode Description

0x00000001 Steps through assembler instructions
0x00000002 Steps through source code lines

[in] DWORD _dwStep Number of steps executed

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example

HRESULT hr = E_FAIL;
DWORD _eMode = 1; //assembler:1, source:2
DWORD _dwStep;

try
{

hr = pHewServer1->Step(_eMode, _dwStep);
}

42

StepRate

Description

Sets a speed at which the program is single-stepped.

Parameters

Attribute Type Content
[in] DWORD _dwRate Set a stepping rate in the range 0-6.

0 : 3 seconds
1 : 2.5 seconds
2 : 2 seconds
3 : 1.5 seconds
4 : 1 seconds
5 : 0.5 seconds
6 : 0 seconds

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example

HRESULT hr = E_FAIL;
DWORD _dwRate;

try
{

hr = pHewServer1->StepRate(_dwRate);
}

43

StepOver

Description

Runs a program by stepping-over instructions or source lines.

Parameters

Attribute Type Content
[in] DWORD _eMode Description

0x00000001 Steps through assembler instructions
0x00000002 Steps through source code lines

[in] DWORD _dwStep Number of steps executed

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example

HRESULT hr = E_FAIL;
DWORD _eMode = 1; //assembler:1, source:2
DWORD _dwStep;

try
{

hr = pHewServer1->StepOver(_eMode, _dwStep);
}

44

StepOut

Description

Runs a program by stepping-out instructions or source lines.

Parameters

Attribute Type Content
[in] DWORD _eMode Description

0x00000001 Steps through assembler instructions
0x00000002 Steps through source code lines

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example

HRESULT hr = E_FAIL;
DWORD _eMode = 1; //assembler:1, source:2

try
{

hr = pHewServer1->StepOut(_eMode);
}

45

IsRunning

Description

Determines whether or not the user program is running.

Parameters

Attribute Type Content
[out] long* p_bRunning 1 when the user program is running or 0 otherwise

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example

HRESULT hr = E_FAIL;
long _bRunning;

try
{

hr = pHewServer1->IsRunning(&_bRunning);
}

46

5.3.2 Register
GetPC

Description

Gets the program counter value.

Parameters

Attribute Type Content
[out] DWORD *p_dwPC PC (program counter) value

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example

HRESULT hr = E_FAIL;
DWORD _dwPC = 0x0;

try
{

hr = pHewServer1->GetPC(&_dwPC);
}

47

SetPCAddress

Description

Sets the program counter.

Parameters

Attribute Type Content
[in] ADDR aPCAddr PC (program counter) value to be set

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example

HRESULT hr = E_FAIL;
ADDR aPCAddr;

try
{

 hr = pHewServer1->SetPCAddress(aPCAddr);
}

48

SetPCSource

Description

Sets the program counter by specifying a source file and line.

Parameters

Attribute Type Content
[in] BSTR bstrFileName File name
[in] LINENO LineNum Line number

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example

HRESULT hr = E_FAIL;
BSTR bstrSetPCSourceFile;
LINENO LineNum;

try
{

hr = pHewServer1->SetPCSource(bstrSetPCSourceFile, LineNum);
}

49

TestSetPC

Description

Determines whether or not the program counter value can be set.

Parameters

Attribute Type Content
[out] long* p_bSetPCState 1 when the PC value can be set or 0 otherwise

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example

long lSetPC = NULL;
HRESULT hr = E_FAIL;

try
{

 hr = pHewServer1->TestSetPC(&lSetPC);
}

50

5.3.3 Memory
GetMemory

Description

Gets memory content according to specified start and end addresses and access size. If the memory
content of this specified area is held in the High-performance Embedded Workshop, the memory
content which is added in the High-performance Embedded Workshop is returned directly without
accessing the target memory.

Parameters

Attribute Type Content
[in] ADDR _aBegin Start address of the area from which memory

contents will be acquired
[in] ADDR _aEnd End address of the area from which memory

contents will be acquired
[in] WORD _wDisplayWidth Size in which memory is accessed

(1, 2, 4, or 8 specifiable)
[out] SAFEARRAY(BYTE)* _ppbyBuff Memory content

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example

HRESULT hr = E_FAIL;
DWORD dwAddrBegin = (DWORD)strtol(m_GetMemoryStartAddress, NULL, 16);
DWORD dwAddrEnd = (DWORD)strtol(m_GetMemoryEndAddress, NULL, 16);
WORD wDisplayWidth = (WORD)m_GetMemorySize.GetCurSel();

if (wDisplayWidth == 0) wDisplayWidth = 1;
else if(wDisplayWidth == 1) wDisplayWidth = 2;
else if(wDisplayWidth == 2) wDisplayWidth = 4;
else if(wDisplayWidth == 3) wDisplayWidth = 8;
else wDisplayWidth = 1;

BYTE bTemp;

//array for storing data obtained from HewTargetServer
...
SAFEARRAY FAR* pHewArray = NULL;

try
{

 hr = pHewServer1->GetMemory(dwAddrBegin, dwAddrEnd, wDisplayWidth,
&pH Array); ew

}

51

SetMemory

Description

Sets memory content according to specified start and end addresses and access size.

Parameters

Attribute Type Content
[in] ADDR _aBegin Start address of the area from which memory

contents will be acquired
[in] ADDR _aEnd End address of the area from which memory

contents will be acquired
[in] WORD _wDisplayWidth Size in which memory is accessed

(1, 2, 4, or 8 specifiable)
[in] SAFEARRAY(BYTE)* _ppbyBuff Memory content

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example

HRESULT hr = E_FAIL;

dwAddrBegin = (DWORD)strtol(m_SetMemoryStartAddress, NULL, 16);
dwAddrEnd = (DWORD)strtol(m_SetMemoryEndAddress, NULL, 16);

...

try
{

hr = pHewServer1->SetMemory(dwAddrBegin, dwAddrEnd, wDisplayWidth,
pHewArray);

}

52

GetDirectMemory

Description

Gets memory content according to specified start and end addresses and access size. Regardless of
whether the memory content of this specified area is held in the High-performance Embedded
Workshop, the target memory is accessed to get the memory content to be returned.

Parameters

Attribute Type Content
[in] ADDR _aBegin Start address of the area from which memory

contents will be acquired
[in] ADDR _aEnd End address of the area from which memory

contents will be acquired
[in] WORD _wDisplayWidth Size in which memory is accessed

(1, 2, 4, or 8 specifiable)
[out] SAFEARRAY(BYTE)* _ppbyBuff Memory content

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example

HRESULT hr = E_FAIL;
SAFEARRAY FAR* pHewArray = NULL;

...

try
{

 hr = pHewServer1->GetDirectMemory(dwAddrBegin, dwAddrEnd, wDisplayWidth,
&pHewArray);

}

53

5.3.4 Software Breaks
SetPCBreakPt

Description

Sets a breakpoint at a specified address and returns its handle value.

Parameters

Attribute Type Content
[in] ADDR _aPCBreakAddr Address value
[out] BHANDLE* p_BHandle Breakpoint handle value

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example

HRESULT hr = E_FAIL;
ADDR _aPCBreakAddr;
BHANDLE Bhandle;

try
{

 hr = pHewServer1->SetPCBreakPt(dwAddr, &BHandle);
}

54

EnableBreakPt

Description

Enables or disables a breakpoint according to the handle value of the breakpoint.

Parameters

Attribute Type Content
[in] BHANDLE BHandle Breakpoint handle value
[in] VARIANT_BOOL bEnable Enables or disables a breakpoint according to the

handle value of the breakpoint.

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example

HRESULT hr = E_FAIL;
BHANDLE BHandle;
VARIANT_BOOL bEnable;

try
{

 hr = pHewServer1->EnableBreakPt(BHandle, bEnable);
}

55

DeleteBreakPt

Description

Deletes the breakpoint that has a specified breakpoint handle value.

Parameters

Attribute Type Content
[in] BHANDLE BHandle Breakpoint handle value

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example

HRESULT hr = E_FAIL;
BHANDLE BHandle;

try
{
 hr = pHewServer1->DeleteBreakPt(BHandle);
}

56

GetAllBreakPt

Description

Gets the software breakpoints that have been set.

Parameters

Attribute Type Content
[out] long *p_index Number of software breakpoints
[out] VARIANT *p_vAllBreakPt Array of software breakpoints

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example

HRESULT hr = E_FAIL;
long index;
VARIANT vAllBreakPt;
VariantInit(&vAllBreakPt);

//calling HewTargetServer function
try
{
 hr = pHewServer1->GetAllBreakPt(&index, &vAllBreakPt);
}

57

DeleteAllBreakPt

Description

Deletes the software breakpoints that have been set.

Parameters

There is no parameter.

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example

HRESULT hr = E_FAIL;

//calling HewTargetServer function
try
{
 hr = pHewServer1->DeleteAllBreakPt();
}

58

5.3.5 Variable Break
SetDataBreakpoint

Description

Sets a data breakpoint.

Parameters

Attribute Type Content
[in] DWORD _aSymbol Symbol address
[in] DWORD _eSize Symbol size (1/2/4)

0x00000001 - 1
0x00000002 - 2
0x00000004 - 4

[in] DWORD _eType Type of break (Equal/Not Equal)
0x00000001 - Equal
0x00000002 - Not Equal

[in] DWORD _dwData Symbol value
[out] DWORD *p_dwBreakDataNo Variable break No.

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example

HRESULT hr = E_FAIL;
DWORD _aSymbol;
DWORD _eSize;
DWORD _eType;
DWORD _dwData;
DWORD _dwBreakDataNo;

...

try
{

 hr = pHewServer1->SetDataBreakpoint(_aSymbol, _eSize, _eType, _dwData,
&_dwBreakDataNo);
}

59

EnableDataBreakpoint

Description

Enables or disables a data breakpoint.

Parameters

Attribute Type Content
[in] DWORD dwBreakDataNo Variable break No.
[in] VARIANT_BOOL _bEnable Enabled (True)/ Disabled (False)

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example

HRESULT hr = E_FAIL;
DWORD dwBreakDataNo;
VARIANT_BOOL bEnable;

try
{
 hr = pHewServer1->EnableDataBreakpoint(dwBreakDataNo, bEnable);
}

60

DeleteDataBreakpoint

Description

Deletes the data breakpoint.

Parameters

Attribute Type Content
[in] DWORD dwBreakDataNo Variable break No.

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example

HRESULT hr = E_FAIL;
DWORD dwBreakDataNo;

try
{

hr = pHewServer1->DeleteDataBreakpoint(dwBreakDataNo);
}

61

5.3.6 Variable Trace
SetSymbolTrace

Description

Sets variable trace conditions.

Parameters

Attribute Type Content
[in] ADDR _aSymbol Symbol address
[in] DWORD _eCondition Trace condition (Read/Write)

0x00000001 - Read
0x00000002 - Write
0x00000003 - Read_Write

[in] DWORD _eSize Symbol size (1/2/4)
0x00000001 - 1
0x00000002 - 2
0x00000004 - 4

[in] DWORD _eType Type of trace (Equal/Not Equal/No Specific)

0x00000001 - Equal
0x00000002 - Not Equal
0x00000003 - Not Specified

[in] DWORD _dwData Symbol value
[out] DWORD * p_dwTraceNo Variable trace No.

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example

HRESULT hr = E_FAIL;
ADDR _aSymbol;
DWORD _eSize;
DWORD _eType;
DWORD _dwData;
DWORD _dwTraceNo;

...

try
{

hr = pHewServer1->SetSymbolTrace(_aSymbol, 0x00000001, _eSize, _eType, _dwData,
&_dwTraceNo);

}

62

ExecuteSymbolTrace

Description

Enables or disables variable trace.

Parameters

Attribute Type Content
[in] VARIANT_BOOL _bEnable Enabled (True)/ Disabled (False)

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example

HRESULT hr = E_FAIL;
VARIANT_BOOL _bEnable;

try
{

hr = pHewServer1->ExecuteSymbolTrace(_bEnable);
}

63

DeleteSymbolTrace

Description

Deletes variable trace conditions.

Parameters

Attribute Type Content
[in] DWORD _dwTraceNo Variable trace No. to be deleted

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Descr tion example ip

HRESULT hr = E_FAIL;
DWORD _dwTraceNo;

try
{

 hr = pHewServer1->DeleteSymbolTrace(_dwTraceNo);
}

64

SaveSymbolTraceData

Description

Saves the result of variable trace to a specified file.

Parameters

Attribute Type Content
[in] BSTR _bstrFileName File in which variable trace data is saved

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example

HRESULT hr = E_FAIL;
BSTR bstrSaveSymbolTraceData;

try
{

hr = pHewServer1->SaveSymbolTraceData(bstrSaveSymbolTraceData);
}

Example of an output format

The trace result consists of the following contents which are separated by a space when output.
- Accessed time (in cycles for simulator)
- Accessed address
- Access attribute (Read/Write/Read_Write)
- Access value
- Access size

Sample
1287539 0XFFFE5DC Write 0XEA 1
1287553 0XFFFE5DC Write 0X30 1
1288170 0XFFFE5DC Write 0XEA 1
1445327 0XFFFE5DC Write 0XE0 1
1445341 0XFFFE5DC Write 0X30 1
1445958 0XFFFE5DC Write 0XE0 1
1605377 0XFFFE5DC Write 0X4C 1
1605391 0XFFFE5DC Write 0X30 1
1606008 0XFFFE5DC Write 0X4C 1
1760876 0XFFFE5DC Write 0XF6 1

65

5.3.7 Interrupt Condition
SendTrigger

Description

Sets trigger conditions.

Parameters

Attribute Type Content
[in] DWORD _dwTriggerNo Trigger No.
[in] DWORD _dwTriggerType1 Trigger interrupt condition 1
[in] DWORD _dwTriggerType2 Trigger interrupt condition 2
[in] DWORD _dwPriority Interrupt priority (0-17)

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example

HRESULT hr = E_FAIL;

DWORD _dwTriggerNo;
DWORD _dwTriggerType1;
DWORD _dwTriggerType2;
DWORD _dwPriority

try
{

hr = pHewServer1->SendTrigger(
_dwTriggerNo,
_dwTriggerType1,
_dwTriggerType2,
_dwPriority

);
}

66

5.3.8 Symbol
GetRealTimeWatch

Description

Gets the specified data value.

