
Tool News

RENESAS TOOL NEWS on May 22, 2006: RSO-H8C-060522D

Notes on Using the C/C++ Compiler Packages
for the H8SX, H8S, and H8 MCU Families

Please take note of the sixteen problems described below in using the C/C++ compiler packages
V.4 through V.6 for the H8SX, H8S, and H8 MCU families.

1. Products and Versions Concerned
C/C++ compiler packages V.4 through V.6.01 Release 01

- V.4 (Windows, Solaris, and HP-UX edition)
- V.5 (Windows edition)
- V.6 (Windows, Solaris, and HP-UX edition)

2. Problems
2.1 On Referencing Variables No. 1 (H8C-0028)

Version Concerned:
V.6.00 Release 00 through V.6.01 Release 01

Description:
If you load the address of a variable into a register, its
lowermost 1 or 2 bytes only are loaded. So an incorrect
address will be referenced.

Conditions:
This problem may occur if the following conditions are all
satisfied:
(1) Any of the CPU options H8SXN, H8SXM, H8SXA,

H8SXX, and AE5 is selected (for example, -
cpu=h8sxn).

(2) The -optimize=1 optimizing option is selected.

(3) Either the conditions described in (3-1) or those

in (3-2) below are satisfied:

(3-1)
 (a) Two or more MOV.sz #const, ERn or
SUB.sz ERn,ERn
 instructions are used.
 (b) The size sz in (a) is of word or long word.
 (c) The uppermost 1 or 2 bytes; or the
lowermost 1 or 2 bytes
 of the two or more instructions in (a) are
the same as each
 other in a register.
(3-2)
 (a) Between two MOV instructions is placed
an instruction
 that uses the effective address (EA) of
post-increment
 @ERn+, post-decrement @ERn-, pre-
increment @+ERn, or
 pre-decrement @-ERn.
 (b) The register into which the effective
address in (a) is
 loaded is the same as the register
designated by the
 destination operands of the two MOV
instructions.

Example of C Source Program:
--

 struct A {

 union {
 unsigned char c1;
 struct {
 unsigned char DS:1;
 unsigned char CS:1;
 unsigned char BS:1;

 }UN2;
 }UN1;
 };

 #define PTRA (*(volatile struct
A*)0xFFF200)
 void f(){

 PTRA.UN1.UN2.DS = 0x00; //(A)

 PTRA.UN1.UN2.BS = ...;

 PTRA.UN1.UN2.DS = 0x01; //(B)
 }
--

Code Generated:
--

 _f

 MOV.L #H'00FFF211,ER0 ; Condition (3-1)
 ; Address of code p-
>UN1.UN2.DS loaded
 ; (Generated code from (A) in
Example)
 MOV.B #1:8,R1L

 MOV.B R3L,R0L
 EXTU.L #2,ER0 ; ER0 is set to another
value
 MOV.L ER0,ER4

 MOV.W #H'F211:16,R0 ; Condition (3-1);
 ; Lower 2 bytes of address
loaded
 ; (Generated code from (B) in
Example)
 BSET.B #7,@ER0
--

Workarounds:
This problem can be circumvented any of the following
ways:
(1) Use the #pragma option nooptimize directive in

order not to optimize every function in which this
problem occurs.

(2) Define a dummy function in another file and
make the function call to it immediately before
the C statement from which an incorrect code is
generated. (This method is effective only when
the -goptimize Inter-module optimization
information is selected.)

Example:
 void f(){

 PTRA.UN2.DS = 0x00; // (A)

 PTRA.UN4.BS = ...;

 dummy(); // dummy() defined in another file
 PTRA.UN2.DS = 0x01; // (B)
 }

(3) Use the -optimize=0 optimizing option (this
performs no optimizations).

2.2 On Referencing Members of a Structure or Union
Whose Size Is 4 Bytes or Less (H8C-0029)
Version Concerned:
V.6.01 Release 01

Description:
If members of a structure or union whose size is 4 bytes
or less are referenced, incorrect results will be obtained,
and if these members are used as operands of
operations, no operations will be performed.

Conditions:
This problem may occur if the following conditions are all
satisfied:
(1) Any of the CPU options 2000N, 2000A, 2600N,

2600A, H8SXN, H8SXM, H8SXA, H8SXX, and AE5
is selected (for example, -cpu=2000n). Note that
if the -legacy=v4 Compatibility of output object

code option is used, 2000N, 2000A, 2600N, and
2600A options are not involved.

