
 Application Note

R01AN5824EJ0106 Rev.1.06 Page 1 of 84
Dec.28.22

RX Family
Firmware Update Module Using Firmware Integration Technology
Introduction
This application note describes the firmware update module using Firmware Integration Technology (FIT).
The module is referred to below as the firmware update FIT module.

This application note is based on Renesas MCU Firmware Update Design Policy (R01AN5548). It is
recommended that the reader read that document before consulting this application note.

By using the FIT module, users can easily incorporate firmware update functionality into their applications.
This application note explains how to use the firmware update FIT module and how to incorporate its API
functions into user applications.

Target Devices
RX130 Group

RX140 Group

RX230, RX231, RX23E-A, RX23W Group

RX65N, RX651 Group

RX66N Group

RX66T Group

RX660 Group

RX671 Group

RX72M Group

RX72N Group

When using this application note with other Renesas MCUs, careful evaluation is recommended after making
modifications to comply with the alternate MCU.

Related Application Notes
Application notes related to this application note are listed below. Refer to them in conjunction with this
application note.

• Renesas MCU Firmware Update Design Policy (R01AN5548)
• RX Family How to implement FreeRTOS OTA by using Amazon Web Services on RX65N (R01AN5549)
• Firmware Integration Technology User’s Manual (R01AN1833)
• RX Family Adding Firmware Integration Technology Modules to Projects (R01AN1723)
• RX Smart Configurator User’s Guide: IAREW (R20AN0535)
• RX Family Board Support Package Module Using Firmware Integration Technology (R01AN1685)
• RX Family Flash Module Using Firmware Integration Technology (R01AN2184)
• RX Family SCI Module Using Firmware Integration Technology (R01AN1815)
• RX Family Ethernet Module Using Firmware Integration Technology (R01AN2009)
• RX Family CMT Module Using Firmware Integration Technology (R01AN1856)
• RX Family BYTEQ Module Using Firmware Integration Technology (R01AN1683)
• RX Family System Timer Module Firmware Integration Technology (R20AN0431)

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 2 of 84
Dec.28.22

Target Compilers
• C/C++ Compiler Package for RX Family from Renesas Electronics
• GCC for Renesas RX
• IAR C/C++ Compiler for RX

For compiler details related to the environment on which operation has been confirmed, refer to 5.1,
Confirmed Operation Environment.

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 3 of 84
Dec.28.22

Contents

1. Overview .. 6
1.1 About the Firmware Update Module ... 6
1.2 Configuration of Firmware Update Module ... 7
1.3 Firmware Update Operation .. 10
1.3.1 Firmware Update Operation Using Dual Mode ... 11
1.3.2 Firmware Update Operation Using Linear Mode... 12
1.3.2.1 Firmware Update Using Partial Overwrite ... 12
1.3.2.2 Firmware Update Using Full Overwrite ... 13
1.4 Firmware Update Communication Control on OS-Less System ... 15
1.4.1 Firmware Update with Module-Internal Communication Control .. 15
1.4.2 Firmware Update with Module-External Communication Control ... 16
1.5 API Overview ... 18

2. API Information .. 20
2.1 Hardware Requirements ... 20
2.2 Software Requirements ... 20
2.3 Supported Toolchain ... 20
2.4 Header Files .. 20
2.5 Integer Types ... 20
2.6 Compile Settings ... 21
2.6.1 Note on Compiling for RX130 and RX140 Environment ... 24
2.7 Code Size .. 25
2.8 Arguments ... 28
2.9 Return Values .. 29
2.10 Adding the FIT Module to Your Project ... 29
2.11 Note on Status Transition Monitoring Using System Timer .. 30

3. API Functions .. 31
3.1 R_FWUP_Open Function .. 31
3.2 R_FWUP_Close Function ... 31
3.3 R_FWUP_Initialize Function ... 32
3.4 R_FWUP_Operation Function ... 32
3.5 R_FWUP_PutFirmwareChunk Function ... 33
3.6 R_FWUP_SoftwareReset Function ... 33
3.7 R_FWUP_DirectUpdate Function ... 33
3.8 R_FWUP_SetEndOfLife Function ... 34
3.9 R_FWUP_SecureBoot Function .. 35
3.10 R_FWUP_ExecuteFirmware Function .. 36
3.11 R_FWUP_Abort Function .. 36
3.12 R_FWUP_CreateFileForRx Function .. 36