Parameters

Attribute Type Content
[in] ADDR _aSymbol Symbol address
[in] DWORD _eSize Symbol size (1/2/4)

0x00000001 - 1
0x00000002 - 2
0x00000004 - 4

[out] DWORD *p_dwValue Symbol value

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example

HRESULT hr = E_FAIL;
ADDR _aSymbol;
DWORD _eSize;
DWORD p_dwValue;

try
{
 hr = GetRealTimeWatch(aSymbol, eSize, &p_dwValue);
}

67

GetQuickWatch

Description

Gets the variable size, variable value, type, and allocated area from the variable name.

Parameters

Attribute Type Content
[in] BSTR bstrVarName Variable name
[out] DWORD* p_dwValueSize Variable size
[out] BSTR* bstrByValue String of variable value
[out] EObjectTypeServer* p_eType Variable type
[out] BSTR* bstrTypeName String of variable type
[out] BSTR* bstrVariableAllocation String of allocated variable area

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example

HRESULT hr = E_FAIL;
BSTR bstrVarName;
DWORD _dwValueSize;
BSTR bstrByValue;
EObjectTypeServer _eType;
BSTR bstrTypeName;
BSTR bstrVariableAllocation;

try
{

 hr = pHewServer1->GetQuickWatch(bstrVarName,
 &_dwValueSize,
 & bstrByValue,
 &_eType,

 & bstrTypeName,
 & bstrVariableAllocation
);

}

68

SymbolToAddress

Description

Converts label/symbol from a symbol name to its corresponding address value.

Parameters

Attribute Type Content
[in] BSTR bstrSymbolName Symbol name
[out] ADDR* p_aSymbolAddr Symbol address

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example

HRESULT hr = E_FAIL;
BSTR bstrSymbolName;
ADDR _aSymbolAddr;

try
{

 hr = pHewServer1->SymbolToAddress(bstrSymbolName, &_aSymbolAddr);
}

69

AddressToSymbol

Description

Converts label/symbol from an address value to its corresponding symbol name.

Parameters

Attribute Type Content
[in] ADDR aSymbolAddr Address value
[out] BSTR* p_bstrSymbolName Symbol name

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example

HRESULT hr = E_FAIL;
ADDR aSymbolAddr;
BSTR bstrSymbolName;

try
{
 hr = pHewServer1->AddressToSymbol(aSymbolAddr, &bstrSymbolName);
}

70

GetLineFromAddr

Description

Converts label/symbol from an address value to its corresponding file and line.

Parameters

Attribute Type Content
[in] ADDR _aLineAddr Line address
[out] BSTR* p_bstrFileName File name
[out] LINENO* p_LineNo Line number

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example

HRESULT hr = E_FAIL;
ADDR _aLineAddr;
BSTR bstrFileName;
LINENO _LineNo;

try
{
 hr = pHewServer1->GetLineFromAddr(_aLineAddr, &bstrFileName, &_LineNo);
}

71

GetAddrFromLine

Description

Converts a label/symbol from file and line to its corresponding address value.

Parameters

Attribute Type Content
[in] BSTR bstrFileName File name
[in] LINENO LineNo Line number
[out] ADDR* p_aLineAddr Line address

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example

HRESULT hr = E_FAIL;
BSTR bstrFileName;
LINENO LineNo;
ADDR _aLineAddr;

try
{

hr = pHewServer1->GetAddrFromLine(bstrFileName,LineNo,&_aLineAddr);
}

72

5.3.9 Downloads
Download

Description

Downloads a load module.

Parameters

Attribute Type Content
[in] BSTR _bstrFileName Load module (including path name)

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example

HRESULT hr = E_FAIL;
BSTR bstrDownloadFile;

try
{
 hr = pHewServer1->Download(bstrDownloadFile);
}

73

Unload

Description

Unloads a load module.

Parameters

Attribute Type Content
[in] BSTR _bstrFileName Unload module (including path name)

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example

HRESULT hr = E_FAIL;
BSTR bstrUnloadFile;

try
{
 hr = pHewServer1->Unload(bstrUnloadFile);
}

74

5.3.10 Start/Stop
InvokeHew

Description

Starts a High-performance Embedded Workshop application. (Workspace is not opened.)

Parameters

There is no parameter.

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example

HRESULT hr = E_FAIL;

try
{
 hr = pHewServer1->InvokeHew();
}

75

QuitHew

Description

Terminates a High-performance Embedded Workshop application.

Parameters

There is no parameter.

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example

HRESULT hr = E_FAIL;

try
{
 hr = pHewServer1->QuitHew();
}

76

5.3.11 Workspace
OpenWorkspace

Description

Opens a workspace.

Parameters

Attribute Type Content
[in] BSTR _bstrFileName File name (including path name)

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example

HRESULT hr = E_FAIL;
BSTR bstrOpenWorkspace;

try
{
 hr = pHewServer1->OpenWorkspace(bstrOpenWorkspace);
}

77

CloseWorkspace

Description

Closes a workspace.

Parameters

Attribute Type Content
[in] DWORD _dwIgnoreChanges 0x00000000:Workspace is not closed when changed

0x00000001:Workspace is closed without saving
changes

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example

HRESULT hr = E_FAIL
DWORD _dwIgnoreChanges;

try
{

 hr = pHewServer1->CloseWorkspace(_dwIgnoreChanges);
}

78

SaveWorkspace

Description

Saves a workspace.

Parameters

There is no parameter.

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example

HRESULT hr = E_FAIL;

try
{

 hr = pHewServer1->SaveWorkspace();
}

79

5.3.12 Configuration and session
SaveSession

Description

Saves a session file.

Parameters

There is no parameter.

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example

HRESULT hr = E_FAIL

try
{

 hr = pHewServer1->SaveSession();
}

80

GetCurrentConfiguration

Description

Gets the current build configuration.

Parameters

Attribute Type Content
[out] BSTR

*p_bstrCurrentConfigurationName
Name of the build configuration

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example

HRESULT hr = E_FAIL;
CString strCurrentConfigurationName = _T("");
BSTR bstrCurrentConfigurationName = strCurrentConfigurationName.AllocSysString();

//calling HewTargetServer function
try
{
 hr = pHewServer1->GetCurrentConfiguration(&bstrCurrentConfigurationName);
 strCurrentConfigurationName = bstrCurrentConfigurationName;
}

81

SetCurrentConfiguration

Description

Sets a currently active build configuration.

Parameters

Attribute Type Content
[in] BSTR _bstrConfiguration Build configuration name

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example

HRESULT hr = E_FAIL;
BSTR bstrSetCurrentConfiguration;

try
{

 hr = pHewServer1->SetCurrentConfiguration(bstrSetCurrentConfiguration);
}

82

GetConfigurations

Description

Gets all build configurations that have a project in each.

Parameters

Attribute Type Content
[out] BSTR *p_bstrConfigurations Build configuration name (multiple names, if any,

are separated by a comma)
(Example) "DefaultSession, SimSessionSH-4"

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example

HRESULT hr = E_FAIL;
Cstring strTmp = _T("");
BSTR o1 = strTmp.AllocSysString(); //CString -> BSTR converted

//calling HewTargetServer function
CString so1;
try
{

hr = pHewServer1->GetConfigurations(&o1);
 so1 = o1;
}

83

GetCurrentSession

Description

Gets the current debug session.

Parameters

Attribute Type Content
[out] BSTR *p_bstrCurrentSessionName Name of the debug session

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example

HRESULT hr = E_FAIL;
CString strCurrentSessionName = _T("");
BSTR bstrCurrentSessionName = strCurrentSessionName.AllocSysString();

//calling HewTargetServer function
try
{
 hr = pHewServer1->GetCurrentSession(&bstrCurrentSessionName);
 strCurrentSessionName = bstrCurrentSessionName;
}

84

SetCurrentSession

Description

Sets a currently active debug session.

Parameters

Attribute Type Content
[in] BSTR _bstrSession Debug session name

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example

BSTR bstrSetCurrentSession = m_SetCurrentSession.AllocSysString(); //CString -> BSTR
converted

HRESULT hr = E_FAIL;

//calling HewTargetServer function
try
{

 hr = pHewServer1->SetCurrentSession(bstrSetCurrentSession);
}

85

GetSessions

Description

Gets all debug sessions that are included in a project.

Parameters

Attribute Type Content
[out] BSTR *p_bstrSessions Debug session name (multiple names, if any, are

separated by a comma)
(Example) "DefaultSession, SimSessionSH-4"

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example

HRESULT hr = E_FAIL;

//calling HewTargetServer function
CString strTmp = _T("");
BSTR o2 = strTmp.AllocSysString(); //CString -> BSTR converted

CString so2;
try
{

hr = pHewServer1->GetSessions(&o2);
so2 = o2;

}

86

GetCurrentProject

Description

Gets the current project.

Parameters

Attribute Type Content
[out] BSTR *p_bstrCurrentProjectName Name of the project

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example

HRESULT hr = E_FAIL;
CString strCurrentProjectName = _T("");
BSTR bstrCurrentProjectName = strCurrentProjectName.AllocSysString();

//calling HewTargetServer function
try
{
 hr = pHewServer1->GetCurrentProject(&bstrCurrentProjectName);
 strCurrentProjectName = bstrCurrentProjectName;

}

87

SetCurrentProject

Description

Enables a specified project to make it active.

Parameters

Attribute Type Content
[in] BSTR _bstrProjectName Project name

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example

HRESULT hr = E_FAIL;

BSTR bstrSetCurrentProject = m_SetCurrentProject.AllocSysString();
//calling HewTargetServer function
try
{
 hr = pHewServer1->SetCurrentProject(bstrSetCurrentProject);
}

88

GetProjects

Description

Gets all project names.

Parameters

Attribute Type Content
[out] BSTR

*p_bstrProjectNames
Project name. If there are two or more project names, they
should be delimited by a comma.
Example: "Project1, Project2"

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example

HRESULT hr = E_FAIL;
CString strProjectNames = _T("");
BSTR bstrProjectNames = strProjectNames.AllocSysString();

//calling HewTargetServer function
try
{
 hr = pHewServer1->GetProjects(&bstrProjectNames);
 strProjectNames = bstrProjectNames;
}

89

5 .3.13 Project

AddFile

Description

Adds a file to the currently active project.

Parameters

Attribute Type Content
[in] BSTR _bstrFileName File name (including path name)

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example

HRESULT hr = E_FAIL;
BSTR bstrAddFiles;

try
{

 hr = pHewServer1->AddFile(bstrAddFiles);
}

90

AddFiles

Description

Adds multiple files to the currently active project.

Parameters

Attribute Type Content
[in] BSTR _bstrFileName File name (multiple names, if any, are separated by a

comma) (including path name)

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example

HRESULT hr = E_FAIL;
BSTR bstrAddFile;

try
{

 hr = pHewServer1->AddFiles(bstrAddFile);
}

91

DeleteFile

Description

Deletes a file from the currently active project.

Parameters

Attribute Type Content
[in] BSTR _bstrFileName File name (including path name)

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example

HRESULT hr = E_FAIL

BSTR bstrDeleteFile = m_DeleteFile.AllocSysString();
//calling HewTargetServer function
try
{
 hr = pHewServer1->DeleteFile(bstrDeleteFile);
}

92

DeleteFiles

Description

Deletes multiple files from the currently active project.

Parameters

Attribute Type Content
[in] BSTR _bstrFileName File name (multiple names, if any, are separated by a

comma) (including path name)

Returned value
A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example

HRESULT hr = E_FAIL

BSTR bstrDeleteFiles = m_DeleteFiles.AllocSysString();
//calling HewTargetServer function
try
{
 hr = pHewServer1->DeleteFiles(bstrDeleteFiles);
}

93

5.3.14 Build
BuildProject

Description

Builds a project.

Parameters

There is no parameter.

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example

HRESULT hr = E_FAIL;

//calling HewTargetServer function
try
{
 hr = pHewServer1->BuildProject();
}

94

RebuildProject

Description

Rebuilds a project.

Parameters

There is no parameter.

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example

HRESULT hr = E_FAIL;

//calling HewTargetServer function
try
{
 hr = pHewServer1->RebuildProject();
}

95

UpDateAllDependency

Description

Updates all dependency relations.

Parameters

There is no parameter.

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example

HRESULT hr = E_FAIL;
//calling HewTargetServer function
try
{
 hr = pHewServer1->UpDateAllDependency();
}

96

AddFileWithCompilerOption

Description

Adds a file after setting compiler options for the project.

Parameters

Attribute Type Content
[in] BSTR _bstrFileName File name (including path name)
[in] BSTR

_bstrIncludeDirectories
Include directory name. If there are two or more
directories, they should be delimited by a comma.
Example: "C:\tmp, D:\work"

[in] BSTR _bstrDefines Definition. If there are two or more definitions, they should
be delimited by a comma.
Example: "TMP1=C:\tmp, TMP2=D:\work"

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example

HRESULT hr = E_FAIL;
BSTR bstrFileName;
BSTR bstrIncludeDirectories;
BSTR bstrDefines;

//calling HewTargetServer function
try
{
 hr = pHewServer1->AddFileWithCompilerOption(bstrFileName, bstrIncludeDirectories,

bstrDefines);
}

97

5.3.15 Files
OpenFileAtLine

Description

Opens a file by specifying the file name and line number.

Parameters

Attribute Type Content
[in] BSTR _bstrOpenFileName File name (including path name)
[in] int _iLine Line number

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example

HRESULT hr = E_FAIL;
CString strOpenFileName = _T("");
BSTR bstrOpenFileName = strOpenFileName.AllocSysString();
int iLine = 1;

//calling HewTargetServer function
try
{
 hr = pHewServer1->OpenFileAtLine(bstrOpenFileName, iLine);
}

98

GetSourceFiles

Description

Gets all source file names (such as *.cpp or *.src) in a project.
The file name is output as an absolute path.