(2) A structure or union whose size is 4 bytes or less
is defined and declared.

(3) The structure or union in (2) includes a member
whose size is different from that of the structure
or union.

(4) The structure or union in (2) is not qualified to be
volatile.

(5) The objects of the structure or union type in (2)
are assigned to a register or passed as
arguments to functions using the -structreg
Allocating structure parameter or return value to
register option.

Example of C Source Program:
--
 void main(){
 union tag_UNION { // Conditions (2) and (4)
 signed int m_si ; // Condition (3)
 signed char m_sc ;
 unsigned short m_us ;
 long m_sl ;
 } union_data ;
 union_data.m_si = 0;
 union_data.m_us = 0;

 union_data.m_si = union_data.m_us;
 printf(": %u \n",union_data.m_us);
 union_data.m_us -= 9952; // (A)
 printf(": %u \n",union_data.m_us);// Condition (5)
 }
--
Code Generated:
--

 mov.l #_printf:32,er3
 jsr @er3

 ; Operation in (A) in Example not performed
 mov.l #C_00000018:32,er0
 mov.l er0,@sp

 mov.l @(6:16,sp),er2
 mov.w e2,@(4:16,sp)
 jsr @er3
 mov.l er2,er0
 mov.b #h'0f:8,r1l
--

Workarounds:
This problem can be circumvented either of the following
ways:
(1) Qualify the structure or union involved to be

volatile.

(2) Make the size of the structure or union involved
greater than 4 bytes.

2.3 On Referencing Variables No. 2 (H8C-0030)
Versions Concerned:
V.6.01 Release 00 through V.6.01 Release 01

Description:
If any variable is referenced, an incorrect displacement
of 2 bits wide is generated.

Conditions:
This problem occurs if the following conditions are all
satisfied.
(1) Any of the CPU options H8SXN, H8SXM, H8SXA,

H8SXX, and AE5 is selected.

(2) The -optimize=1 optimizing option is selected.

(3) The destination of transferring an operand of the
MOV instruction or storing operational results is
"@(symbol,ERn)" or "@(symbol+constant,ERn)".

Example:
--
 typedef struct {
 char *c1;
 char *c2;
 }ST;

 ST st1[3];

 void func(long l1,long l2){
 ST st2[5];
 st1[l1].c2 = st2[l2].c2;
 }
--
Code Generated:
--
 _func:
 sub.w #h'0028:16,r7
 shll.l #3:5,er1
 add.l sp,er1
 shll.l #3:5,er0
 mov.l @(4:16,er1),@(_st1+4:2,er0) ; Condition (3)
 ; "@(_st1+4:2,er0)" must be "@(_st1+4:32,er0)"
 add.w #h'0028:16,r7
 rts
--

Workarounds:
This problem can be circumvented any of the following
ways:
(1) Use the #pragma option nooptimize directive in

order not to optimize every function in which this
problem occurs.

(2) Assign the variable to be referenced to a volatile-
qualified variable; then use it for assignments or
operations.

Example:
 typedef struct {

 char *c1;
 char *c2;
 }ST;

 ST st1[3];
 volatile char *dummy;

 void func(long l1,long l2){
 ST st2[5];
 dummy = st2[l2].c2; // Variable is
assigned to volatile-

 // qualified variable; then
assignments
 st1[l1].c2 = dummy; // or operations
performed
 }

(3) Use the -optimize=0 optimizing option (this
performs no optimizations).

2.4 On Assigning a Constant to a Member of a Bit Field
(H8C-0031)
Versions Concerned:
V.6.00 Release 00 through 6.01 Release 01

Description:
If any constant is assigned to a member of a bit field,
the constant is only ORed with the bits of the member
without clearing them.

Conditions:
This problem may occur if the following conditions are all
satisfied:
(1) Either Condition (A) or Condition (B) below is

satisfied.

(A) When V.6.00 used:
 Any of the CPU options H8SXN, H8SXM,
H8SXA, and H8SXX is
 selected.
(B) When V.6.01 used:
 Any of the CPU options 2000N, 2000A, 2600N,
2600A, H8SXN,
 H8SXM, H8SXA, H8SXX, and AE5 is selected.
 Note that if the -legacy=v4 Compatibility of
output object
 code option is used, 2000N, 2000A, 2600N,
and 2600A options
 are not involved.