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 4 of 84
Dec.28.22

3.13 R_FWUP_CloseFile Function ... 37
3.14 R_FWUP_WriteBlock Function ... 37
3.15 R_FWUP_ActivateNewImage Function .. 37
3.16 R_FWUP_ResetDevice Function .. 38
3.17 R_FWUP_SetPlatformImageState Function ... 38
3.18 R_FWUP_GetPlatformImageState Function ... 38
3.19 R_FWUP_CheckFileSignature Function [OS-Less Usage] .. 39
3.20 R_FWUP_CheckFileSignature Function [OTA Usage] ... 39
3.21 R_FWUP_ReadAndAssumeCertificate Function .. 39
3.22 R_FWUP_GetVersion Function .. 40

4. Demo Project ... 41
4.1 Demo Project List .. 42
4.2 Building the Demo Project ... 44
4.2.1 Preparation Beforehand .. 44
4.2.1.1 Preparing the Integrated Development Environment .. 44
4.2.1.2 Generating Public Key and Secret Key Information for Signature Verification 44
4.2.2 Bootloader Program .. 44
4.2.3 User Program (Initial Firmware) .. 44
4.2.4 User Program (Firmware Update) ... 45
4.3 Using Image Generator to Convert the Firmware Update Image File ... 45
4.3.1 Generating a Bootloader and User Program (Initial Firmware) Image File ... 46
4.3.2 Generating a User Program (Firmware Update) RSU Image File .. 47
4.3.3 Generating a User Program (Initial Firmware) RSU Image File .. 48
4.4 Firmware Update Using Serial Communications Interface (SCI) .. 49
4.4.1 Dual Mode Firmware Update .. 49
4.4.1.1 Preparing the Execution Environment ... 49
4.4.1.2 Programming the Bootloader and User Program (Initial Firmware) .. 50
4.4.1.3 Executing the Firmware Update .. 50
4.4.1.4 Programming the User Program (Initial Firmware) ... 51
4.4.2 Firmware Update Using Linear Mode (Partial Overwrite) ... 52
4.4.2.1 Preparing the Execution Environment ... 52
4.4.2.2 Programming the Bootloader and User Program (Initial Firmware) .. 53
4.4.2.3 Executing the Firmware Update .. 53
4.4.2.4 Programming the User Program (Initial Firmware) ... 55
4.4.3 Firmware Update Using Linear Mode (Full Overwrite) .. 56
4.4.3.1 Preparing the Execution Environment ... 56
4.4.3.2 Programming the Bootloader and User Program (Initial Firmware) .. 57
4.4.3.3 Executing the Firmware Update .. 57
4.4.3.4 Programming the User Program (Initial Firmware) ... 58

5. Appendices .. 60

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 5 of 84
Dec.28.22

5.1 Confirmed Operation Environment .. 60
5.2 Compiler-Dependent Settings ... 65
5.2.1 Using Renesas Electronics C/C++ Compiler Package for RX Family .. 65
5.2.1.1 Compiler Options ... 65
5.2.1.2 Changing Address Assignments in Flash Memory ... 66
5.2.1.3 Settings for Programming Flash Memory .. 67
5.2.2 Using GCC for Renesas RX .. 67
5.2.2.1 Compiler Options ... 67
5.2.2.2 Changing Address Assignments in Flash Memory ... 67
5.2.2.3 Settings for Programming Flash Memory .. 69
5.2.2.4 Warning Message During Build ... 69
5.2.3 Using IAR C/C++ Compiler for RX .. 70
5.2.3.1 Compiler Options ... 70
5.2.3.2 Settings for Programming Flash Memory .. 70
5.2.3.3 Changing Address Assignments in Flash Memory ... 71
5.3 Storage Destination for FreeRTOS Data (RX65N-2MB Only) .. 72
5.3.1 Storage Destination Selection ... 72
5.3.2 Section Settings .. 72
5.3.3 Conversion to .RSU File when Code Flash Selected ... 73
5.4 Configuration of Firmware Update Images Created by Image Generator .. 75
5.4.1 Memory Configuration in Dual Mode ... 75
5.4.2 Memory Configuration in Linear Mode (Partial Overwrite) .. 76
5.4.3 Memory Configuration in Linear Mode (Full Overwrite) .. 77
5.5 Details of Firmware Update Images Created by Image Generator ... 78
5.5.1 Details of Image Containing Bootloader and User Program (Initial Firmware) 79
5.5.2 Details of RSU Image Containing User Program (Firmware Update) ... 80
5.5.3 Details of RSU Image Containing User Program (Initial Firmware) .. 80

Revision History .. 81

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 6 of 84
Dec.28.22

1. Overview
1.1 About the Firmware Update Module
A firmware update is a process in which the firmware, the software that controls the device’s hardware, is
overwritten with a new version of the firmware. Firmware updates may be applied to fix bugs, add new
functions, or improve performance.