Parameters

Attribute Type Content
[out] BSTR

*p_bstrSourceFiles
Source file names (if there are two or more file names, they
should be delimited by a comma).
Example: "c:\sample1.cpp, c:\sample2.cpp"

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example

HRESULT hr = E_FAIL;
CString strSourceFiles = _T("");
BSTR bstrSourceFiles = strSourceFiles.AllocSysString();

//calling HewTargetServer function
try
{
 hr = pHewServer1->GetSourceFiles(&bstrSourceFiles);
 strSourceFiles = bstrSourceFiles;
}

99

GetDownloadModules

Description

Gets all module file names (such as *.abs) in a project.
The file name is output as an absolute path.

Parameters

Attribute Type Content
[out] BSTR

*p_bstrDownloadModules
Module file names (if there are two or more file
names, they should be delimited by a comma).
Example: "c:\sample1.abs, c:\sample2.abs"

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example

HRESULT hr = E_FAIL;
CString strDownloadModules = _T("");
BSTR bstrDownloadModules = strDownloadModules.AllocSysString();

//calling HewTargetServer function
try
{
 hr = pHewServer1->GetDownloadModules(&bstrDownloadModules);
 strDownloadModules = bstrDownloadModules;
}

100

GetDependentFiles

Description

Gets all dependent file names (such as *.h or *.inc) in a project.
The file name is output as an absolute path.

Parameters

Attribute Type Content
[out] BSTR

*p_bstrDependentFiles
Dependent file names (if there are two or more file
names, they should be delimited by a comma).
Example: "c:\sample1.h, c:\sample2.h"

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example

HRESULT hr = E_FAIL;
CString strDependentFiles = _T("");
BSTR bstrDependentFiles = strDependentFiles.AllocSysString();

//calling HewTargetServer function
try
{
 hr = pHewServer1->GetDependentFiles(&bstrDependentFiles);
 strDependentFiles = bstrDependentFiles;
}

101

5.3.16 Coverage
SetCoverageRange

Description

Sets a coverage range.

Parameters

Attribute Type Content
[in] DWORD dwStartAddress Start address
[in] DWORD dwEndAddress End address

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example

HRESULT hr = E_FAIL;
DWORD dwStartAddress;
DWORD dwEndAddress;

//calling HewTargetServer function
try
{
 hr = pHewServer1->SetCoverageRange(dwStartAddress, dwEndAddress);
}

Precautions

The coverage facility is enabled as soon as a coverage range is set.

102

GetCoverageRange

Description

Gets data from a coverage range.

Parameters

Attribute Type Content
[out] DWORD *p_dwStartAddress Start address
[out] DWORD *p_dwEndAddress End address

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example

HRESULT hr = E_FAIL;
DWORD dwStartAddress;
DWORD dwEndAddress;

//calling HewTargetServer function
try
{
 hr = pHewServer1->GetCoverageRange(&dwStartAddress, &dwEndAddress);
}

103

SetCoverageDisable

Description

Disables the coverage function.

Parameters

 There is no parameter.

Returned value
A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example

HRESULT hr = E_FAIL;

//calling HewTargetServer function
try
{
 hr = pHewServer1->SetCoverageDisable();
}

104

SetCoverageEnable

Description

Enables the coverage function.

Parameters

There is no parameter.

Returned value
A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example

HRESULT hr = E_FAIL;

//calling HewTargetServer function
try
{
 hr = pHewServer1->SetCoverageEnable();
}

105

ClearCoverage

Description

Clears the coverage information.

Parameters

There is no parameter.

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example

HRESULT hr = E_FAIL;

//calling HewTargetServer function
try
{
 hr = pHewServer1->ClearCoverage();
}

106

GetCoverageStatus

Description

Gets the coverage status information.

Parameters

Attribute Type Content
[out] int *p_iStatus Coverage status (1: Enabled or 0: Disabled)

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example

HRESULT hr = E_FAIL;
int iStatus;

//calling HewTargetServer function
try
{
 hr = pHewServer1->GetCoverageStatus(&iStatus);
}

107

LoadCoverage

Description

Loads the coverage information.

Parameters

Attribute Type Content
[in] BSTR _bstrLoadFileName File name

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example

HRESULT hr = E_FAIL;
BSTR bstrLoadFileName;

//calling HewTargetServer function
try
{
 hr = pHewServer1->LoadCoverage(bstrLoadFileName);
}

108

SaveCoverage

Description

Saves the coverage information.

Parameters

Attribute Type Content
[in] BSTR _bstrSaveFileName File name

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example

HRESULT hr = E_FAIL;
BSTR bstrSaveFileName;

//calling HewTargetServer function
try
{
 hr = pHewServer1->SaveCoverage(bstrSaveFileName);
}

109

5.3.17 Others
GetErrorString

Description

Gets an error message corresponding to a specified error number.

Parameters

Attribute Type Content
[in] HRESULT _lError Error number
[out] BSTR* _pbstrError Error message

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example

HRESULT hrErr = E_FAIL;
HRESULT _lError;
BSTR bstrErrStr;

try
{

hrErr = pHewServer1->GetErrorString(_IError, &bstrErrStr);
}

110

GetHewStatus

Description

Gets the current High-performance Embedded Workshop status.

Parameters

Attribute Type Content
[out] int* p_iTargetReset Returns 1 when the target is reset or 0 otherwise*
[out] int* p_iTargetExecStatus Returns 1 when the user program is under execution or 0

otherwise
[out] int* p_iMemoryReset Returns 1 when memory contents are updated or 0

otherwise*
[out] int* p_iRegisterReset Returns 1 when register values are updated or 0

otherwise*
[out] int* p_iLInkStatus Returns 1 when the target is connected or 0 otherwise
[out] int* p_iPlatformInitialize Returns 1 after the target is initialized or 0 otherwise*
[out] int* p_iLoadingStatus Returns 1 after a program is loaded or 0 otherwise

 *: These flags are reset to 0 when this function is called.

Returned value

The returned value is 1 when the method was terminated successfully or 0 when there is error.

Description example

int iTargetReset;
int iTargetExecStatus;
int iMemoryReset;
int iRegisterReset;
int iLinkStatus;
int iPlatformInitialize;
int iLoadingStatus;
HRESULT hr;

//calling HewTargetServer function
try
{

 hr = pHewServer1->GetHewStatus(&iTargetReset, &iTargetExecStatus,
 &iMemoryReset,
 &iRegisterReset,
 &iLinkStatus,
 &iPlatformInitialize,
 &iLoadingStatus

);
}

111

GetHewStatusEx

Description

Gets the High-performance Embedded Workshop status information (on initiation, opening a
workspace, and build).

Parameters

Attribute Type Content
[out] int *p_iInvokeHew Initiation of the High-performance Embedded Workshop (0:

Not initiated or 1: Initiated)
[out] int *p_iOpenWorkspace Opening of a workspace (0: Not open or 1: Open)

Note: The acquired value can be 1 only when the HEW is
connected to the target. To check whether a workspace is
open, call GetWorkspaceDirectory instead.

[out] int *p_iBuildProject Build (0: Build stopped or 1: Build being performed)

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example

HRESULT hr = E_FAIL;
int iInvokeHew;
int iOpenWorkspace;
int iBuildProject;

//calling HewTargetServer function
try
{
 hr = pHewServer1->GetHewStatusEx(&iInvokeHew, &iOpenWorkspace, &iBuildProject);
}

112

GetTargetName

Description

Gets the target name that is currently connected.

Parameters

Attribute Type Content
[out] BSTR* p_bstrName Target name

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example

HRESULT hr = E_FAIL;
 BSTR bStrTargetName;

//calling HewTargetServer function
try
{

 //get target name
 hr = pHewServer1->GetTargetName(&bStrTargetName);

}

113

5.4 Method Details (for VB, VC++)
5.4.1 CPU Control
GoTargetExec2

Description

Executes a program from the current program position.

Parameters

There is no parameter.

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

 HRESULT hr = E_FAIL;

 try
 {

hr = pHewServer1->GoTargetExec2();

}

Description example (Visual Basic)

 Dim ret As Long

 ret = hts.GoTargetExec2

114

StopTargetExec2

Description

Stops program execution.

Parameters

There is no parameter.

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

 HRESULT hr = E_FAIL;

 try
 {
 hr = pHewServer1->StopTargetExec2();
 }

Description example (Visual Basic)

 Dim ret As Long

 ret = hts.StopTargetExec2

115

ResetTargetExec2

Description

Resets the debugger environment that is run as the target.

Parameters

There is no parameter.

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

HRESULT hr = E_FAIL;

 try
 {
 hr = pHewServer1->ResetTargetExec2();
 }

Description example (Visual Basic)

 Dim ret As Long

 ret = hts.ResetTargetExec2

116

InitializeTarget2

Description

Initializes the debugger environment that is run as the target.

Parameters

There is no parameter.

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

HRESULT hr = E_FAIL;

try
{

 hr = pHewServer1->InitializeTarget2();
 }

Description example (Visual Basic)

 Dim ret As Long

 ret = hts.InitializeTarget2

117

Step2

Description

Step executes the target program.

Parameters

Attribute Type Content
[in] long _lMode Description

0x00000001 Steps through assembler instructions
0x00000002 Steps through source code lines

[in] long _lStep Number of steps executed

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

HRESULT hr = E_FAIL;
DWORD _lMode = 1; //assembler:1, source:2
DWORD _lStep = 1;

try
{

hr = pHewServer1->Step2(_lMode, _lStep);
}

Description example (Visual Basic)

 Dim ret As Long
 Dim lMode As Long
 Dim lStep As Long
 lMode = 1
 lStep = 1

 ret = hts.Step2(lMode, lStep)

118

StepRate2

Description

Sets a speed at which the program is single-stepped.

Parameters

Attribute Type Content
[in] long _lRate Set a stepping rate in the range 0-6.

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

HRESULT hr = E_FAIL;
int _lRate;

try
{

hr = pHewServer1->StepRate2(_lRate);
}

Description example (Visual Basic)

 Dim ret As Long
 Dim lRate As Long
 lRate = 0

 ret = hts.StepRate2(lRate)

119

StepOver2

Description

Runs a program by stepping-over instructions or source lines.

Parameters

Attribute Type Content
[in] long _lMode Description

0x00000001 Steps through assembler instructions
0x00000002 Steps through source code lines

[in] long _lStep Number of steps executed

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

HRESULT hr = E_FAIL;
long _lMode = 1; //assembler:1, source:2
long _lStep = 1;

try
{

hr = pHewServer1->StepOver2(_lMode, _lStep);
}

Description example (Visual Basic)

 Dim ret As Long
 Dim lMode As Long
 Dim lStep As Long
 lMode = 1
 lStep = 1

 ret = hts.StepOver2(lMode, lStep)

120

StepOut2

Description

Runs a program by stepping-out instructions or source lines.

Parameters

Attribute Type Content
[in] long _lMode Description

0x00000001 Steps through assembler instructions
0x00000002 Steps through source code lines

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

HRESULT hr = E_FAIL;
long _lMode = 1; //assembler:1, source:2

try
{

hr = pHewServer1->StepOut2(_lMode);
}

Description example (Visual Basic)

 Dim ret As Long
 Dim lMode As Long
 lMode = 1

 ret = hts.StepOut2(lMode)

121

IsRunning2

Description

Determines whether or not the user program is running.

Parameters

Attribute Type Content
[out] long* p_lRunning 1 when the user program is running or 0 otherwise

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

HRESULT hr = E_FAIL;
long _lRunning;

try
{

hr = pHewServer1->IsRunning2(&_lRunning);
}

Description example (Visual Basic)

 Dim ret As Long
 Dim p_lRunning As Long 'In Visual Basic 2005, "As Long" will be replaced with "As Integer".

 ret = hts.IsRunning2(p_lRunning)

122

5.4.2 Register
GetPC2

Description

Gets the program counter value.

Parameters

Attribute Type Content
[out] long *p_lPC PC (program counter) value

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

HRESULT hr = E_FAIL;
long _lPC = 0x0;

try
{

hr = pHewServer1->GetPC2(&_lPC);
}

Description example (Visual Basic)

 Dim ret As Long
 Dim p_lPC As Long 'In Visual Basic 2005, "As Long" will be replaced with "As Integer".
 p_lPC = 0

 ret = hts.GetPC2(p_lPC)

123

SetPCAddress2

Description

Sets the program counter.

Parameters

Attribute Type Content
[in] long lPCAddr PC (program counter) value to be set

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

HRESULT hr = E_FAIL;
long lPCAddr = 0x800;

try
{

 hr = pHewServer1->SetPCAddress2(lPCAddr);
}

Description example (Visual Basic)

 Dim ret As Long
 Dim lPCAddr As Long
 lPCAddr = &H800

 ret = hts.SetPCAddress2(lPCAddr)

124

SetPCSource2

Description

Sets the program counter by specifying a source file and line.

Parameters

Attribute Type Content
[in] BSTR bstrFileName File name
[in] long lLineNum Line number

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

HRESULT hr = E_FAIL;
BSTR bstrFileName;
long lLineNum = 100;

try
{

hr = pHewServer1->SetPCSource2(bstrFileName, lLineNum);
}

Description example (Visual Basic)

 Dim ret As Long
 Dim bstrFileName As String
 Dim lLineNum As Long
 lLineNum = 100

 ret = hts. SetPCSource2(bstrFileName, lLineNum)

125

TestSetPC2

Description

Determines whether or not the program counter value can be set.

Parameters

Attribute Type Content
[out] long *p_lSetPCState 1 when the PC value can be set or 0 otherwise

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

HRESULT hr = E_FAIL;
long lSetPCState = 0;

try
{

 hr = pHewServer1->TestSetPC2(&lSetPCState);
}

Description example (Visual Basic)

 Dim ret As Long
 Dim p_lSetPCState As Long 'In Visual Basic 2005, "As Long" will be replaced with "As Integer".
 p_lSetPCState = 100

 ret = hts.TestSetPC2(p_lSetPCState)

126

5.4.3 Memory
GetMemory2

Description

Gets memory content according to specified start and end addresses and access size. If the memory
content of this specified area is held in the High-performance Embedded Workshop, the memory
content which is added in the High-performance Embedded Workshop is returned directly without
accessing the target memory.