(2) A structure or union is declared which has bit
field members of type unsigned long or signed

long.

(3) The bit sizes of the bit field members in (2) are
within a range of 3 through 31.

(4) One of the bit field members in (2) extends over
the 15th and 16th bit.

(5) To the bit field member in (4) is assigned a
constant given by the value "-(2**(a bit size
within the range in (3)) - 1)".
Here ** denotes a power.

Example:
 --
 struct st{ // Condition (2)
 long l1:14;

 long l2:3; // Conditions (3) and (4)
 }st1 = { 0, 2 };

 void main(void){
 st1.l2 = -7; // Condition (5)
 }
 --
Code Generated:
 --
 _main:
 mov.l @_st1:32,er1
 or.l #h'00008000:32,er1 ; st1.l2 not cleared to 0 and
ORed with -7
 mov.l er1,@_st1:32

 --

Workaround:
To circumvent this problem, assign the constant involved
to a volatile-qualified variable; then assign this variable
to a bit field member.

Example:
struct st{
 long l1:14;
 long l2:3;
}st1 = { 0, 2 };

volatile long l;
void main(void){
 l = -7; // Assign constant to volatile-qualified
 st1.l2 = l; // variable; then use it
}

2.5 On Using a Union Containing Two or More Members
of the Same Structure or Union Type (H8C-0032)
Versions Concerned:
V.6.00 Release 00 through V.6.01 Release 01

Description:
In a union containing two or more members of the same
structure or union type, these members are referenced
using an incorrect offset value from the top of the union
to them.

Conditions:
This problem may occur if the following conditions are all
satisfied:
(1) Either Condition (A) or Condition (B) below is

satisfied.

(A) When V.6.00 used:
 Any of the CPU options H8SXN, H8SXM,
H8SXA, and H8SXX is
 selected.
(B) When V.6.01 used:
 Any of the CPU options 2000N, 2000A, 2600N,
2600A, H8SXN,
 H8SXM, H8SXA, H8SXX, and AE5 is selected.
 Note that if the -legacy=v4 Compatibility of
output object code
 option is used, 2000N, 2000A, 2600N, and
2600A options are not
 involved.

(2) A union type is used.

(3) The union in (2) contains a member of a
structure or union type.

(4) The union in (2) contains another member of the
same structure or union type as the member in
(3).

(5) The offset values from the top of the union to the
members in (3) and (4) are the same as each
other.

(6) In the members in (3) and (4), the member
declared secondly or later is defined or
referenced.

Example of C Source Program:
 --
 typedef struct {
 unsigned int x;
 } ST;
 typedef union { // Conditions (2) and (3)
 struct {
 unsigned char a;
 ST s2[1];
 } st1; // Condition (4)
 struct { // Condition (5)
 unsigned char c;
 ST s3;
 } st2; // Condition (4)
 } UN;
 void func(){
 volatile int a=0;
 UN u;
 f(u.st2.s3.x); // Condition (6)
 }
 --

Workaround:
To circumvent this problem, define a structure or union
type with another name though the names of its
members are the same as those of the members
involved; then make the typedef declarations of the
structure- or union-type members involved with
different names from their originals.

Example:
 typedef struct {
 unsigned int x;

 } ST;
 typedef struct {
 unsigned int x;
 } ST1;
 typedef union {
 struct {
 unsigned char a;
 ST s2[1];
 } st1;
 struct {
 unsigned char c;
 ST1 s3;
 } st2;
 } UN;

2.6 On Dividing the Product of an Expression and an
Integer Constant by the Same Integer Constant
(H8C-0033)
Versions Concerned:
V.6.00 Release 00 through V.6.01 Release 01

Description:
Dividing the product of an expression and an integer
constant by the same integer constant brings an
incorrect result.

Conditions:
This problem may occur if the following conditions are all
satisfied:
(1) Either Condition (A) or Condition (B) below is

satisfied.

(A) When V.6.00 used:
 Any of the CPU options H8SXN, H8SXM,
H8SXA, and H8SXX is
 selected.
(B) When V.6.01 used:
 Any of the CPU options 2000N, 2000A, 2600N,
2600A, H8SXN,
 H8SXM, H8SXA, H8SXX, and AE5 is selected.
 Note that if the -legacy=v4 Compatibility of
output object

 code option is used, 2000N, 2000A, 2600N,
and 2600A options
 are not involved.

(2) An expression of type unsigned int is multiplied
by any integer constant except 0.