On RX Family MCUs the firmware is written (programmed) to the on-chip flash memory. Therefore, in the
case of the RX Family, the term firmware update refers to the operations and processing for overwriting the
contents of the MCU’s on-chip flash memory.

Generally, one of the following two methods is used to overwrite the contents of the MCU’s on-chip flash
memory.

• Off-board programming
A method in which the MCU is connected to an external flash programming device such as a PC running
Flash Programmer and the flash memory is overwritten

• On-board programming (self-programming)

A method in which the MCU is made to overwrite its own on-chip flash memory

The latter self-programming function is used for firmware updates; the MCU programs its own on-chip flash
memory.

To perform self-programming of the on-chip flash memory, it is necessary first to copy to the RAM the
program that will program the flash memory and then to execute flash memory programming commands
from the RAM. Since users need to obtain new firmware versions via a variety of interfaces, it used to be
very difficult to build firmware update functionality into the customer’s system.

However, using the firmware update FIT module makes it easy to integrate firmware update functionality into
the customer’s system.

The firmware update module can be incorporated into user projects as an API. For instructions on adding the
module, refer to 2.10, Adding the FIT Module to Your Project.

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 7 of 84
Dec.28.22

1.2 Configuration of Firmware Update Module
The firmware update module is middleware for the purpose of updating the firmware of the MCU.

The firmware update module has functions for use on OS-less systems, functions for use on OS-less
systems with module-external communication control, and functions for use on systems using FreeRTOS
over-the-air (OTA) updates. For details of FreeRTOS over-the-air (OTA) updates, refer to the following
webpage:
https://docs.aws.amazon.com/freertos/latest/userguide/freertos-ota-dev.html

Figure 1.1 shows a system configuration incorporating the firmware update module on an OS-less system,
Figure 1.2 shows a system configuration incorporating the firmware update module on an OS-less systems
with module-external communication control, and Figure 1.3 shows a system configuration incorporating the
firmware update module on a system using FreeRTOS over-the-air (OTA) updates.

The bootloader module runs first after the system is reset and verifies that the user program (the program
that runs after the bootloader) has not been tampered with.

The firmware update module is incorporated into the user program and performs the actual firmware update.

Table 1.1 lists the FIT modules used for firmware updates.

The firmware to be applied as an update is received via a communication interface and then programmed to
the code flash memory of the target device via the firmware update module and flash FIT module.

User program
(main routine of program for updating firmware/main routine of bootloader)

Application

This FIT module
Firmware update module/bootloader module

Byte queue buffer FIT
module

Flash FIT module System timer
FIT module

Compare match
timer FIT module

Serial communication
FIT module

Board support package
(BSP module)

Target device to be supported

FIT modules

Middleware

Device driver

BSP

Figure 1.1 System Configuration of Firmware Update Module on OS-less System

https://docs.aws.amazon.com/freertos/latest/userguide/freertos-ota-dev.html

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 8 of 84
Dec.28.22

Figure 1.2 System Configuration of Firmware Update Module on OS-less Systems with
Module-External Communication Control

User program (Amazon FreeRTOS OTA demo) (including OTA PAL)/
main routine of bootloader

Firmware update module/
bootloader module

Flash FIT module System timer
FIT module

Compare match
timer FIT module

Ethernet
communication module

Board support package
(BSP module)

Target device to be supported

FIT modules

Application

This FIT module

Middleware

Device driver

BSP

Figure 1.3 System Configuration of Firmware Update Module on System
Using FreeRTOS Over-the-Air (OTA) Updates

Firmware update module

User program
(main routine of bootloader)

Application

This FIT module
Bootloader

Byte queue buffer
FIT module

Device driverFlash FIT module System timer
FIT module

Compare match
timer FIT module

Serial communication
FIT module

Board support package
(BSP module)

BSP

Target device to be supported

FIT modules

Middleware

Firmware update
(module-external

communication control)

User program
(main routine of program for updating firmware)

Byte queue buffer
FIT module

Serial communication
FIT module

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 9 of 84
Dec.28.22

Table 1.1 List of Modules

Type Application Note (Document No.) FIT Module
BSP RX Family Board Support Package Module Using Firmware