Parameters

Attribute Type Content
[in] long lBegin Start address of the area from which memory contents

will be acquired
[in] long lEnd End address of the area from which memory contents will

be acquired
[in] long lDisplayWidth Size in which memory is accessed

(1, 2, 4, or 8 specifiable)
[out] VARIANT vMemData Memory content

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

HRESULT hr = E_FAIL;
long lBegin = strtol(m_GetMemoryStartAddress, NULL, 16);
long lEnd = strtol(m_GetMemoryEndAddress, NULL, 16);
long lDisplayWidth = m_GetMemorySize.GetCurSel();

//array for string data obtained from HewTargetServer
...

try
{

 hr = pHewServer1->GetMemory2(lBegin, lEnd, lDisplayWidth, &vMemData);
}

Description example (Visual Basic 6.0)

 Dim ret As Long
 Dim lBegin As Long
 Dim lEnd As Long
 Dim lDisplayWidth As Long
 Dim vMemData As Variant

 ...

 ret = hts.GetMemory2(lBegin, lEnd, lDisplayWidth, vMemData)

Description example (Visual Basic 2005)

 Dim ret As Integer
 Dim iBegin As Integer
 Dim iEnd As Integer
 Dim iDisplayWidth As Integer
 Dim vMemData As Object

 ...

 ret = hts.GetMemory2(iBegin, iEnd, iDisplayWidth, vMemData)

127

SetMemory2

Description

Sets memory content according to specified start and end addresses and access size.

Parameters

Attribute Type Content
[in] long lBegin Start address of the area from which memory contents will

be acquired
[in] long lEnd End address of the area from which memory contents will

be acquired
[in] long lDisplayWidth Size in which memory is accessed

(1, 2, 4, or 8 specifiable)
[in] VARIANT vMemData Memory content

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

HRESULT hr = E_FAIL;

lBegin = strtol(m_SetMemoryStartAddress, NULL, 16);
lEnd = strtol(m_SetMemoryEndAddress, NULL, 16);

...

long length = lEnd - lBegin + 1;
long *plDataArray;
SAFEARRAY* psaData;
VARIANT vMemData;
VARIANT *p_vMemData = &vMemData;

SAFEARRAYBOUND bounds = {length, 0};
VariantInit(p_vMemData);
p_vMemData->vt = VT_ARRAY | VT_I4;
psaData = SafeArrayCreate(VT_I4, 1, &bounds);
SafeArrayAccessData(psaData, (void**)&plDataArray);

for (long j = 0 ; j < length ; j++) {
 CString strWork;
 // e.g. Set 0x00, 0x01, 0x02, 0x03, 0x00, 0x01, ...
 plDataArray[j] = j % 4;
}
SafeArrayUnaccessData(psaData);
p_vMemData->parray = psaData;

try
{

hr = pHewServer1->SetMemory2(lBegin, lEnd, lDisplayWidth, vMemData);
}
...
SafeArrayDestroy(psaData);

128

Description example (Visual Basic 6.0)

 Dim ret As Long
 Dim lBegin As Long
 Dim lEnd As Long
 Dim lDisplayWidth As Long
 Dim i As Long
 Dim length As Long
 Dim vMemData As Variant

Dim memData(65535) As Long
...

length = lEnd - lBegin + 1
For i = 0 To length - 1

 ' e.g. Set 0x00, 0x01, 0x02, 0x03, 0x00, 0x01, ...
 memData(i) = i Mod 4
Next i
vMemData = memData

 ...

 ret = hts.SetMemory2(lBegin, lEnd, lDisplayWidth, vMemData)

Description example (Visual Basic 2005)

 Dim ret As Integer
 Dim iBegin As Integer
 Dim iEnd As Integer
 Dim iDisplayWidth As Integer
 Dim i As Integer
 Dim length As Integer
 Dim vMemData As Object

Dim memData(65535) As Integer
...

length = iEnd - iBegin + 1
For i = 0 To length - 1

 ' e.g. Set 0x00, 0x01, 0x02, 0x03, 0x00, 0x01, ...
 memData(i) = i Mod 4
Next i
vMemData = memData

 ...

 ret = hts.SetMemory2(iBegin, iEnd, iDisplayWidth, vMemData)

129

GetDirectMemory2

Description

Gets memory content according to specified start and end addresses and access size. Regardless of
whether the memory content of this specified area is held in the High-performance Embedded
Workshop, the target memory is accessed to get the memory content to be returned.

Parameters

Attribute Type Content
[in] long lBegin Start address of the area from which memory contents

will be acquired
[in] long lEnd End address of the area from which memory contents will

be acquired
[in] long lDisplayWidth Size in which memory is accessed

(1, 2, 4, or 8 specifiable)
[out] VARIANT *p_vMemData Memory content

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

HRESULT hr = E_FAIL;
long lBegin = strtol(m_GetMemoryStartAddress, NULL, 16);
long lEnd = strtol(m_GetMemoryEndAddress, NULL, 16);
long lDisplayWidth = m_GetMemorySize.GetCurSel();

//array for string data obtained from HewTargetServer
...

try
{

 hr = pHewServer1->GetDirectMemory2(lBegin, lEnd, lDisplayWidth, &vMemData);
}

Description example (Visual Basic 6.0)

 Dim ret As Long
 Dim lBegin As Long
 Dim lEnd As Long
 Dim lDisplayWidth As Long
 Dim vMemData As Variant

 ...

 ret = hts.GetDirectMemory2(lBegin, lEnd, lDisplayWidth, vMemData)

Description example (Visual Basic 2005)

 Dim ret As Integer
 Dim iBegin As Integer
 Dim iEnd As Integer
 Dim iDisplayWidth As Integer
 Dim vMemData As Object

 ...

 ret = hts.GetDirectMemory2(iBegin, iEnd, iDisplayWidth, vMemData)

130

5.4.4 Software Breaks
SetPCBreakPt2

Description

Sets a breakpoint at a specified address and returns its handle value.

Parameters

Attribute Type Content
[in] long lPCBreakAddr Address value
[out] long *p_lHandle Breakpoint handle value

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

HRESULT hr = E_FAIL;
long lPCBreakAddr;
long lHandle;

try
{

 hr = pHewServer1->SetPCBreakPt2(lPCBreakAddr, &lHandle);
}

Description example (Visual Basic)

 Dim ret As Long
 Dim lPCBreakAddr As Long
 Dim p_lHandle As Long 'In Visual Basic 2005, "As Long" will be replaced with "As Integer".

 ret = hts.SetPCBreakPt2(lPCBreakAddr, p_lHandle)

131

EnableBreakPt2

Description

Enables or disables a breakpoint according to the handle value of the breakpoint.

Parameters

Attribute Type Content
[in] long lHandle Breakpoint handle value
[out] long lEnable Enables or disables a breakpoint according to the handle

value of the breakpoint.

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

HRESULT hr = E_FAIL;
long lHandle;
long lEnable = 1;

try
{

 hr = pHewServer1->EnableBreakPt2(lHandle, lEnable);
}

Description example (Visual Basic)

 Dim ret As Long
 Dim lHandle As Long
 Dim lEnable As Long
 lEnable = 1

 ret = hts.EnableBreakPt2(lHandle, lEnable)

132

DeleteBreakPt2

Description

Deletes the breakpoint that has a specified breakpoint handle value.

Parameters

Attribute Type Content
[in] long lHandle Breakpoint handle value

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

HRESULT hr = E_FAIL;
long lHandle;

try
{
 hr = pHewServer1->DeleteBreakPt2(lHandle);
}

Description example (Visual Basic)

 Dim ret As Long
 Dim lHandle As Long

 ret = hts.DeleteBreakPt2(lHandle)

133

GetAllBreakPt2

Description

Gets the software breakpoints that have been set.

Parameters

Attribute Type Content
[out] long *p_index Number of software breakpoints
[out] VARIANT *p_vAllBreakPt Array of software breakpoints

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

HRESULT hr = E_FAIL;
long index;
VARIANT vAllBreakPt;
VariantInit(&vAllBreakPt);

//calling HewTargetServer function
try
{
 hr = pHewServer1->GetAllBreakPt2(&index, &vAllBreakPt);
}

Description example (Visual Basic 6.0)

 Dim ret As Long
 Dim p_index As Long
 Dim p_vAllBreakPt As Variant

ret = hts.GetAllBreakPt2(p_index, p_vAllBreakPt)

Description example (Visual Basic 2005)

 Dim ret As Integer
 Dim p_index As Integer
 Dim p_vAllBreakPt As Variant

ret = hts.GetAllBreakPt2(p_index, p_vAllBreakPt)

134

DeleteAllBreakPt2

Description

Deletes the software breakpoints that have been set.

Parameters

There is no parameter.

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

HRESULT hr = E_FAIL;

//calling HewTargetServer function
try
{
 hr = pHewServer1->DeleteAllBreakPt2();
}

Description example (Visual Basic)

 Dim ret As Long

ret = hts.DeleteAllBreakPt2

135

5.4.5 Variable Break
SetDataBreakpoint2

Description

Sets a data breakpoint.

Parameters

Attribute Type Content
[in] long _lSymbol Symbol address
[in] long _lSize Symbol size (1/2/4)

0x00000001 - 1
0x00000002 - 2
0x00000004 - 4

[in] long _lType Type of break (Equal/Not Equal)
0x00000001 - Equal
0x00000002 - Not Equal

[in] long _lData Symbol value
[out] long *p_lBreakDataNo Variable break No.

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

HRESULT hr = E_FAIL;
long _lSymbol;
long _lSize;
long _lType;
long _lData;
long _lBreakDataNo;

...

try
{

 hr = pHewServer1->SetDataBreakpoint2(_lSymbol, _lSize, _lType, _lData,
&_lBreakDataNo);
}

Description example (Visual Basic)

 Dim ret As Long
 Dim lSymbol As Long
 Dim lSize As Long
 Dim lType As Long
 Dim lData As Long
 Dim p_lBreakDataNo As Long 'In Visual Basic 2005, "As Long" will be replaced with "As Integer".

 ...

 ret = hts.SetDataBreakpoint2(lSymbol, lSize, lType, lData, p_lBreakDataNo)

136

EnableDataBreakpoint2

Description

Enables or disables a data breakpoint.

Parameters

Attribute Type Content
[in] long lBreakDataNo Variable break No.
[in] long _lEnable Enabled (True)/ Disabled (False)

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

HRESULT hr = E_FAIL;
long lDataBreakNo;
long _lEnable = 1;

try
{
 hr = pHewServer1->EnableDataBreakpoint2(lDataBreakNo, _lEnable);
}

Description example (Visual Basic)

 Dim ret As Long
 Dim lDataBreakNo As Long
 Dim lEnable As Long
 lEnable = 1

 ret = hts.EnableDataBreakpoint2(lDataBreakNo, lEnable)

137

DeleteDataBreakpoint2

Description

Deletes the data breakpoint.

Parameters

Attribute Type Content
[in] long lBreakDataNo Variable break No.

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

HRESULT hr = E_FAIL;
long lDataBreakNo;

try
{

hr = pHewServer1->DeleteDataBreakpoint2(lDataBreakNo);
}

Description example (Visual Basic)

 Dim ret As Long
 Dim lDataBreakNo As Long

 ret = hts.DeleteDataBreakpoint2(lDataBreakNo)

138

5.4.6 Variable Trace
SetSymbolTrace2

Description

Sets variable trace conditions.

Parameters

Attribute Type Content
[in] long _lSymbol Symbol address
[in] long _lCondition Trace condition (Read/Write)

0x00000001 - Read
0x00000002 - Write
0x00000003 - Read_Write

[in] long _lSize Symbol size (1/2/4)
0x00000001 - 1
0x00000002 - 2
0x00000004 - 4

[in] long _lType Type of trace (Equal/Not Equal/No Specific)
0x00000001 - Equal
0x00000002 - Not Equal
0x00000003 - Not Specified

[in] long _lData Symbol value
[out] long *p_lTraceNo Variable trace No.

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

HRESULT hr = E_FAIL;
long _lSymbol;
long _lCondition;
long _lSize;
long _lType;
long _lData;
long _lTraceNo;

...

try
{

hr = pHewServer1->SetSymbolTrace2(_lSymbol, _lCondition, _lSize, _lType, _lData, &
_lTraceNo);

}

Description example (Visual Basic)

 Dim ret As Long
 Dim lSymbol As Long
 Dim lCondition As Long
 Dim lSize As Long
 Dim lType As Long
 Dim lData As Long
 Dim p_lTraceNo As Long 'In Visual Basic 2005, "As Long" will be replaced with "As Integer".

 ...

 ret = hts.SetSymbolTrace2(lSymbol, lCondition, lSize, lType, lData, p_lTraceNo)

139

ExecuteSymbolTrace2

Description

Enables or disables variable trace.

Parameters

Attribute Type Content
[in] long _lEnable Enabled (True)/ Disabled (False)

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

HRESULT hr = E_FAIL;
long _lEnable = 1;

try
{

hr = pHewServer1->ExecuteSymbolTrace2(_lEnable);
}

Description example (Visual Basic)

 Dim ret As Long
 Dim lEnable As Long
 lEnable = 1

 ret = hts.ExecuteSymbolTrace2(lEnable)

140

DeleteSymbolTrace2

Description

Deletes variable trace conditions.

Parameters

Attribute Type Content
[in] long _lTraceNo Variable trace No. to be deleted

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Desc ption example (Visual C++) ri

HRESULT hr = E_FAIL;
long _lTraceNo;

try
{

 hr = pHewServer1->DeleteSymbolTrace2(_lTraceNo);
}

Description example (Visual Basic)

 Dim ret As Long
 Dim lTraceNo As Long

 ret = hts.DeleteSymbolTrace2(lTraceNo)

141

SaveSymbolTraceData2

Description

Saves the result of variable trace to a specified file.