(3) The product in (2) is divided by the integer
constant in (2).

(4) The product in (2) exceeds the maximum value
allowed to the type of the multiplication.

Example of C Source Program:
 --
 unsigned long a=65536ul;
 unsigned long b;
 void func() {
 b=(65537ul*a)/65537ul; // b=0
((65537*65536)/65537→0/65537=0)
 // is correct, but it is replaced
 // by incorrect b=a (=65536)
 }
 --

Workaround:
To circumvent this problem, assign the product involved
to a volatile- qualified variable; then divide this variable
by the integer constant.

Example:
 void func() {
 volatile unsigned long c = 65537ul*a;
 b = c / 65537;
 }

2.7 On Iteration Statements Having an Volatile-
Qualified Controlled Variable (H8C-0034)
Versions Concerned:
V.6.00 Release 00 through V.6.01 Release 01

Description:
In iteration statements having an volatile-qualified
controlled variable, iterations are performed by an

incorrect number of times.

Conditions:
This problem may occur if the following conditions are all
satisfied:
(1) Either Condition (A) or Condition (B) below is

satisfied.

(A) When V.6.00 used:
 Any of the CPU options H8SXN, H8SXM,
H8SXA, and H8SXX is
 selected.
(B) When V.6.01 used:
 Any of the CPU options 2000N, 2000A, 2600N,
2600A, H8SXN,
 H8SXM, H8SXA, H8SXX, and AE5 is selected.
 Note that if the -legacy=v4 Compatibility of
output object
 code option is used, 2000N, 2000A, 2600N,
and 2600A options
 are not involved.

(2) The -optimize=1 optimizing option is selected.

(3) An iteration statement exists in the program.

(4) The iteration statement in (3) has a controlled
variable of type int.

(5) The controlled variable in (4) is qualified to be
volatile. Or, the controlled variable in (4) is an
external variable and is used together with the
volatile=1 option.

(6) The reset expression of the controlled variable in
(4) is an additive expression (addition or
subtraction).

(7) In the iteration statement in (3) exists a function
call. Or in the program exists a pointer-type
variable pointing to the controlled variable in (4),
and this pointer-type variable is reset in the
iteration statement in (3).

Example of C Source Program:
 --

 extern void sub();
 volatile int i; // Condition (5)
 void func() {
 i = 1;
 while (i) { // Conditions (3) and (4)
 i--; // Condition (6)
 sub(); // Condition (7)
 // Controlled variable i may be reset at
source
 // of function call, number of iterations
always 1
 }
 return;
 }
 --

Workarounds:
This problem can be circumvented any of the following
ways:
(1) After the reset expression in Condition (6), place

an expression that references the controlled
variable in Condition (4).

(2) Use the #pragma option nooptimize directive in
order not to optimize every function in which this
problem occurs.

(3) Use the -optimize=0 optimizing option (this
performs no optimizations).

2.8 On Using Comma Operators in the Controlling
Expression of an Iteration Statement(H8C-0035)
Versions Concerned:
V.6.00 Release 00 through V.6.01 Release 01

Description:
If comma operators are used in the controlling
expression of an iteration statement, the expressions
including comma operators will be evaluated from right
to left.

Conditions:
This problem may occur if the following conditions are all
satisfied:

(1) Either Condition (A) or Condition (B) below is
satisfied.

(A) When V.6.00 used:
 Any of the CPU options H8SXN, H8SXM,
H8SXA, and H8SXX is
 selected.
(B) When V.6.01 used:
 Any of the CPU options 2000N, 2000A, 2600N,
2600A, H8SXN,
 H8SXM, H8SXA, H8SXX, and AE5 is selected.
 Note that if the -legacy=v4 Compatibility of
output object code
 option is used, 2000N, 2000A, 2600N, and
2600A options are
 not involved.

(2) The -optimize=1 optimizing option is selected.

(3) An iteration statement exists in the program.

(4) The iteration statement in (3) has a controlled
variable of type int.

(5) The reset expression of the controlled variable in
(4) is an additive expression (addition or
subtraction).

(6) In the iteration statement in (3), the number of
iterations is 1.

(7) In the controlling expression of the iteration
statement in (3) exist two or more comma-
delimited expressions.