Integration Technology (R01AN1685)
r_bsp

Device driver RX Family Flash Module Using Firmware Integration Technology
(R01AN2184)

r_flash_rx

 RX Family SCI Module Using Firmware Integration Technology
(R01AN1815)

r_sci_rx

 RX Family CMT Module Using Firmware Integration Technology
(R01AN1856)

r_cmt_rx

Middleware RX Family BYTEQ Module Using Firmware Integration Technology
(R01AN1683)

r_byteq

 RX Family System Timer Module Firmware Integration Technology
(R20AN0431)

r_sys_time_rx

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 10 of 84
Dec.28.22

1.3 Firmware Update Operation
On some products in the RX Family the MCU’s on-chip flash memory supports dual-bank functionality.

To program the flash memory on a product without dual-bank functionality or when using a product with
dual-bank functionality in linear mode, it is necessary first to copy to the RAM the program that will program
the flash memory and then to execute flash memory programming commands from the RAM.

When using a product with dual-bank functionality in dual mode, so long as the area of flash memory to be
programmed and the area from which the program performing the programming runs are different areas, it is
not necessary to run the program from the RAM. This makes it a simple matter to maintain system operation
while programming the flash memory.

The firmware update module is capable of applying firmware updates in both linear mode and dual mode.

Table 1.2 Linear Mode and Dual Mode Support on Specific Devices

Device Linear Mode Dual Mode
RX130 Group
RX140 Group
RX231 Group
RX65N Group
RX66T Group
RX660 Group
RX671 Group
RX72N Group

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 11 of 84
Dec.28.22

1.3.1 Firmware Update Operation Using Dual Mode
Firmware update operation when using the flash memory in dual mode is described below.

Firmware update operation is divided into two parts: initial settings to the on-chip flash memory to prepare for
the firmware update and applying the firmware update.

Figure 1.4 shows the initial settings for firmware update operation in dual mode.

A tool (Renesas Image Generator) for creating the initial firmware to be written to the on-chip flash memory
is provided together with the FIT module. This tool can be used to create two types of initial firmware: initial
firmware containing the bootloader only or initial firmware containing both the bootloader and the user
program.

By using Flash Programmer or the like to program either of these types of initial firmware, the state shown in
step [1] or step [4] of Figure 1.4 can be achieved. You can start from either step [1] or step [4], depending on
the characteristics of the customer’s system. For a detailed description of the initial firmware, refer to
sections 5.4 and 5.5.

Figure 1.4 Dual Mode Firmware Update Initial Settings

Starting initial settings from step [1]
[1] Use Flash Programmer or the like to program the bootloader to the on-chip flash memory.
[2] Run the bootloader to create a mirror of the bootloader in bank 1.
[3] Use the bootloader to program the initial firmware (must be input externally) and to verify the firmware.
[4] If the verification completes successfully, swap the banks.

Starting initial settings from step [4]

[4] Use Flash Programmer or the like to program the initial firmware containing the bootloader and the user
program to the on-chip flash memory.

Figure 1.5 shows dual mode firmware update operation. (Note that “[1] Initial state” below refers to the state
after the bootloader has run at initial startup and a mirror of the bootloader has been created in bank 1.)

Figure 1.5 Dual Mode Firmware Update Operation

buffer
[BLANK]

buffer(bootloader)
[BLANK]
buffer

[BLANK]

bootloader
Bank 0

Bank 1

buffer
[BLANK]

bootloader(mirror)

buffer
[BLANK]

bootloader

user program
[initial firmware]

bootloader(mirror)

buffer
[BLANK]

bootloader

buffer
[BLANK]

bootloader(mirror)

user program
[initial firmware]

bootloader

[1] Program bootloader. [2] Create mirror of bootloader. [3] Program initial firmware. [4] Swap banks.

user program
[firmware update]

bootloader(mirror)

user program
[initial firmware]

bootloader

user program
[initial firmware]

bootloader(mirror)

user program
[firmware update]

bootloader

buffer
[BLANK]

bootloader(mirror)

user program
[firmware update]

bootloader

buffer
[BLANK]

bootloader(mirror)

user program
[initial firmware]

bootloader
Bank 0

Bank 1

[2] Program firmware update. [3] Swap banks. [4] Erase initial firmware.[1] Initial state.