Parameters

Attribute Type Content
[in] BSTR _bstrFileName File in which variable trace data is saved

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

HRESULT hr = E_FAIL;
BSTR bstrFileName;

try
{

hr = pHewServer1->SaveSymbolTraceData2(bstrFileName);
}

Description example (Visual Basic)

 Dim ret As Long
 Dim bstrFileName As String

 ret = hts.SaveSymbolTraceData2(bstrFileName)

Example of an output format

The trace result consists of the following contents which are separated by a space when output.
- Accessed time (in cycles for simulator)
- Accessed address
- Access attribute (Read/Write/Read_Write)
- Access value
- Access size

Sample
1287539 0XFFFE5DC Write 0XEA 1
1287553 0XFFFE5DC Write 0X30 1
1288170 0XFFFE5DC Write 0XEA 1
1445327 0XFFFE5DC Write 0XE0 1
1445341 0XFFFE5DC Write 0X30 1
1445958 0XFFFE5DC Write 0XE0 1
1605377 0XFFFE5DC Write 0X4C 1
1605391 0XFFFE5DC Write 0X30 1
1606008 0XFFFE5DC Write 0X4C 1
1760876 0XFFFE5DC Write 0XF6 1

142

5.4.7 Interrupt Condition
SendTrigger2

Description

Sets trigger conditions.

Parameters

Attribute Type Content
[in] long _lTriggerNo Trigger No.
[in] long _lTriggerType1 Trigger interrupt condition 1
[in] long _lTriggerType2 Trigger interrupt condition 2
[in] long _lPriority Interrupt priority (0-17)

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

HRESULT hr = E_FAIL;
long _lTriggerNo;
long _lTriggerType1;
long _lTriggerType2;
long _lPriority;

try
{

hr = pHewServer1->SendTrigger2(
_lTriggerNo,
_lTriggerType1,
_lTriggerType2,
_lPriority

);
}

Description example (Visual Basic)

 Dim ret As Long
 Dim lTriggerNo As Long
 Dim lTriggerType1As Long
 Dim lTriggerType2As Long
 Dim lPriority As Long

 ret = hts.SendTrigger2(lTriggerNo, lTriggerType1, lTriggerType2, lPriority)

143

5.4.8 Symbol
GetRealTimeWatch2

Description

Gets the specified data value.

Parameters

Attribute Type Content
[in] long _lSymbol Symbol address
[in] long _lSize Symbol size (1/2/4)

0x00000001 - 1
0x00000002 - 2
0x00000004 - 4

[out] long *p_lValue Symbol value

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

HRESULT hr = E_FAIL;
long _lSymbol;
long _lSize;
long _lValue;

try
{
 hr = pHewServer1->GetRealTimeWatch2(_lSymbol, _lSize, &_lValue);
}

Description example (Visual Basic)

 Dim ret As Long
 Dim lSymbol As Long
 Dim lSize As Long
 Dim p_lValue As Long 'In Visual Basic 2005, "As Long" will be replaced with "As Integer".

 ret = hts.GetRealTimeWatch2(lSymbol, lSize, p_lValue)

144

GetQuickWatch2

Description

Gets the variable size, variable value, type, and allocated area from the variable name.

Parameters

Attribute Type Content
[in] BSTR bstrVarName Variable name
[out] long *p_lValueSize Variable size
[out] BSTR *bstrByValue String of variable value
[out] long *p_lType Variable type
[out] BSTR *bstrTypeName String of variable type
[out] BSTR *bstrVarAllocation String of allocated variable area

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

HRESULT hr = E_FAIL;
BSTR bstrVarName;
long lValueSize;
BSTR bstrByValue;
long lType;
BSTR bstrTypeName;
BSTR bstrVarAllocation;

try
{

 hr = pHewServer1->GetQuickWatch2(bstrVarName,
 &lValueSize,
 &bstrByValue,
 &lType,

 &bstrTypeName,
 &bstrVarAllocation
);

}

Description example (Visual Basic)

 Dim ret As Long
 Dim bstrVarName As String
 Dim p_lValueSize As Long 'In Visual Basic 2005, "As Long" will be replaced with "As Integer".
 Dim p_bstrByValue As String
 Dim p_lType As Long 'In Visual Basic 2005, "As Long" will be replaced with "As Integer".
 Dim p_bstrTypeName As String
 Dim p_bstrVarAllocation As String

 ret = hts.GetQuickWatch2(bstrVarName, p_lValueSize, p_bstrByValue, p_lType, _

p_bstrTypeName, p_bstrVarAllocation)

145

SymbolToAddress2

Description

Converts label/symbol from a symbol name to its corresponding address value.

Parameters

Attribute Type Content
[in] BSTR bstrSymbolName Symbol name
[out] long *p_lSymbolAddr Symbol address

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

HRESULT hr = E_FAIL;
BSTR bstrSymbolName;
long lSymbolAddr;

try
{

 hr = pHewServer1->SymbolToAddress2(bstrSymbolName, &lSymbolAddr);
}

Description example (Visual Basic)

 Dim ret As Long
 Dim bstrSymbolName As String
 Dim p_lSymbolAddr As Long 'In Visual Basic 2005, "As Long" will be replaced with "As Integer".

ret = hts.SymbolToAddress2(bstrSymbolName, p_lSymbolAddr)

146

AddressToSymbol2

Description

Converts label/symbol from an address value to its corresponding symbol name.

Parameters

Attribute Type Content
[in] long lSymbolAddr Address value
[out] BSTR *p_bstrSymbolName Symbol name

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

HRESULT hr = E_FAIL;
long lSymbolAddr;
BSTR bstrSymbolName;

try
{
 hr = pHewServer1->AddressToSymbol2(lSymbolAddr, &bstrSymbolName);
}

Description example (Visual Basic)

 Dim ret As Long
 Dim lSymbolAddr As Long
 Dim p_bstrSymbolName As String

ret = hts.AddressToSymbol2(lSymbolAddr, p_bstrSymbolName)

147

GetLineFromAddr2

Description

Converts label/symbol from an address value to its corresponding file and line.

Parameters

Attribute Type Content
[in] long lLineAddr Line address
[out] BSTR *p_bstrFileName File name
[out] long *p_lLineNo Line number

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

HRESULT hr = E_FAIL;
long lLineAddr;
BSTR bstrFileName;
long lLineNo;

try
{
 hr = pHewServer1->GetLineFromAddr2(lLineAddr, &bstrFileName, &lLineNo);
}

Description example (Visual Basic)

 Dim ret As Long
 Dim lLineAddr As Long
 Dim p_bstrFileName As String
 Dim p_lLineNo As Long 'In Visual Basic 2005, "As Long" will be replaced with "As Integer".

ret = hts.GetLineFromAddr2(lLineAddr, p_bstrFileName, p_lLineNo)

148

GetAddrFromLine2

Description

Converts a label/symbol from file and line to its corresponding address value.

Parameters

Attribute Type Content
[in] BSTR bstrFileName File name
[in] long lLineNo Line number
[out] long *p_lLineAddr Line address

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

HRESULT hr = E_FAIL;
BSTR bstrFileName;
long lLineNo;
long lLineAddr;

try
{

hr = pHewServer1->GetAddrFromLine2(
bstrFileName,
lLineNo,
&lLineAddr

);
}

Description example (Visual Basic)

 Dim ret As Long
 Dim bstrFileName As String
 Dim lLineNo As Long
 Dim p_lLineAddr As Long 'In Visual Basic 2005, "As Long" will be replaced with "As Integer".

ret = hts.GetAddrFromLine2(bstrFileName, lLineNo, p_lLineAddr)

149

5.4.9 Downloads
Download2

Description

Downloads a load module.

Parameters

Attribute Type Content
[in] BSTR _bstrFileName Load module (including path name)

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

HRESULT hr = E_FAIL;
BSTR bstrDownloadFile;

try
{
 hr = pHewServer1->Download2(bstrDownloadFile);
}

Description example (Visual Basic)

 Dim ret As Long
 Dim bstrDownloadFile As String

ret = hts.Download2(bstrDownloadFile)

150

Unload2

Description

Unloads a load module.

Parameters

Attribute Type Content
[in] BSTR _bstrFileName Unload module (including path name)

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

HRESULT hr = E_FAIL;
BSTR bstrUnloadFile;

try
{

 hr = pHewServer1->Unload2(bstrUnloadFile);
}

Description example (Visual Basic)

 Dim ret As Long
 Dim bstrUnloadFile As String

ret = hts.Unload2(bstrUnloadFile)

151

5.4.10 Start/Stop
InvokeHew2

Description

Starts a High-performance Embedded Workshop application. (Workspace is not opened.)

Parameters

There is no parameter.

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

HRESULT hr = E_FAIL;

try
{
 hr = pHewServer1->InvokeHew2();
}

Description example (Visual Basic)

 Dim ret As Long

ret = hts.InvokeHew2

152

QuitHew2

Description

Terminates a High-performance Embedded Workshop application.

Parameters

There is no parameter.

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

HRESULT hr = E_FAIL;

try
{
 hr = pHewServer1->QuitHew2();
}

Description example (Visual Basic)

 Dim ret As Long

ret = hts.QuitHew2

153

InvokeHewWithNoDialog

Description

Invokes the High-performance Embedded Workshop application without opening the [Welcome!] dialog
box (no workspace is opened).

Parameters

There is no parameter.

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

HRESULT hr = E_FAIL;

try
{
 hr = pHewServer1->InvokeHewWithNoDialog();
}

Description example (Visual Basic)

 Dim ret As Long

ret = hts.InvokeHewWithNoDialog

154

5.4.11 Workspace
OpenWorkspace2

Description

Opens a workspace.

Parameters

Attribute Type Content
[in] BSTR _bstrFileName File name (including path name)

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

HRESULT hr = E_FAIL;
BSTR bstrFileName;

try
{
 hr = pHewServer1->OpenWorkspace2(bstrFileName);
}

Description example (Visual Basic)

 Dim ret As Long
 Dim bstrFileName As String

ret = hts.OpenWorkspace2(bstrFileName)

155

CloseWorkspace2

Description

Closes a workspace.

Parameters

Attribute Type Content
[in] long _lIgnoreChanges 0x00000000:Workspace is not closed when changed

0x00000001:Workspace is closed without saving changes

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

HRESULT hr = E_FAIL
long _lIgnoreChanges = 1;

try
{

 hr = pHewServer1->CloseWorkspace2(_lIgnoreChanges);
}

Description example (Visual Basic)

 Dim ret As Long
 Dim lIgnoreChanges As Long
 lIgnoreChanges = 1

ret = hts.CloseWorkspace2(lIgnoreChanges)

156

SaveWorkspace2

Description

Saves a workspace.

Parameters

There is no parameter.

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

HRESULT hr = E_FAIL;

try
{

 hr = pHewServer1->SaveWorkspace2();
}

Description example (Visual Basic)

 Dim ret As Long

ret = hts.SaveWorkspace2

157

GetWorkSpaceDirectory

Description

Gets the absolute path of the current workspace.

Parameters

Attribute Type Content
[out] BSTR

*_pbstrCurrentWorkspaceDirectory
Absolute path of the current workspace

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

 HRESULT hr = E_FAIL;
 CString strTmp = _T("");
 BSTR bstrCurrentWorkspaceDirectory = strTmp.AllocSysString();
 //Call HewTargetServer function
 CString strCurrentWorkspaceDirectory;
 try
 {

 hr = pHewServer1->GetWorkSpaceDirectory(&bstrCurrentWorkspaceDirectory);
 strCurrentWorkspaceDirectory = bstrCurrentWorkspaceDirectory;

 }
Description example (Visual Basic)

 Dim ret As Long
 Dim bstrCurrentWorkspaceDirectory As String

 ret = hts.GetWorkSpaceDirectory(bstrCurrentWorkspaceDirectory)

158

5.4.12 Configuration and session
SaveSession2

Description

Saves a session file.

Parameters

There is no parameter.

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

HRESULT hr = E_FAIL

try
{

 hr = pHewServer1->SaveSession2();
}

Description example (Visual Basic)

 Dim ret As Long

ret = hts.SaveSession2

159

GetCurrentConfiguration2

Description

Gets the current build configuration.

Parameters

Attribute Type Content
[out] BSTR

*p_bstrCurrentConfigurationName
Name of the build configuration

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

HRESULT hr = E_FAIL;
CString strCurrentConfigurationName = _T("");
BSTR bstrCurrentConfigurationName;

//calling HewTargetServer function
try
{
 hr = pHewServer1->GetCurrentConfiguration2(&bstrCurrentConfigurationName);
 strCurrentConfigurationName = bstrCurrentConfigurationName;
}

Description example (Visual Basic)

 Dim ret As Long
 Dim p_bstrCurrentConfigurationName As String

ret = hts.GetCurrentConfiguration2(p_bstrCurrentConfigurationName)

160

SetCurrentConfiguration2

Description

Sets a currently active build configuration.

Parameters

Attribute Type Content
[in] BSTR _bstrConfiguration Build configuration name

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

HRESULT hr = E_FAIL;
BSTR bstrSetCurrentConfiguration;

try
{

 hr = pHewServer1->SetCurrentConfiguration2(bstrSetCurrentConfiguration);
}

Description example (Visual Basic)

 Dim ret As Long
 Dim bstrSetCurrentConfiguration As String

ret = hts.SetCurrentConfiguration2(bstrSetCurrentConfiguration)

161

GetConfigurations2

Description

Gets all build configurations that have a project in each.

Parameters

Attribute Type Content
[out] BSTR *p_bstrConfigurations Build configuration name (multiple names, if any,

are separated by a comma)
(Example) "DefaultSession, SimSessionSH-4"

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

HRESULT hr = E_FAIL;
Cstring strTmp = _T("");
BSTR o1 = strTmp.AllocSysString(); //CString -> BSTR converted

//calling HewTargetServer function
CString so1;
try
{

hr = pHewServer1->GetConfigurations2(&o1);
 so1 = o1;
}

Description example (Visual Basic)

 Dim ret As Long
 Dim p_bstrConfigurations As String

ret = hts.GetConfigurations2(p_bstrConfigurations)

162

GetCurrentSession2

Description

Gets the current debug session.