Example of C Source Program:
 --
 int A, B;
 void func() {
 int i;
 for (i=0; A++, B+=A, i<1; i++) { // Conditions
(3), (4), (5), (6)
 // and (7); B+=A evaluated
earlier
 // than A++
 B++;

 }
 }
 --

Workarounds:
This problem can be circumvented any of the following
ways:
(1) Use no iteration statements.

(2) Use the #pragma option nooptimize directive in
order not to optimize every function in which this
problem occurs.

(3) Use the -optimize=0 optimizing option (this
performs no optimizations).

2.9 On Making Assignments to Volatile-Qualified
Members of a Structure (H8C-0036)
Versions Concerned:
V.4 through V.6.01 Release 01

Description:
When an assignment is made to a member of a
structure, the compiler generates incorrect additional
information for the optimizing linker. So if the optimizing
option to save and restore registers is valid in the
optimizing linkage editor, incorrect code for assignment
will be generated.

Conditions:
This problem may occur if the following conditions are all
satisfied:
(1) Either Condition (A) or Condition (B) below is

satisfied.

(A) When V.4 through V.6.00 Release 03 used:
 Any of the CPU options 300, 300HN, 300HA,
2000N, 2000A, 2600N
 and 2600A is selected.
(B) When V.6.01 used:
 Any of the CPU options 300, 300HN, 300HA,
2000N, 2000A, 2600N,
 and 2600A is selected.

 Here, 2000N, 2000A, 2600N, or 2600A is used
together with the
 -legacy=v4 Compatibility of output object code
option.

(2) The -goptimize Inter-module optimization
information option option is selected.

(3) The -pack=1 Boundary alignment of structure,
union, and class members option is selected.

(4) An assignment expression exists, and its right
term is expressions with comma operator or
linear expressions.

(5) In the assignment expression in (4), references
are made to volatile-qualified members of any
types except unsigned char and signed char.

(6) In the left term of the assignment expression in
(4) exists a volatile-qualified member.

(7) In the optimizing linkage editor, the -
optimize=register option to save and restore
registers is valid.

Example of C Source Program:

-
 long a;
 main(){
 struct {
 volatile long vf1,vf2,vf3;
 } *st;

 st->vf1 = ((st->vf2 + st->vf3),(st->vf2 + st-
>vf3));
 // Conditions (3), (4), and (5)
 }

-

Workarounds:
This problem can be circumvented either of the following
ways:
(1) Do not use the -goptimize Inter-module

optimization information option option in the files
in which this problem occurs.

(2) Invalidate the -optimize=register option that
saves and restores registers in the optimizing
linkage editor.

2.10 On the Overflow of an Array's Subscript of type
unsigned short or unsigned int with Pointer Size
Being 2 Bytes (H8C-0037)
Versions Concerned:
V.6.00 Release 00 through V.6.01 Release 01

Description:
When option -ptr16 for specifying pointer size or
keyword __ptr16 for using a pointer size of 2 bytes is
selected, an incorrect area is referenced if an array's
subscript of type unsigned short or unsigned int
overflows.

Conditions:
This problem may occur if the following conditions are all
satisfied:
(1) Either Condition (A) or Condition (B) below is

satisfied.

(A) When V.6.00 used:
 Any of the CPU options H8SXN, H8SXM,
H8SXA, and H8SXX is
 selected.
(B) When V.6.01 used:
 Any of the CPU options 2000N, 2000A, 2600N,
2600A, H8SXN,
 H8SXM, H8SXA, H8SXX, and AE5 is selected.
 Note that if the -legacy=v4 Compatibility of
output object
 code option is used, 2000N, 2000A, 2600N,
and 2600A options
 are not involved.

(2) The -ptr16 option for specifying pointer size or
the __ptr16 keyword for using a pointer size of 2
bytes is selected.

(3) A subscript to an array is an expression of type
unsigned short or unsigned int that contains a
constant, and this expression overflows.

Example of C Source Program:
 --
 #include <stdio.h>
 unsigned int i=15;
 char
xcary[15]={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14};
 void main(void){
 unsigned short soeji;

 soeji = (unsigned short)(i+0xFFFF); // Condition
(3)
 if(xcary[soeji] == 14) printf("Hello\n");
 // Or
 if(*(xcary+soeji) == 14) printf("Hello\n");
 }
 --

Workarounds:
This problem can be circumvented either of the following
ways:
(1) Use neither the -ptr16 option nor the __ptr16

keyword.

(2) Use no expression that overflows as the variable
assigned to any subscript.

