
Tool News

RENESAS TOOL NEWS on September 1, 2007: 070901/tn4

Notes on Using the C/C++ Compiler Package V.4 through
V.6 for the H8SX, H8S, and H8 Families of MCUs

Please take note of the eight problems described below in using the C/C++ compiler package for
the H8SX, H8S, and H8 families of MCUs.

1. Product and Versions Concerned
 C/C++ compiler package for the H8SX, H8S, and H8 families
 V.4.0 through V.6.01 Release 03

2. Problems
2.1 With Casting Addresses to Be Referenced to the Volatile-Qualified
 Pointer Type (H8C-0069)

 Versions Concerned:
 V.6.00 Release 00 through V.6.00 Release 03,
 V.6.01 Release 00 through V.6.01 Release 03
 Symptom:
 If the referenced address of a variable is cast to the volatile-
 qualified pointer type, the access to the variable may be removed.

 Conditions:
 This problem may occur if the following conditions are all satisfied:
 (1) As a CPU option, 2000N, 2000A, 2600N, 2600A, H8SXN, H8SXM, H8SXA,
 H8SXX, or AE5 is selected (for example, -cpu=2000n typed in the
 command line).
 However, if the Ver.4.0 Optimization Technology Generation option
 is selected (-legacy=v4 typed in the command line), or the product
 of V.6.00 is used, 2000N, 2000A, 2600N, and 2600A are not involved
 in this problem.
 (2) Optimization is used (-optimize=1 is typed in the command line;
 this option is valid by default).
 (3) A local variable of any type except structure exists, and the

 address of the variable is referenced.
 (4) In the program exist two or more assignment expressions in each
 of which the referenced address of the variable in (3) is cast
 to *(volatile *). Here, is the same as the type of
 the variable in (3).

 Example:
 --
 void main(void){
 int X;
 *(volatile int *)(&X) = 0; /* Conditions (3) and (4) */
 *(volatile int *)(&X) = 0; /* Conditions (3) and (4) */
 }
 --
 _main:
 RTS ; No code of assignment expression generated.
 ;
 --

 Workarounds:
 Avoid this problem in any of the following methods:
 (1) Use no optimization (type -optimize=0 in the command line).
 (2) Apply the #pragma option nooptimize directive to the function
 involved.
 (3) Replace the local variable in Condition (3) with a member of
 a structure, and reference the address of the structure
 instead of referencing that of the local variable.
 Example Method (3) used:
 --
 struct {
 int X;
 } A;
 *(volatile int *)(&A) = 0;
 --

2.2 With Using include Function tas (H8C-0070)
 Versions Concerned:
 V.6.01 Release 00 through V.6.01 Release 03
 Symptom:
 Include function tas may incorrectly be performed.
 Conditions:
 This problem may occur if the following conditions are all satisfied:
 (1) As a CPU option, 2000N, 2000A, 2600N, or 2600A, is selected

 (for example, -cpu=2000n typed in the command line).
 (2) The Ver.4.0 Optimization Technology Generation option is not
 selected (-legacy=v4 not typed in the command line).
 (3) Include function tas() is used.

 Example:
 --
 #include <machine.h>
 void test(long a, long b, char *p)
 {
 .

 tas(p); /* Condition (3) */
 .
 }
 --
 _test:
 .
 TAS @ER2 ; Register that cannot use TAS is
 ; assigned to it.
 .
 RTS
 --

 Workarounds:
 Avoid this problem in either of the following methods:
 (1) Use the Ver.4.0 Optimization Technology Generation option
 (type -legacy=v4 in the command line).
 (2) Assign the register that can use the TAS instruction to it
 using the __asm keyword.

 Example Method (2) used:
 --
 void test(long a, long b, char *p)
 {
 __asm {
 MOV.L @(p,sp), ER4
 TAS @ER4
 }
 }
 --

 (3) Issue #pragma inline_asm; then use the TAS instruction.