Parameters

Attribute Type Content
[out] BSTR *p_bstrCurrentSessionName Name of the debug session

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

HRESULT hr = E_FAIL;
CString strCurrentSessionName = _T("");
BSTR bstrCurrentSessionName;

//calling HewTargetServer function
try
{
 hr = pHewServer1->GetCurrentSession2(&bstrCurrentSessionName);
 strCurrentSessionName = bstrCurrentSessionName;
}

Description example (Visual Basic)

 Dim ret As Long
 Dim p_bstrCurrentSessionName As String

ret = hts.GetCurrentSession2(p_bstrCurrentSessionName)

163

SetCurrentSession2

Description

Sets a currently active debug session.

Parameters

Attribute Type Content
[in] BSTR _bstrSession Debug session name

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

HRESULT hr = E_FAIL;
BSTR bstrSession;

//calling HewTargetServer function
try
{

 hr = pHewServer1->SetCurrentSession2(bstrSession);
}

Description example (Visual Basic)

 Dim ret As Long
 Dim bstrSession As String

ret = hts.SetCurrentSession2(bstrSession)

164

GetSessions2

Description

Gets all debug sessions that are included in a project.

Parameters

Attribute Type Content
[out] BSTR *p_bstrSessions Debug session name (multiple names, if any, are

separated by a comma)
(Example) "DefaultSession, SimSessionSH-4"

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

HRESULT hr = E_FAIL;

//calling HewTargetServer function
CString strTmp = _T("");
BSTR o2 = strTmp.AllocSysString(); //CString -> BSTR converted

CString so2;
try
{

hr = pHewServer1->GetSessions2(&o2);
so2 = o2;

}

Description example (Visual Basic)

 Dim ret As Long
 Dim p_bstrSessions As String

ret = hts.GetSessions2(p_bstrSessions)

165

GetCurrentProject2

Description

Gets the current project.

Parameters

Attribute Type Content
[out] BSTR *p_bstrCurrentProjectName Name of the project

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

HRESULT hr = E_FAIL;
CString strCurrentProjectName = _T("");
BSTR bstrCurrentProjectName;

//calling HewTargetServer function
try
{
 hr = pHewServer1->GetCurrentProject2(&bstrCurrentProjectName);
 strCurrentProjectName = bstrCurrentProjectName;

}

Description example (Visual Basic)

 Dim ret As Long
 Dim p_bstrCurrentProjectName As String

ret = hts.GetCurrentProject2(p_bstrCurrentProjectName)

166

SetCurrentProject2

Description

Enables a specified project to make it active.

Parameters

Attribute Type Content
[in] BSTR _bstrProjectName Project name

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

HRESULT hr = E_FAIL;
BSTR bstrProjectName;

 //calling HewTargetServer function
try
{
 hr = pHewServer1->SetCurrentProject2(bstrProjectName);
}

Description example (Visual Basic)

 Dim ret As Long
 Dim bstrProjectName As String

ret = hts.SetCurrentProject2(bstrProjectName)

167

GetProjects2

Description

Gets all project names.

Parameters

Attribute Type Content
[out] BSTR

*p_bstrProjectNames
Project name. If there are two or more project names, they
should be delimited by a comma.
Example: "Project1, Project2"

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

HRESULT hr = E_FAIL;
CString strProjectNames = _T("");
BSTR bstrProjectNames;

//calling HewTargetServer function
try
{
 hr = pHewServer1->GetProjects2(&bstrProjectNames);
 strProjectNames = bstrProjectNames;
}

Description example (Visual Basic)

 Dim ret As Long
 Dim p_bstrProjectNames As String

ret = hts.GetProjects2(p_bstrProjectNames)

168

5.4.13 Project
AddFile2

Description

Adds a file to the currently active project.

Parameters

Attribute Type Content
[in] BSTR _bstrFileName File name (including path name)

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

HRESULT hr = E_FAIL;
BSTR bstrFileName;

try
{

 hr = pHewServer1->AddFile2(bstrFileName);
}

Description example (Visual Basic)

 Dim ret As Long
 Dim bstrFileName As String

ret = hts.AddFile2(bstrFileName)

169

AddFiles2

Description

Adds multiple files to the currently active project.

Parameters

Attribute Type Content
[in] BSTR _bstrFileName File name (multiple names, if any, are separated by a

comma) (including path name)

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

HRESULT hr = E_FAIL;
BSTR bstrFileName;

try
{

 hr = pHewServer1->AddFiles2(bstrFileName);
}

Description example (Visual Basic)

 Dim ret As Long
 Dim bstrFileName As String

ret = hts.AddFiles2(bstrFileName)

170

DeleteFile2

Description

Deletes a file from the currently active project.

Parameters

Attribute Type Content
[in] BSTR _bstrFileName File name (including path name)

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

HRESULT hr = E_FAIL;
BSTR bstrFileName;

 //calling HewTargetServer function
try
{
 hr = pHewServer1->DeleteFile2(bstrFileName);
}

Description example (Visual Basic)

 Dim ret As Long
 Dim bstrFileName As String

ret = hts.DeleteFile2(bstrFileName)

171

DeleteFiles2

Description

Deletes multiple files from the currently active project.

Parameters

Attribute Type Content
[in] BSTR _bstrFileName File name (multiple names, if any, are separated by a

comma) (including path name)

Returned value
A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

HRESULT hr = E_FAIL;
BSTR bstrFileName;

//calling HewTargetServer function
try
{
 hr = pHewServer1->DeleteFiles2(bstrFileName);
}

Description example (Visual Basic)

 Dim ret As Long
 Dim bstrFileName As String

ret = hts.DeleteFiles2(bstrFileName)

172

AddProjectFileFolder

Description

Adds a folder to the Projects tree in the current project.

Parameters

Attribute Type Content
[in] BSTR _bstrFolderName Folder name (a folder and its subfolder should be

separated by a backslash, e.g. Folder1\Subfolder)

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

HRESULT hr = E_FAIL;
BSTR bstrAddFolder = m_AddFolder.AllocSysString();
//Call HewTargetServer function
try
{

h
} r = pHewServer1->AddProjectFileFolder(bstrAddFolder);

Description example (Visual Basic)

Dim ret As Long
Dim bstrFolderName As String

ret = hts.AddProjectFileFolder(bstrFolderName)

173

RemoveProjectFileFolder

Description

Deletes a folder from the Projects tree in the current project.

Parameters

Attribute Type Content
[in] BSTR _bstrFolderName Folder name (a folder and its subfolder should be

separated by a backslash, e.g. Folder1\Subfolder)

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Precautions

You cannot delete any folders containing a file or subfolder.
When a folder and its subfolder are specified, only the subfolder is deleted.
If the specified folder name is Folder1\Subfolder, for example, Subfolder will be deleted.

Description example (Visual C++)

HRESULT hr = E_FAIL;
BSTR bstrRemoveFolder = m_RemoveFolder.AllocSysString();
//Call HewTargetServer function
try
{

h
} r = pHewServer1->RemoveProjectFileFolder(bstrRemoveFolder);

Description example (Visual Basic)

Dim ret As Long
Dim bstrFolderName As String

ret = hts.RemoveProjectFileFolder(bstrFolderName)

174

AddFileToFolder

Description

Adds a file to a specific folder under the Projects tree in the current project.

Parameters

Attribute Type Content
[in] BSTR _bstrFileName File name (including path name)
[in] BSTR _bstrFolderName Folder name (a folder and its subfolder should be

separated by a backslash, e.g. Folder1\Subfolder)

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

 HRESULT hr = E_FAIL;
 BSTR bstrFileName = m_AddFile.AllocSysString();
 BSTR bstrFolderName = m_AddFolder.AllocSysString();
 //Call HewTargetServer function
 try
 {

 hr = pHewServer1->AddFileToFolder(bstrFileName, bstrFolderName);
 }

Description example (Visual Basic)

 Dim ret As Long
 Dim bstrFileName As String
 Dim bstrFolderName As String

 ret = hts.AddFileToFolder(bstrFileName, bstrFolderName)

175

5.4.14 Build
BuildProject2

Description

Builds a project.

Parameters

There is no parameter.

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

HRESULT hr = E_FAIL;

//calling HewTargetServer function
try
{
 hr = pHewServer1->BuildProject2();
}

Description example (Visual Basic)

 Dim ret As Long

ret = hts.BuildProject2

176

RebuildProject2

Description

Rebuilds a project.

Parameters

There is no parameter.

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

HRESULT hr = E_FAIL;

//calling HewTargetServer function
try
{
 hr = pHewServer1->RebuildProject2();
}

Description example (Visual Basic)

 Dim ret As Long

ret = hts.RebuildProject2

177

UpDateAllDependency2

Description

Updates all dependency relations.

Parameters

There is no parameter.

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

HRESULT hr = E_FAIL;
//calling HewTargetServer function
try
{
 hr = pHewServer1->UpDateAllDependency2();
}

Description example (Visual Basic)

 Dim ret As Long

ret = hts.UpDateAllDependency2

178

AddFileWithCompilerOption2

Description

Adds a file after setting compiler options for the project.

Parameters

Attribute Type Content
[in] BSTR _bstrFileName File name (including path name)
[in] BSTR

_bstrIncludeDirectories
Include directory name. If there are two or more
directories, they should be delimited by a comma.
Example: "C:\tmp, D:\work"

[in] BSTR _bstrDefines Definition. If there are two or more definitions, they
should be delimited by a comma.
Example: "TMP1=C:\tmp, TMP2=D:\work"

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

HRESULT hr = E_FAIL;
BSTR _bstrAddFileName;
BSTR _bstrIncludeDirectories;
BSTR _bstrDefines;

//calling HewTargetServer function
try
{
 hr=pHewServer1->AddFileWithCompilerOption2(_bstrAddFileName,_bstrIncludeDirectories,_bstr

Defines);
}

Description example (Visual Basic)

 Dim ret As Long
 Dim bstrAddFileName As String
 Dim bstrIncludeDirectories As String
 Dim bstrDefines As String

ret = hts.AddFileWithCompilerOption2(bstrAddFileName, bstrIncludeDirectories, _
bstrDefines)

179

GetLibraryOptions

Description

Acquires the library options for the linker in the current project.

Parameters

Attribute Type Content
[out] BSTR *p_bstrLibraryOption Library options for the linker in the current project

Examples
SHC: "LIB=c:\test\test1.lib, c:\temp\test2.lib"
M16C: "-LD "D:\V540" -L "nc30lib""

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

 HRESULT hr = E_FAIL;

CString strTmp = _T("");
BSTR o1 = strTmp.AllocSysString(); //CSTring -> BSTR Conversion

 //Call HewTargetServer function
 CString so1;
 try
 {
 hr = pHewServer1->GetLibraryOptions(&o1);
 so1 = o1;

 }

Description example (Visual Basic)

 Dim ret As Long
 Dim p_bstrLibraryOption As String

ret = hts.GetLibraryOptions(p_bstrLibraryOption)

180

SetLibraryOptions

Description

Sets library options for the linker in the current project. Existing library options that have been set will
be deleted.

Parameters

Attribute Type Content
[in] BSTR _bstrLibraryOption Library options for the linker set in the current project

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

 BSTR bstrSetLibraryOption;
 HRESULT hr = E_FAIL;

 //Call HewTargetServer function
 try
 {
 hr = pHewServer1->SetLibraryOptions(bstrSetLibraryOption);
 }

Description example (Visual Basic)

 Dim ret As Long
 Dim bstrLibraryOption As String

ret = hts.SetLibraryOptions(bstrLibraryOption)

181

GetLibraryFilesForConfiguration

Description

Gets library options from a specific configuration in a specific project.

Parameters

Attribute Type Content
[in] BSTR _bstrProjectName Project Name (the current project name when an

empty string is entered)
[in] BSTR _bstrConfiguration Configuration Name (the current configuration name

when an empty string is entered)
[out] BSTR *_pbstrLibraryFiles Library Option of Linker

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

 HRESULT hr = E_FAIL;
 BSTR bstrProject = m_GetLibraryFilesForConfiguration_Project.AllocSysString();
 BSTR bstrConfiguration = m_GetLibraryFilesForConfiguration_Configuration.AllocSysString();
 CString strTmp = _T("");
 BSTR bstrLibraryFiles = strTmp.AllocSysString();
 CString strLibraryFiles;

 //Call HewTargetServer function
 try
 {
 hr = pHewServer1->GetLibraryFilesForConfiguration(bstrProject, bstrConfiguration,

&bstrLibraryFiles);
 strLibraryFiles = bstrLibraryFiles;
 }

Description example (Visual Basic)

 Dim ret As Long
 Dim bstrProject As String
 Dim bstrConfiguration As String
 Dim p_bstrLibraryFiles As String

 ret = hts.GetLibraryFilesForConfiguration(bstrProject, bstrConfiguration, bstrLibraryFiles)

182

SetLibraryFilesForConfiguration

Description

Sets library options for a specific configuration in a specific project. If the selected library option has
already been set, the older option is overwritten.

Parameters

Attribute Type Content
[in] BSTR _bstrProjectName Project Name (the current project name when an

empty string is entered)
[in] BSTR _bstrConfiguration Configuration Name (the current configuration name

when an empty string is entered)
[in] BSTR _bstrLibraryFiles Library Option of Linker

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

 HRESULT hr = E_FAIL;
 BSTR bstrProject = m_SetLibraryFilesForConfiguration_Project.AllocSysString();
 BSTR bstrConfiguration = m_SetLibraryFilesForConfiguration_Configuration.AllocSysString();
 BSTR bstrLibraryFiles = m_SetLibraryFilesForConfiguration_LibraryFiles.AllocSysString();

 //Call HewTargetServer function
 try
 {
 hr = pHewServer1->SetLibraryFilesForConfiguration(bstrProject, bstrConfiguration,

bstrLibraryFiles);
 }

Description example (Visual Basic)

 Dim ret As Long
 Dim bstrProject As String
 Dim bstrConfiguration As String
 Dim bstrLibraryFiles As String

 ret = hts. SetLibraryFilesForConfiguration(bstrProject, bstrConfiguration, bstrLibraryFiles)

183

GetIncludeFileDirectories

Description

Gets include file options from a file of a specific configuration in a specific project.