Example:
 #include <stdio.h>

 unsigned int i;
 char xcary[15];

 void main(void){
 unsigned short soeji;

 soeji = (unsigned short)(i-1); //
Expression that does not
 overflow used
 if(xcary[soeji] == 14) printf("Hello\n");
 }

2.11 On Referencing Incorrect Constants If Loops of
Iteration Statements Are Expanded (H8C-0038)
Versions Concerned:
V.6.01 Release 00 through V.6.01 Release 01

Description:
If the loop of an iteration statement is expanded, an
incorrect constant is referenced.

Conditions:
This problem may occur if the following conditions are all
satisfied:
(1) Any of the CPU options 300, 300HN, 2000N, and

2600N is selected. Here, 2000N or 2600N is used
together with the -legacy=v4 Compatibility of
output object code option.

(2) The -optimize=1 optimizing option is selected.

(3) The -speed=loop=[1|2] Optimization for speed
option is valid.

(4) In an iteration statement exists a subtraction of a
variable from a constant.

(5) The variable in (4) is incremented by 1 in the
iteration statement in (4).

Example of C Source Program:
 --
 void p027(){
 long a;
 long b=11;

 a=2147483640;
 while(a<2147483647){
 b+=sub27(2147483647-a); // Condition (4)
 ++a; // Condition (5)
 }
 }
 --
 Code Generated:
 --

 jsr @_sub27:16
 inc.l #1,er5
 add.l #h'0000ffff:32,er4 ; Immediate value must be
h'ffffffff
 cmp.l #h'7fffffff:32,er5
 --

Workarounds:
This problem can be circumvented any of the following
ways:
(1) Qualify the controlled variable of the iteration

statement to be volatile.

Example:
 void func(){
 volatile long a;
 long b=11;

(2) Use the #pragma option nooptimize directive in
order not to optimize every function in which this
problem occurs.

(3) Use the -optimize=0 optimizing option (this
performs no optimizations).

2.12 On Accessing an Incorrect Element of an Array or a
Structure or Union Type (H8C-0039)
Versions Concerned:
V.6.00 Release 00 through V.6.01 Release 01

Description:
If a structure or union declared to be extern is defined
after the declaration of an array of the structure or union
type, and if any element of the array except the top one
is accessed, incorrect code that accesses the top
element of the array is generated.

Conditions:
This problem occurs if the following conditions are all
satisfied:
(1) Either Condition (A) or Condition (B) below is

satisfied.

(A) When V.6.00 used:

 Any of the CPU options H8SXN, H8SXM,
H8SXA, H8SXX, and AE5
 is selected.
(B) When V.6.01 used:
 Any of the CPU options 2000N, 2000A, 2600N,
2600A, H8SXN,
 H8SXM, H8SXA, H8SXX, and AE5 is selected.
 Note that if the -legacy=v4 Compatibility of
output object
 code option is used, 2000N, 2000A, 2600N,
and 2600A options
 are not involved.

(2) An array of an incomplete structure type is
declared.

(3) After the declaration of the array in (2), the
incomplete structure in (2) is defined.

(4) Then an element of the array in (2) is accessed.

Example of C Source Program:
 --
 extern struct TBL g[3]; // Condition (2)
 struct TBL { // Condition (3)
 int m;
 };
 struct TBL tbl;

 void func()
 {

 tbl.m = g[1].m; // Condition (4)
 // g[0].m accessed in error
 }
 --

Workaround:
To circumvent this problem, define the incomplete
structure before declaring the array.

Example:
 struct S {
 int m;
 };

 extern struct S a[10];

2.13 On Using an Expression Whose Evaluation Result Is
TRUE or FALSE as a Return Value from a Function
(H8C-0040)
Versions Concerned:
V.4 Release 00 through V.6.01 Release 01

Description:
If the expression whose evaluation result is TRUE or
FALSE is used as a return value from a function, a value
is returned without its type being converted to the one
that matches with the return type.

Conditions:
This problem occurs if the following conditions are all
satisfied:
(1) This problem occurs if the following conditions

are all satisfied:

(A) When any of the versions 4 through 6.00
Release 03 used:
 Any of the CPU options 300, 300HN, 300HA,
2000N, 2000A, 2600N,
 and 2600A is selected.
(B) When V.6.01 used:
 Any of the CPU options 300, 300HN, 300HA,
2000N, 2000A, 2600N,
 and 2600A is selected.
 Here, 2000N, 2000A, 2600N, or 2600A is used
together with the
 -legacy=v4 Compatibility of output object code
option.