 Example Method (3) used:
 --
 #pragma inline_asm tas2
 static void tas2(char *p)
 {
 TAS @ER0
 }
 void test(long a, long b, char *p)
 {
 tas2(p); // Assembly function specified by #pragma inline_asm

 }
 --

2.3 With Initial Values of Variables when the Inter-file inline expansion
 Option Used (H8C-0071)
 Versions Concerned:
 V.6.01 Release 00 through V.6.01 Release 03
 Symptom:
 When the definition of a variable exist in a file specified by the
 Inter-file inline expansion option, and if the variable is used as an
 initial value of another variable, the initial value may not be set.
 Conditions:
 This problem may occur if the following conditions are all satisfied:
 (1) As a CPU option, 2000N, 2000A, 2600N, 2600A, H8SXN, H8SXM, H8SXA,
 H8SXX, or AE5 is selected (for example, -cpu=2000n typed in the
 command line).
 However, if the Ver.4.0 Optimization Technology Generation option
 is selected (-legacy=v4 typed in the command line), 2000N, 2000A,
 2600N, and 2600A are not involved in this problem.
 (2) The Inter-file inline expansion option is selected (-file_inline
 typed in the command line).
 (3) A global variable is used as the initial value of another.
 (4) The global variable used as the initial value in (3) is
 declared to be extern.
 (5) The global variable in (4) is defined in the file specified by
 the Inter-file inline expansion option and used only as the initial
 value in (3).

 Example:
 --
 <test1.c>

 extern int aa; /* Condition (4) */
 const int *a = &aa; /* Conditions (3) and (5) */
 <test2.c>
 int aa; /* Condition (5) */

 <Command line>
 ch38 -cpu=2600n -file_inline=test2.c test1.c
 --
 .EXPORT _a
 .SECTION D,DATA,ALIGN=2
 _a: ; static: a
 .DATA.L _aa ; Instruction controlling import of symbol aa
 ; not generated.
 .END
 --

 Workarounds:
 Avoid this problem in either of the following methods:
 (1) Define a global variable in the same file in which it is used as
 the initial value of another.

 Modification of the above example:
 <test1.c>
 int aa;
 const int *a = &aa;
 (2) Do not use the Inter-file inline expansion option (do not type
 -file_inline in the command line).

2.4 With Referencing Members of a Structure in the Inside and Outside
 of __asm{ } (H8C-0072)
 Versions Concerned:
 V.6.00 Release 00 through V.6.00 Release 03,
 V.6.01 Release 00 through V.6.01 Release 03
 Symptom:
 If a local variable or argument of a structure type is declared, and
 members of the structure are referenced in the inside and outside
 of __asm{ }, incorrect addresses may be accessed for the members
 referenced in the outside of __asm{ }.

 Conditions:
 This problem may occur if the following conditions are all satisfied:
 (1) As a CPU option, 2000N, 2000A, 2600N, 2600A, H8SXN, H8SXM, H8SXA,
 H8SXX, or AE5 is selected (for example, -cpu=2000n typed in the

 command line).
 (2) Optimization is used (-optimize=1 is typed in the command line;
 this option is valid by default).
 (3) The Ver.4.0 Optimization Technology Generation option is not
 selected (-legacy=v4 not typed in the command line).
 (4) A function containing __asm{ } is defined.
 (5) A structure-type local variable is defined, or a structure-type
 argument is declared in the function in (4).
 (6) The structure-type local variable in (5) is not saved at the top
 of the stack used by the function in (4).
 (7) Any member of the structure in (5) is referenced in the inside of
 __asm{ }.
 (8) Any member of the structure-type local variable including the
 member referenced in (7) is referenced in the outside of __asm{ }.

 Example:
 --
 struct st{
 long a;

 long b;
 };
 long func(){
 long l; /* Top of stack */

 struct st str2 = {1L,2L};

 __asm{ /* Condition (4) */
 mov.l @(str2.a :32, sp) , ER0 /* Condition (7) */
 mov.l ER0, @(l:32,sp)
 }
 return l+str2.b; /* Condition (8) */

 }
 --
 _func:
 PUSH.L ER2
 SUB.W #H'000C:16,R7
 MOV.L SP,ER1
 ADDS.L #4,ER1
 MOV.L #L28,ER0
 SUB.L ER2,ER2
 MOV.B #8:8,R2L

 JSR @MVN3:24
 MOV.L @(4:32,SP),ER0
 MOV.L ER0,@(0:32,SP)
 MOV.L @SP,ER0
 MOV.L @(4:16,SP),ER1 ; Incorrect area referenced.
 ; Should be MOV.L @(8:16,SP),ER1
 ADD.L ER1,ER0
 ADD.W #H'000C:16,R7
 POP.L ER2
 RTS