Parameters

Attribute Type Content
[in] BSTR _bstrProjectName Project Name (the current project name when

an empty string is entered)
[in] BSTR _bstrConfiguration Configuration Name (the current configuration

name when an empty string is entered)
[in] BSTR _bstrFileName File Name (including path name)
[out] VARIANT *_pvtIncludeDirectories Include Option of Compiler which is

VT_ARRAY|VT_VARIANT. Each element of the
array is VARIANT of the VT_BSTR type.

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

 HRESULT hr = E_FAIL;
 BSTR bstrProject = m_GetIncludeFileDirectories_Project.AllocSysString();
 BSTR bstrConfiguration = m_GetIncludeFileDirectories_Configuration.AllocSysString();
 BSTR bstrFile = m_GetIncludeFileDirectories_File.AllocSysString();
 CString strTmp = _T("");
 VARIANT variantIncludeDirectories;

 //Call HewTargetServer function
 try
 {

 hr =
 pHewServer1->GetIncludeFileDirectories(bstrProject,bstrConfiguration,bstrFile,

 & variantIncludeDirectories);
 }

Description example (Visual Basic 6.0)

 Dim ret As Long
 Dim bstrProject As String
 Dim bstrConfiguration As String
 Dim bstrFile As String
 Dim vtIncludeDirectories As Variant
 ret =
 hts.GetIncludeFileDirectoriesGetIncludeFileDirectories(bstrProject,bstrConfiguration,bstrFile,
 vtIncludeDirectories)

Description example (Visual Basic 2005)

 Dim ret As Integer
 Dim bstrProject As String
 Dim bstrConfiguration As String
 Dim bstrFile As String
 Dim vtIncludeDirectories As Object
 ret =
 hts.GetIncludeFileDirectoriesGetIncludeFileDirectories(bstrProject,bstrConfiguration,bstrFile,
 vtIncludeDirectories)

184

SetIncludeFileDirectories

Description

Sets include file options for a file of a specific configuration in a specific project.

Parameters

Attribute Type Content
[in] BSTR _bstrProjectName Project Name (the current project name when an

empty string is entered)
[in] BSTR _bstrConfiguration Configuration Name (the current configuration

name when an empty string is entered)
[in] BSTR _bstrFileName File Name (including path name)
[in] VARIANT _vtIncludeDirectories Include Option of Compiler

(VT_ARRAY|VT_BSTR)
[in] long _lSettingMode 0: Append to the existing option(s)

1: Replace the existing option(s)

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

 HRESULT hr = E_FAIL;
 long lMode;
 BSTR bstrProject = m_SetIncludeFileDirectories_Project.AllocSysString();
 BSTR bstrConfiguration = m_SetIncludeFileDirectories_Configuration.AllocSysString();
 BSTR bstrFile = m_SetIncludeFileDirectories_File.AllocSysString();
 VARIANT vtIncludeDirectories;

 //Call HewTargetServer function
 try
 {
 hr = pHewServer1->SetIncludeFileDirectories(bstrProject, bstrConfiguration, bstrFile,
 vtIncludeDirectories, lMode);
 }

Description example (Visual Basic 6.0)

 Dim ret As Long
 Dim lMode As Long
 Dim bstrProject As String
 Dim bstrConfiguration As String
 Dim bstrFile As String
 Dim vtIncludeDirectories As Variant

 ret = hts.SetIncludeFileDirectories(bstrProject, bstrConfiguration, bstrFile, vtIncludeDirectories,

lMode)

Description example (Visual Basic 2005)

 Dim ret As Integer
 Dim iMode As Integer
 Dim bstrProject As String
 Dim bstrConfiguration As String
 Dim bstrFile As String
 Dim vtIncludeDirectories As Variant

 ret = hts.SetIncludeFileDirectories(bstrProject, bstrConfiguration, bstrFile, vtIncludeDirectories,

iMode)

185

GetCpuAndToolChainData

Description

Gets the family name, series name, and type name of the CPU, and the family name, name, and version
number of the compiler in a specific project.

Parameters

Attribute Type Content
[in] BSTR _bstrProjectName Project Name
[out] BSTR *_pbstrCPUFamily CPU Family Name
[out] BSTR *_pbstrCPUSeries CPU Series Name
[out] BSTR *_pbstrCPUType CPU Type Name
[out] BSTR *_pbstrToolChainFamily Compiler Family Name
[out] BSTR *_pbstrToolChainName Compiler Name
[out] BSTR *_pbstrToolChainVersion Compiler Version

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

 HRESULT hr = E_FAIL;
 BSTR bstrProjectName = m_GetCpuAndToolChainData_Project.AllocSysString();
 CString strTmp = _T("");
 BSTR bstrCPUFamily = strTmp.AllocSysString();
 BSTR bstrCPUSeries = strTmp.AllocSysString();
 BSTR bstrCPUType = strTmp.AllocSysString();
 BSTR bstrToolChainFamily = strTmp.AllocSysString();
 BSTR bstrToolChainName = strTmp.AllocSysString();
 BSTR bstrToolChainVersion = strTmp.AllocSysString();

 //Call HewTargetServer function
 CString strCPUFamily;
 CString strCPUSeries;
 CString strCPUType;
 CString strToolChainFamily;
 CString strToolChainName;
 CString strToolChainVersion;

 try
 {

 hr = pHewServer1->GetCpuAndToolChainData(bstrProjectName, &bstrCPUFamily,
&bstrCPUSeries, &bstrCPUType, &bstrToolChainFamily, &bstrToolChainName, &bstrToolChainVersion);

 strCPUFamily = bstrCPUFamily;
 strCPUSeries = bstrCPUSeries;
 strCPUType = bstrCPUType;
 strToolChainFamily = bstrToolChainFamily;
 strToolChainName = bstrToolChainName;
 strToolChainVersion = bstrToolChainVersion;

 }

186

Description example (Visual Basic)

 Dim ret As Long
 Dim bstrProjectName As String
 Dim bstrCPUFamily As String
 Dim bstrCPUSeries As String
 Dim bstrCPUType As String
 Dim bstrToolChainFamily As String
 Dim bstrToolChainName As String
 Dim bstrToolChainVersion As String

 ret = hts.GetCpuAndToolChainData(bstrProjectName, bstrCPUFamily, bstrCPUSeries,
bstrCPUType, bstrToolChainFamily, bstrToolChainName, bstrToolChainVersion)

187

SetBuildExcludeFiles

Description

Excludes the specified file from building.

Parameters

Attribute Type Content
[in] BSTR _bstrFileNames File name (multiple names, if any, are separated by a

comma)

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

HRESULT hr = E_FAIL;

 BSTR bstrBuildExcludeFiles;

 //Call HewTargetServer function
 try
 {
 hr = pHewServer1->SetBuildExcludeFiles(bstrBuildExcludeFiles);

 }

Description example (Visual Basic)

 Dim ret As Long
 Dim bstrBuildExcludeFiles As String

ret = hts.SetBuildExcludeFiles(bstrBuildExcludeFiles)

188

SetBuildIncludeFiles

Description

Includes the specified file in building.

Parameters

Attribute Type Content
[in] BSTR _bstrFileNames File name (multiple names, if any, are separated by a

comma)

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

HRESULT hr = E_FAIL;

 BSTR bstrBuildIncludeFiles;

 //Call HewTargetServer function
 try
 {
 hr = pHewServer1->SetBuildIncludeFiles(bstrBuildIncludeFiles);

 }

Description example (Visual Basic)

 Dim ret As Long
 Dim bstrBuildIncludeFiles As String

ret = hts.SetBuildIncludeFiles(bstrBuildIncludeFiles)

189

5.4.15 Files
OpenFileAtLine2

Description

Opens a file by specifying the file name and line number.

Parameters

Attribute Type Content
[in] BSTR _bstrOpenFileName File name (including path name)
[in] long _lLine Line number

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

HRESULT hr = E_FAIL;
BSTR bstrOpenFileName;
long _lLine = 1;

//calling HewTargetServer function
try
{
 hr = pHewServer1->OpenFileAtLine2(bstrOpenFileName, _lLine);
}

Description example (Visual Basic)

 Dim ret As Long
 Dim bstrOpenFileName As String
 Dim lLine As Long
 lLine = 1

ret = hts.OpenFileAtLine2(bstrOpenFileName, lLine)

190

GetSourceFiles2

Description

Gets all source file names (such as *.cpp or *.src) in a project.
The file name is output as an absolute path.

Parameters

Attribute Type Content
[out] BSTR

*p_bstrSourceFiles
Source file names (if there are two or more file names, they
should be delimited by a comma).
Example: "c:\sample1.cpp, c:\sample2.cpp"

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

HRESULT hr = E_FAIL;
CString strSourceFiles = _T("");
BSTR bstrSourceFiles = strSourceFiles.AllocSysString();

//calling HewTargetServer function
try
{
 hr = pHewServer1->GetSourceFiles2(&bstrSourceFiles);
 strSourceFiles = bstrSourceFiles;
}

Description example (Visual Basic)

 Dim ret As Long
 Dim p_bstrSourceFiles As String

ret = hts.GetSourceFiles2(p_bstrSourceFiles)

191

GetDownloadModules2

Description

Gets all module file names (such as *.abs) in a project.
The file name is output as an absolute path.

Parameters

Attribute Type Content
[out] BSTR

*p_bstrDownloadModules
Module file names (if there are two or more file names,
they should be delimited by a comma).
Example: "c:\sample1.abs, c:\sample2.abs"

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

HRESULT hr = E_FAIL;
CString strDownloadModules = _T("");
BSTR bstrDownloadModules = strDownloadModules.AllocSysString();

//calling HewTargetServer function
try
{
 hr = pHewServer1->GetDownloadModules2(&bstrDownloadModules);
 strDownloadModules = bstrDownloadModules;
}

Description example (Visual Basic)

 Dim ret As Long
 Dim p_bstrDownloadModules As String

ret = hts.GetDownloadModules2(p_bstrDownloadModules)

192

GetDependentFiles2

Description

Gets all dependent file names (such as *.h or *.inc) in a project.
The file name is output as an absolute path.

Parameters

Attribute Type Content
[out] BSTR

*p_bstrDependentFiles
Dependent file names (if there are two or more file names,
they should be delimited by a comma).
Example: "c:\sample1.h, c:\sample2.h""

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

HRESULT hr = E_FAIL;
CString strDependentFiles = _T("");
BSTR bstrDependentFiles = strDependentFiles.AllocSysString();

//calling HewTargetServer function
try
{
 hr = pHewServer1->GetDependentFiles2(&bstrDependentFiles);
 strDependentFiles = bstrDependentFiles;
}

Description example (Visual Basic)

 Dim ret As Long
 Dim p_bstrDependentFiles As String

ret = hts.GetDependentFiles2(p_bstrDependentFiles)

193

5.4.16 Coverage
SetCoverageRange2

Description

Sets a coverage range.

Parameters

Attribute Type Content
[in] long _lStartAddress Start address
[in] long _lEndAddress End address

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

HRESULT hr = E_FAIL;
long _lStartAddress;
long _lEndAddress;

//calling HewTargetServer function
try
{
 hr = pHewServer1->SetCoverageRange2(_lStartAddress, _lEndAddress);
}

Description example (Visual Basic)

 Dim ret As Long
 Dim lStartAddress As Long
 Dim lEndAddress As Long

ret = hts.SetCoverageRange2(lStartAddress, lEndAddress)

Precautions

The coverage facility is enabled as soon as a coverage range is set.

194

GetCoverageRange2

Description

Gets data from a coverage range.

Parameters

Attribute Type Content
[out] long *p_lStartAddress Start address
[out] long *p_lEndAddress End address

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

HRESULT hr = E_FAIL;
long lStartAddress;
long lEndAddress;

//calling HewTargetServer function
try
{
 hr = pHewServer1->GetCoverageRange2(&lStartAddress, &lEndAddress);
}

Description example (Visual Basic)

 Dim ret As Long
 Dim p_lStartAddress As Long 'In Visual Basic 2005, "As Long" will be replaced with "As Integer".
 Dim p_lEndAddress As Long 'In Visual Basic 2005, "As Long" will be replaced with "As Integer".

ret = hts.GetCoverageRange2(p_lStartAddress, p_lEndAddress)

195

SetCoverageDisable2

Description

Disables the coverage function.

Parameters

 There is no parameter.

Returned value
A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

HRESULT hr = E_FAIL;

//calling HewTargetServer function
try
{
 hr = pHewServer1->SetCoverageDisable2();
}

Description example (Visual Basic)

 Dim ret As Long

ret = hts.SetCoverageDisable2

196

SetCoverageEnable2

Description

Enables the coverage function.

Parameters

There is no parameter.

Returned value
A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

HRESULT hr = E_FAIL;

//calling HewTargetServer function
try
{
 hr = pHewServer1->SetCoverageEnable2();
}

Description example (Visual Basic)

 Dim ret As Long

ret = hts.SetCoverageEnable2

197

ClearCoverage2

Description

Clears the coverage information.

Parameters

There is no parameter.

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

HRESULT hr = E_FAIL;

//calling HewTargetServer function
try
{
 hr = pHewServer1->ClearCoverage2();
}

Description example (Visual Basic)

 Dim ret As Long

ret = hts.ClearCoverage2

198

GetCoverageStatus2

Description

Gets the coverage status information.

Parameters

Attribute Type Content
[out] long *p_lStatus Coverage status (1: Enabled or 0: Disabled)

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

HRESULT hr = E_FAIL;
long lStatus;

//calling HewTargetServer function
try
{
 hr = pHewServer1->GetCoverageStatus2(&lStatus);
}

Description example (Visual Basic)

 Dim ret As Long
 Dim p_lStatus As Long 'In Visual Basic 2005, "As Long" will be replaced with "As Integer".

ret = hts.GetCoverageStatus2(p_lStatus)

199

LoadCoverage2

Description

Loads the coverage information.

Parameters

Attribute Type Content
[in] BSTR _bstrLoadFileName File name

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

HRESULT hr = E_FAIL;
BSTR bstrLoadFileName;

//calling HewTargetServer function
try
{
 hr = pHewServer1->LoadCoverage2(bstrLoadFileName);
}

Description example (Visual Basic)

 Dim ret As Long
 Dim bstrLoadFileName As String

ret = hts.LoadCoverage2(bstrLoadFileName)

200

SaveCoverage2

Description

Saves the coverage information.