(2) The -optimize=0 optimizing option is selected
(this performs no optimizations).

(3) The evaluation result of an equality expression is
used as a return value from a function.

(4) The return value in (3) is of type long, float, or
double; and can be of type pointer if any of the

CPU options 300HA, 2000A, and 2600A is
selected.

Example of C Source Program:

 int wff1,wff2;

 float func(){ // Condition (4)
 return(wff1 == wff2); // Condition (3)
 }

Workaround:
To circumvent this problem, assign the evaluation result
of the equality expression to a local variable and then
use this variable as a return value.

Example:
 int wff1,wff2;

 float func(){
 int rtn; // Define local variable to which evaluation
result
 // of equality expression is assigned

 rtn = (wff1 == wff2);
 return(rtn); // Use value of local variable as return
value
 }

2.14 On Referencing a Bit Field Member of a Union Type
Where Values Are Assigned from the Lowermost Bit
(H8C-0041)
Versions Concerned:
V.6.01 Release 00 through V.6.01 Release 01

Description:
If an 8-bit or more available area exists in the upper
part of a bit field member of a union type, and values
are assigned from the lowermost bit to the upper of the
bit field member, an incorrect area will be referenced.

Conditions:
This problem occurs if the following conditions are all
satisfied:
(1) Any of the CPU options 2000N, 2000A, 2600N,

2600A, H8SXN, H8SXM, H8SXA, H8SXX, and AE5
is selected.
Note that if the -legacy=v4 Compatibility of
output object code option is used, 2000N,
2000A, 2600N, and 2600A options are not
involved.

(2) The -bit_order=right Bit field order specification
option is , selected or the #pragma bit_order
right directive is used.

(3) A union object is declared.

(4) A member of the union in (3) is a bit field.

(5) The object of the union type in (3) is declared to
be an external variable, or an internal variable
with a storage class of static.

(6) The bit size of the bit field member in (4) are as
follows according to its types:

(6-1) If the -pack=1 Boundary alignment of
structure, union, and
 class members option or the #pragma pack 1
directive is used
 for the union in (3):
 - signed/unsigned short type: from 1 through
8 bits
 - signed/unsigned int type: from 1 through
8 bits
 - signed/unsigned long type: from 1 through
24 bits
(6-2) If the -pack=1 Boundary alignment of
structure, union, and
 class members option and the #pragma pack
1 directive are
 not used for the union in (3):
 - signed/unsigned long type: from 1 through
16 bits

Example of C Source Program:
 --
 #include <stdio.h>
 typedef union { // Condition (3)
 unsigned short us:4;// Conditions (4) and (6)
 } UNI1; // Condition (5)

 UNI1 uni1 = { 8 };

 void main(){
 if(uni1.us == 8)

 printf("OK\n");

 }
 --
 Code Generated
 --
 SUBS #4,sp
 MOV.B @_uni1+2:32,r0l ; "@_uni1+2" must be
"@_uni1+1"
 AND.B #h'0f:8,r0l
 --

Workaround:
To circumvent this problem, assign the bit field member
to a non- static local variable of the same union type
and then access it.

Example:
 #include <stdio.h>
 typedef union {

 unsigned short us:4;
 } UNI1;

 UNI1 uni1 = { 8 };

 void main(){
 UNI local_uni1=uni1;
 if(local_uni1.us == 8)
 printf("OK\n");

 }

2.15 On the Division Operations Using a Divisor with the
Expressible Minimum Constant Value (H8C-0042)
Versions Concerned:
V.4 through V.6.01 Release 01

Description:
When the dividend and divisor of a division operation are
the same expressible minimum value, an incorrect result
will be obtained.

Conditions:
This problem occurs if the following conditions are all
satisfied:
(1) Either Condition (A) or Condition (B) below is

satisfied.

(A) When any of the versions 4 through 6.00
Release 03 used:
 Any of the CPU options 300, 300HN, 300HA,
2000N, 2000A, 2600N,
 and 2600A is selected.
(B) When V.6.01 used:
 Any of the CPU options 300, 300HN, 300HA,
2000N, 2000A, 2600N,
 and 2600A is selected.
 Here, 2000N, 2000A, 2600N, or 2600A is used
together with the
 -legacy=v4 Compatibility of output object code
option.

(2) The -optimize=0 optimizing option is selected
(this performs no optimizations).