 --

 Workarounds:
 Avoid this problem in any of the following methods:
 (1) Use no optimization (type -optimize=0 in the command line).
 (2) Apply the #pragma option nooptimize directive to the function
 involved.
 (3) Assign the value of a member referenced in the inside of __asm{ }
 to a variable in the outside of __asm{ }; then reference the
 variable in the inside of __asm{ }.
 Example Method (3) used:
 --
 }
 struct st{
 long a;
 long b;
 };
 long func(){
 long l;
 struct st str2 = {1L,2L};
 long ll = 0; /* Variable to which assignment made */
 ll = str2.a; /* Assignment made outside __asm{ } */
 __asm{
 mov.l @(ll, sp) , ER0 ; Value of variable to which
 ; assignment made outside
 ; __asm{ } is referenced.
 mov.l ER0, @(l:32,sp)
 }
 str.a = ll;
 return l+str2.b;
 }
 --

2.5 With Initializing an Array Having 0x8000 or More Elements in a Class
 of C++ (H8C-0073)
 Versions Concerned:
 V.4.0 through V.4.0.09
 V.5.0 through V.5.0.06
 V.6.00 Release 00 through V.6.00 Release 03
 V.6.01 Release 00 through V.6.01 Release 03
 Symptom:
 If an array consisting of 0x8000 or more elements is specified
 in a class having a constructor of C++, some elements of the array
 cannot be initialized by the constructor.
 Conditions:
 This problem occurs if the following conditions are all satisfied:
 (1) As a CPU option, 300HA, 2000A, 2600A, H8SXA, H8SXX, or AE5 is
 selected (for example, -cpu=300ha typed in the command line).
 (2) A class having a constructor is defined.
 (3) A class-type array consisting of 0x8000 or more elements is
 defined.
 (4) Either of the following warning messages is dispatched during
 compilation:
 (a) C5068 (W) Integer conversion resulted in a change of sign
 (b) C5069 (W) Integer conversion resulted in truncation

 Example:
 --
 class C {
 public:
 C(); /* Condition (2) */
 };
 C c[0x8000]; /* Condition (3) */
 --

 Workaround:
 To avoid this problem, use a template of class to initialize
 the elements in units of 0x7FFF or less.
 Example:
 --
 class C {
 public:
 C();
 };
 template<class T>

 class Array32K {
 T a1[0x4000];
 T a2[0x4000];
 public:
 T& operator [] (size_t i)
 {
 if (i < 0x4000)
 return a1[i];
 else
 return a2[i - 0x4000];
 }
 };
 Array32K<C> c; // Equivalent to C c[0x8000];
 --

2.6 With Using a Function Containing Two or More Expressions Dealing
 with a Constant (H8C-0074)

 Version Concerned:
 V.6.01 Release 03
 Symptom:
 If two or more expressions dealing with a constant exist in a function,
 the program may not properly be executed.
 Conditions:
 This problem may occur if the following conditions are all satisfied:
 (1) Optimization is used (-optimize=1 is typed in the command line;
 this option is valid by default).
 (2) In a function exist two or more expressions meeting either of
 the following conditions:
 (a) These expressions contain a 4-byte constant each, and the
 value of the upper or lower 2 bytes or more of a constant is
 the same as that of the others.
 (b) These expressions contain a 2-byte constant each, and the
 value of the 2 bytes or the upper or lower byte of a constant
 is the same as that of the others.

 Example:
 --
 //-cpu=2600a -legacy=v4 -sp
 long g;
 f1()
 {
 g = (long)0x07FFFE01; /* Condition (2) */

 if(g != (long)0x07FFFE01){ /* Condition (2) */
 printf("g=%08lX : ", (unsigned long)g); return(FALSE);
 }
 return(TRUE);
 }
 --
 MOV.L #134217217,ER0
 MOV.L ER0,@_g:32
 SUB.B R0H,R0H ; These outputted in error.
 RTS
 MOV.L #134217217,ER0
 MOV.L ER0,@_g:32
 SUB.B R0H,R0H
 BNE L23:8
 .
 --

 Workarounds:
 Avoid this problem in either of the following methods:
 (1) Use no optimization (type -optimize=0 in the command line).
 (2) Apply the #pragma option nooptimize directive to the function
 involved.

2.7 With Using Functions Returning Values of Type Structure, Union,
 or Class (H8C-0075)
 Versions Concerned:
 V.6.01 Release 02 through V.6.01 Release 03
 Symptom:
 Functions that return values of type structure, union, or class
 may not properly be performed.
 Conditions:
 This problem may occur if the following conditions are all satisfied:
 (1) As a CPU option, 2000N, 2000A, 2600N, or 2600A, is selected
 (for example, -cpu=2000n typed in the command line).
 (2) The Ver.4.0 Optimization Technology Generation option is
 selected (-legacy=v4 typed in the command line).
 (3) No optimization is used (-optimize=0 is typed in the command line).
 (4) The return value of a function is of type structure, union, or
 class.