Parameters

Attribute Type Content
[in] BSTR _bstrSaveFileName File name

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

HRESULT hr = E_FAIL;
BSTR bstrSaveFileName;

//calling HewTargetServer function
try
{
 hr = pHewServer1->SaveCoverage2(bstrSaveFileName);
}

Description example (Visual Basic)

 Dim ret As Long
 Dim bstrSaveFileName As String

ret = hts.SaveCoverage2(bstrSaveFileName)

201

5.4.17 Others
GetErrorString2

Description

Gets an error message corresponding to a specified error number.

Parameters

Attribute Type Content
[in] long lError Error number
[out] BSTR *p_bstrError Error message

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

HRESULT hr = E_FAIL;
long lError;
BSTR bstrErr;

try
{

 hr = pHewServer1->GetErrorString2(lError, &bstrErr);
}

Description example (Visual Basic)

 Dim ret As Long
 Dim lError As Long
 Dim p_bstrErr As String

ret = hts.GetErrorString2(lError, p_bstrErr)

202

GetHewStatus2

Description

Gets the current High-performance Embedded Workshop status.

Parameters

Attribute Type Content
[out] long *p_lTargetReset Returns 1 when the target is reset or 0 otherwise*
[out] long *p_lTargetExecStatus Returns 1 when the user program is under execution or

0 otherwise
[out] long *p_lMemoryReset Returns 1 when memory contents are updated or 0

otherwise*
[out] long *p_lRegisterReset Returns 1 when register values are updated or 0

otherwise*
[out] long *p_lLInkStatus Returns 1 when the target is connected or 0 otherwise
[out] long *p_lPlatformInitialize Returns 1 after the target is initialized or 0 otherwise*
[out] long *p_lLoadingStatus Returns 1 after a program is loaded or 0 otherwise

 *: These flags are reset to 0 when this function is called.

Returned value

The returned value is 1 when the method was terminated successfully or 0 when there is error.

Description example (Visual C++)

HRESULT hr;
long lTargetReset;
long lTargetExecStatus;
long lMemoryReset;
long lRegisterReset;
long lLinkStatus;
long lPlatformInitialize;
long lLoadingStatus;

//calling HewTargetServer function
try
{

 hr = pHewServer1->GetHewStatus2(&lTargetReset, & lTargetExecStatus,
 &lMemoryReset,
 &lRegisterReset,
 &lLinkStatus,
 &lPlatformInitialize,
 &lLoadingStatus

);
}

203

Description example (Visual Basic 6.0)

 Dim ret As Long
 Dim p_lTargetReset As Long
 Dim p_lTargetExecStatus As Long
 Dim p_lMemoryReset As Long
 Dim p_lRegisterReset As Long
 Dim p_lLinkStatus As Long
 Dim p_lPlatformInitialize As Long
 Dim p_lLoadingStatus As Long

 ret = hts.GetHewStatus2(p_lTargetReset, p_lTargetExecStatus, p_lMemoryReset, _
p_lRegisterReset, p_lLinkStatus, p_lPlatformInitialize, p_lLoadingStatus)

Description example (Visual Basic 2005)

 Dim ret As Integer
 Dim p_iTargetReset As Integer
 Dim p_iTargetExecStatus As Integer
 Dim p_iMemoryReset As Integer
 Dim p_iRegisterReset As Integer
 Dim p_iLinkStatus As Integer
 Dim p_iPlatformInitialize As Integer
 Dim p_iLoadingStatus As Integer

 ret = hts.GetHewStatus2(p_iTargetReset, p_iTargetExecStatus, p_iMemoryReset, _
p_iRegisterReset, p_iLinkStatus, p_iPlatformInitialize, p_iLoadingStatus)

204

GetHewStatusEx2

Description

Gets the High-performance Embedded Workshop status information (on initiation, opening a
workspace, and build).

Parameters

Attribute Type Content
[out] long *p_lInvokeHew Initiation of the High-performance Embedded Workshop

(0: Not initiated or 1: Initiated)
[out] long *p_lOpenWorkspace Opening of a workspace (0: Not open or 1: Open)

Note: The acquired value can be 1 only when the HEW
is connected to the target. To check whether a
workspace is open, call GetWorkspaceDirectory
instead.

[out] long *p_lBuildProject Build (0: Build stopped or 1: Build being performed)

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

HRESULT hr = E_FAIL;
long lInvokeHew;
long lOpenWorkspace;
long lBuildProject;

//calling HewTargetServer function
try
{
 hr = pHewServer1->GetHewStatusEx2(&lInvokeHew, &lOpenWorkspace, &lBuildProject);
}

Description example (Visual Basic 6.0)

 Dim ret As Long
 Dim p_lInvokeHew As Long
 Dim p_lOpenWorkspace As Long
 Dim p_lBuildProject As Long

ret = hts.GetHewStatusEx2(p_lInvokeHew, p_lOpenWorkspace, p_lBuildProject)

Description example (Visual Basic 2005)

 Dim ret As Integer
 Dim p_iInvokeHew As Integer
 Dim p_iOpenWorkspace As Integer
 Dim p_iBuildProject As Integer

ret = hts.GetHewStatusEx2(p_iInvokeHew, p_iOpenWorkspace, p_iBuildProject)

205

GetTargetName2

Description

Gets the target name that is currently connected.

Parameters

Attribute Type Content
[out] BSTR* p_bstrName Target name

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

HRESULT hr = E_FAIL;
BSTR bstrName;

//calling HewTargetServer function
try
{

 //get target name
 hr = pHewServer1->GetTargetName2(&bstrName);

}

Description example (Visual Basic)

 Dim ret As Long
 Dim p_bstrName As String

ret = hts.GetTargetName2(p_bstrName)

206

GetHewVersion

Description

Gets the version number of the High-performance Embedded Workshop.

Parameters

Attribute Type Content
[out] BSTR*p_bstrHewVersion Version

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

HRESULT hr = E_FAIL;
CString strTmp = _T("");
BSTR bstrHewVersoin = strTmp.AllocSysString(); //CSTring -> BSTR Conversion
//Call HewTargetServer function
try
{

hr = pHewServer1->GetHewVersion(&bstrHewVersoin);
}

Description example (Visual Basic)

Dim ret As Long
Dim p_bstrHewVersion As String

ret = hts.GetHewVersion(p_bstrHewVersion)

207

Command

Description

Executes a High-performance Embedded Workshop command.

Parameters

Attribute Type Content
[out] BSTR _bstrCommandLine Command
[out] BSTR *p_bstrCommandMessage Message output by the command

Returned value

A value is returned in HRESULT type. The returned value is 0 when the function was successfully
executed or other than 0 (e.g., E_FAIL (0x80004005L)) when an error occurred.

Description example (Visual C++)

HRESULT hr = E_FAIL;
BSTR bstrCommandLine= m_Command.AllocSysString();
CString strTmp = _T("");
BSTR bstrCommandMessage = strTmp.AllocSysString();
//Call HewTargetServer function
try
{
hr = pHewServer1->Command(bstrCommandLine, &bstrCommandMessage);
}

Description example (Visual Basic)

Dim ret As Long
Dim bstrCommandLine As String
Dim p_bstrCommandMessage As String

ret = hts.Command(bstrCommandLine, p_bstrCommandMessage)

Precautions

(1) The Log command is not specifiable.
(2) In the edit mode of the Assemble command*, the High-performance Embedded Workshop

does not automatically show the address of memory data to be assembled.
*Note: Support for this command depends on the debugger.

(3) The response in command execution using this feature will be slower than that in the
Command Line window of the High-performance Embedded Workshop.

208

209

5.5 Events Acquirable in the High-performance Embedded Workshop

Type of event Event issuance timing
Event1_ToClient_TargetReset Issued when the target is reset
Event2_ToClient_Go Issued when the target program is run
Event3_ToClient_Stop Issued when the target program is halted

Event4_ToClient_MemoryReset
Issued when memory contents are updated
through the HEW (e.g. by the SetMemory2
method, command line, or via the [Memory]
window)

Event5_ToClient_RegisterReset
Issued when registers are updated through the
HEW (e.g. by the SetPCAddress2 method,
command line, or via the [Register] window)

Event6_ToClient_LinkUp Issued when the target is up-linked
Event7_ToClient_LinkDown Issued when the target is down-linked
Event8_ToClient_PlatformInitialize Issued when the platform is initialized
Event9_ToClient_Download Issued when a program is downloaded
Event10_ToClient_Unload Issued when a program is unloaded

Event11_ToClient_HewInvoke Issued at initiation of the High-performance
Embedded Workshop

Event12_ToClient_WorkspaceOpen

Issued when a workspace is opened
Note: This event is actually issued when the
HEW is connected to the target. Make a
workspace setting that allows the HEW to be
connected to the target as soon as the
workspace is opened.

Event13_ToClient_ProjectBuild Issued at the build of a project

 Note:

Events are not issued every time. For details, see "Note on acquisition of generated events" in secrion 4

Revision Record

Description Rev. Date Page Summary
1.00 Jun. 20, 2006 - First Edition issued
2.00 Jul. 21, 2006 - Added descriptions of the new methods
3.00 Oct. 20, 2006 20, 24 Modified the description of GetMemory() and GetDirectMemory()

4.00 Oct. 19, 2007 -
13

Added descriptions of the new methods and a note on a shift to Visual
Basic .NET

5.00 Nov. 05, 2008 - Added descriptions of Visual C++/Visual Basic 2005 and the new
methods

6.00 Apr. 20, 2009 -
Updated the description example of SetMemory2()
Updated the description of parameter FileName
Removed the precautions on InvokeHew(WithNoDialog)

7.00 Jul. 01, 2010 - Inserted a note on old company names and revised "Notice"
8.00 Nov. 01, 2010 - Added notes on GetHewStatusEx2() and event WorkspaceOpen

HewTargetServer
User’s Manual

Publication Date: Nov 01, 2010 Rev.8.00

Published by: Renesas Electronics Corporation

Edited by: Microcomputer Tool Development Department 1
Renesas Solutions Corp.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-65030, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898
Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044
Renesas Electronics Taiwan Co., Ltd.
7F, No. 363 Fu Shing North Road Taipei, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632
Tel: +65-6213-0200, Fax: +65-6278-8001
Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics Korea Co., Ltd.
11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2010 Renesas Electronics Corporation and Renesas Solutions Corp. All rights reserved.
Colophon 1.0

R20UT0374EJ0800

HewTargetServer
User’s Manual

	1. Abstract
	1.1 Development Tools Used
	1.2 Methods To Be Called

	2. Preparing for Use of the HEW Target Server (COM)
	2.1 Registering the HEW Target Server (COM)
	2.1.1 Registering EcxHewTargetServer.dll
	2.1.2 Registering HewTargetServer.exe in Your Registry

	3. Using the HEW Target Server (COM)
	3.1 Sample Program
	3.2 Creating a Program (Visual C++)
	3.2.1 Generating a Project
	3.2.2 Creating Buttons
	3.2.3 Creating Source Code

	3.3 Creating a Program (Visual C++ 2005)
	3.3.1 Generating a Project
	3.3.2 Creating Buttons
	3.3.3 Creating Source Code

	3.4 Creating a Program (Visual Basic 6.0)
	3.4.1 Generating project
	3.4.2 Specification of Type Library
	3.4.3 Generating Object
	3.4.4 Method Access

	3.5 Creating a Program (Visual Basic 2005)
	3.5.1 Generating project
	3.5.2 Specification of Type Library
	3.5.3 Generating Object
	3.5.4 Method Access

	3.6 Note on a Shift from Visual Basic 6.0 to Visual Basic .NET

	4. Event Acquisition from the High-performance Embedded Workshop
	4.1 Visual C++ Event Acquisition
	4.2 Visual Basic Event Acquisition

	5. Method List
	5.1 Method Outline (for only VC++)
	5.1.1 CPU Control
	5.1.2 Register
	5.1.3 Memory
	5.1.4 Software Breaks
	5.1.5 Variable Break
	5.1.6 Variable Trace
	5.1.7 Interrupt Condition
	5.1.8 Symbol
	5.1.9 Downloads
	5.1.10 Start/Stop
	5.1.11 Workspace
	5.1.12 Configuration and session
	5.1.13 Project
	5.1.14 Build
	5.1.15 Files
	5.1.16 Coverage
	5.1.17 Others

	5.2 Method Outline (for VB, VC++)
	5.2.1 CPU Control
	5.2.2 Register
	5.2.3 Memory
	5.2.4 Software Breaks
	5.2.5 Variable Break
	5.2.6 Variable Trace
	5.2.7 Interrupt Condition
	5.2.8 Symbol
	5.2.9 Downloads
	5.2.10 Start/Stop
	5.2.11 Workspace
	5.2.12 Configuration and session
	5.2.13 Project
	5.2.14 Build
	5.2.15 Files
	5.2.16 Coverage
	5.2.17 Others

	5.3 Method Details (for only VC++)
	5.3.1 CPU Control
	5.3.2 Register
	5.3.3 Memory
	5.3.4 Software Breaks
	5.3.5 Variable Break
	5.3.6 Variable Trace
	5.3.7 Interrupt Condition
	5.3.8 Symbol
	5.3.9 Downloads
	5.3.10 Start/Stop
	5.3.11 Workspace
	5.3.12 Configuration and session
	5.3.13 Project
	5.3.14 Build
	5.3.15 Files
	5.3.16 Coverage
	5.3.17 Others

	5.4 Method Details (for VB, VC++)
	5.4.1 CPU Control
	5.4.2 Register
	5.4.3 Memory
	5.4.4 Software Breaks
	5.4.5 Variable Break
	5.4.6 Variable Trace
	5.4.7 Interrupt Condition
	5.4.8 Symbol
	5.4.9 Downloads
	5.4.10 Start/Stop
	5.4.11 Workspace
	5.4.12 Configuration and session
	5.4.13 Project
	5.4.14 Build
	5.4.15 Files
	5.4.16 Coverage
	5.4.17 Others

	5.5 Events Acquirable in the High-performance Embedded Workshop