(3) The Optimization for speed option (-speed or -
speed=expression) is selected.

(4) A division operation is performed, where the
dividend is of type signed short, signed int, or
signed long.

(5) The dividend in (4) is a constant, and its value is
the minimum expressible in the type of the

constant.

(6) The dividend and the divisor are given the same
value.

Example of C Source Program:
 --
 short rtn;

 void func(){
 short s;

 s = 0x8000; // Condition (6)
 rtn = s/(short)0x8000; // Conditions (4), (5), and
(6)
 // Instead of 1, incorrect -1 is assigned to rtn
 }
 --

Workarounds:
This problem can be circumvented any of the following
ways:
(1) Use the -optimize=1 optimizing option.

(2) Use neither the -speed nor the -
speed=expression option.

(3) Assign the constant of the divisor to a variable;
then perform the division operation.

Circumvention of Example above:
 short rtn;

 void func(){
 short s;
 short tmp;

 s = 0x8000;
 tmp = (short)0x8000; // Assign divisor to
tmp variable
 rtn = s / tmp; // Perform operation
between variables
 }

2.16 On Referencing the Value of a Rewritten Variable
(H8C-0043)
Versions Concerned:
V.4 through V.6.01 Release 01

Description:
Even if the value of a variable is rewritten in memory,
memory does not load it into the register, resulting in an
incorrect value being referenced.

Conditions:
This problem may occur if the following conditions are all
satisfied:
(1) The -optimize=1 optimizing option is selected.

(2) Either Condition (a) or Condition (b) below is
satisfied.

(a) The -eepmov Block transfer instruction
option is selected
 to generate an eepmov instruction.
(b) Any of the include functions for generating
block transfer
 instructions, eepmov, eepmovb, eepmovw,
eepmovi, eepromb, ,
 eepromw, eepromb_exr, eepromw_exr,
movmdb, movmdw, movmdl,
 and movsd, is used.

Example of C Source Program:
 --
 #include <stdio.h>
 struct ST {
 char c[2];
 };
 struct ST st1,st2,st3;
 void sub1()
 {
 struct ST *pst;

 pst = &st3;
 st2 = *pst;
 *pst = st1;

 }
 void main()
 {
 st1.c[0] = 1;
 st2.c[0] = 2;
 st3.c[0] = 3;
 sub1();
 if (st1.c[0]==1 && st2.c[0]==3 && st3.c[0]==1)
printf("OK\n");

 }
 --
 Code Generated:
 --
 MOV.B #3,R0H
 MOV.B R0H,@_st3:32
 MOV.L #_st3,ER6
 MOV.L ER4,ER1
 MOV.L ER6,ER2
 .

 EEPMOV.B ; Condition (2), eepmov instruction

 if (st1.c[0]==1 && st2.c[0]==3 && st3.c[0]==1)
printf("** OK **\n");
 MOV.B @ER5,R5L
 CMP.B R0L,R5L
 BNE L55:8
 MOV.B @ER4,R4L
 CMP.B R0H,R4L
 BNE L55:8
 MOV.B R0H,R1L ; Not read from memory but
copied
 ; from register in error
 CMP.B R0L,R1L
 --

Workarounds:
This problem can be circumvented any of the following
ways:
(1) Use the #pragma option nooptimize directive in

order not to optimize every function in which this
problem occurs.

(2) If the -eepmov Block transfer instruction option
is selected, deselect it.

(3) If any of the include functions for generating
block transfer instructions is used, discontinue
using it.

(4) Define a dummy function in another file and
make the function call to it immediately before
the C statement from which an incorrect code is
generated. Note that this function must not be
expanded inline.

Example:
 void main(){
 st1.c[0] = 1;
 st2.c[0] = 2;
 st3.c[0] = 3;
 sub1();
 dummy(); // dummy() defined in another
file
 if (st1.c[0]==1 && st2.c[0]==3 &&
st3.c[0]==1) printf("OK\n");
 else
printf("NG\n");
 }

(5) Use the -optimize=0 optimizing option (this
performs no optimizations).

3. Schedule of Fixing the Problems
We plan to fix the above problems in the release of the next version, V.6.01 Release 02.

[Disclaimer]
The past news contents have been based on information at the time of publication. Now changed or invalid information may be
included. The URLs in the Tool News also may be subject to change or become invalid without prior notice.

© 2010-2016 Renesas Electronics Corporation. All rights reserved.