 Example:
 --
 struct Test {

 char cc[2];
 } test;

 struct Test func(void) {
 struct Test a;
 a.cc[0] = 1;
 return(a); /* Condition (4) */
 }
 --
 _func:
 PUSH.L ER6
 MOV.L SP,ER6
 PUSH.L ER2
 SUBS #2,SP
 MOV.B #1:8,R0L
 MOV.B R0L,@(-6:16,ER6)
 MOV.L ER6,ER0
 ADD.W #H'FFFA:16,R0
 MOV.L @(4:16,ER6),ER1 ; Incorrect area referenced.
 ; Should be MOV.L @(8:16,ER6),ER1
 MOV.L #2:32,ER2
 JSR @MVN3:24
 BRA P_0000002A:8
 P_0000002a:
 ADDS #2,SP
 POP.L ER2
 POP.L ER6
 RTS
 --

 Workarounds:
 Avoid this problem in any of the following methods:
 (1) Use optimization (type -optimize=1 in the command line;
 this option is valid by default).
 (2) Apply the #pragma option optimize directive to the function
 involved.
 (3) Use the option "Register Allocation of Structure Parameters"
 (type -structreg in the command line) if the return value is
 4 bytes or less in size.
 (4) Pass the return value using a pointer.
 Example Method (4) used:
 --
 struct Test {

 char cc[2];
 } test;

 struct Test* func(void) {
 struct Test a;
 a.cc[0] = 1;
 return(&a);
 }
 --

2.8 With Using a Structure or Union Type of 3 Bytes in Size (H8C-0076)
 Versions Concerned:
 V.4.0 through V.4.0.09
 V.5.0 through V.5.0.06
 V.6.00 Release 00 through V.6.00 Release 03
 V.6.01 Release 00 through V.6.01 Release 03
 Symptom:
 Using a structure- or union-type variable of 3 bytes in size as
 an argument/parameter of a function may cause incorrect results.

 Conditions:
 This problem may occur if the following conditions are all satisfied:
 (1) As a CPU option, 300HN, 300HA, 2000N, 2000A, 2600N, or 2600A is
 selected (for example, -cpu=300hn typed in the command line).
 Or When 2000N, 2000A, 2600N, or 2600A is selected in V.6.01,
 the Ver.4.0 Optimization Technology Generation option is selected
 (-legacy=v4 typed in the command line) at the same time.
 (2) The option "Register Allocation of Structure Parameters"
 (-structreg typed in the command line) is selected.
 (3) Declared is a structure- or union-type variable that is 3 bytes
 in size and has a boundary adjustment of 1.
 (4) A function takes the structure- or union-type variable in (3)
 as an argument.
 (5) Any register except (E)R0 is assigned to the argument in (4).
 (6) The address of the argument in (4) is referenced within the
 function in (4).

 Example:
 --
 struct tmp1 { /* Condition (3) */
 char ta;
 char ts;
 char tt;

 };
 char c;
 void func(char a1, struct tmp1 pa) { /* Conditions (4) and (5) */
 a1++;
 pa.ts++;
 do {
 c=f2(&a1);
 c=f2(&pa.ta); /* Condition (6) */
 } while(c);
 }
 --
 _func:
 PUSH.L ER6
 SUBS #4,SP
 MOV.B R0L,@(3:16,SP)
 MOV.L ER1,@SP ; This 4-byte transfer instruction
 ; corrupts the result obtained by
 ; the preceding one.
 MOV.L #_C:32,ER6
 MOV.B @(3:16,SP),R0L
 INC.B R0L
 .
 --

 Workarounds:
 Avoid this problem in any of the following methods:
 (1) Do not use the option "Register Allocation of Structure Parameters"
 (do not type -structreg in the command line).
 (2) Use a structure or union whose size is 4 bytes.
 (3) Change the order of the arguments of the function so that
 the (E)R0 register can be assigned to the structure- or union-
 type argument.
 Example Method (3) used:
 --
 void func(struct tmp1 pa, char a1){
 a1++;
 pa.ts++;
 do {
 c=f2(&a1);
 c=f2(&pa.ta);
 } while(c);
 }
 --

3. Schedule of Fixing the Problems
 We plan to fix these problems in the product of V.6.02 Release 00
 will be released on September 5.

[Disclaimer]
The past news contents have been based on information at the time of publication. Now changed or invalid information may be
included. The URLs in the Tool News also may be subject to change or become invalid without prior notice.

© 2010-2016 Renesas Electronics Corporation. All rights reserved.