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 12 of 84
Dec.28.22

[1] Initial state.
[2] Use the firmware update module incorporated in the user program to program the firmware update (must

be input externally) and to verify the firmware after it has been programmed.
[3] If the verification completes successfully, swap the banks.
[4] Erase the initial firmware from bank 1.

1.3.2 Firmware Update Operation Using Linear Mode
There are two methods of performing a firmware update using the flash memory in linear mode: partial
overwrite and full overwrite. These are described below.

Note: Unlike the other two methods (dual mode and partial overwrite in linear mode), if an update fails when
performing a full overwrite in linear mode, because power is interrupted for example, it is not possible
to restore the old version of the firmware.

1.3.2.1 Firmware Update Using Partial Overwrite
Figure 1.6 shows the initial settings for the partial overwrite method.

A tool (Renesas Image Generator) for creating the initial firmware to be written to the on-chip flash memory
is provided together with the FIT module. This tool can be used to create initial firmware containing the
bootloader only or to create initial firmware containing both the bootloader and the user program.

By using Flash Programmer or the like to program either of these two types of initial firmware, the state
shown in step [1] or step [2] of Figure 1.6 can be achieved. You can start from either step [1] or step [2],
depending on the characteristics of the customer’s system. For a detailed description of the initial firmware,
refer to sections 5.4 and 5.5.

Figure 1.6 Partial Overwrite Firmware Update Initial Settings

Starting initial settings from step [1]

[1] Use Flash Programmer or the like to program the bootloader to the on-chip flash memory.
[2] Use the bootloader to program the initial firmware (must be input externally) and to verify the firmware

after it has been programmed to the on-chip flash memory. If the verification completes successfully, the
operation is complete.

Starting initial settings from step [2]

[2] Use Flash Programmer or the like to program the initial firmware containing the bootloader and the user
program to the on-chip flash memory.

buffer
[BLANK]
buffer

[BLANK]

bootloader

buffer
[BLANK]

user program
[initial firmware]

bootloader

Area 0

Area 1

[1] Program bootloader. [2] Program initial firmware.

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 13 of 84
Dec.28.22

Figure 1.7 shows partial overwrite firmware update operation.

Figure 1.7 Partial Overwrite Firmware Update Initial Settings

[1] Initial state.
[2] Use the user program (area 0) to program the firmware update (must be input externally) to the buffer

area (area 1) and to verify the firmware after it has been programmed.
[3] If the verification completes successfully, copy the firmware from the buffer area (area 1) to the user

program area (area 0).
[4] Erase the buffer area (area 1).

1.3.2.2 Firmware Update Using Full Overwrite
Figure 1.8 shows initial settings for full overwrite firmware update operation.

A tool (Renesas Image Generator) for creating the initial firmware to be written to the on-chip flash memory
is provided together with the FIT module. This tool can be used to create initial firmware containing the
bootloader only or to create initial firmware containing both the bootloader and the user program.

By using Flash Programmer or the like to program either of these two types of initial firmware, the state
shown in step [1] or step [2] of Figure 1.8 can be achieved. You can start from either step [1] or step [2],
depending on the characteristics of the customer’s system. For a detailed description of the initial firmware,
refer to sections 5.4 and 5.5.

Figure 1.8 Full Overwrite Firmware Update Initial Settings

Starting initial settings from step [1]

[1] Use Flash Programmer or the like to program the bootloader to the on-chip flash memory.
[2] Use the bootloader to program the initial firmware (must be input externally) and to verify the firmware

after it has been programmed to the on-chip flash memory. If the verification completes successfully, the
operation is complete.

Starting initial settings from step [2]

[2] Use Flash Programmer or the like to program the initial firmware containing the bootloader and the user
program to the on-chip flash memory.

user program
[firmware update]

user program
[initial firmware]

bootloader

user program
[firmware update]

user program
[firmware update]

bootloader

buffer
[BLANK]

user program
[firmware update]

bootloader

buffer
[BLANK]

user program
[initial firmware]

bootloader

Area 0

Area 1

[2] Program firmware update.[1] Initial state. [3] Copy firmware. [4] Erase buffer.

buffer
[BLANK]

bootloader

user program
[initial firmware]

bootloader

[1] Program bootloader. [2] Program initial firmware.

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 14 of 84
Dec.28.22

Figure 1.9 shows full overwrite firmware update operation.

Figure 1.9 Full Overwrite Firmware Update Initial Settings

[1] 0Initial state.
[2] Use the user program to configure settings to disable use of the initial firmware and apply a reset. After

this, the bootloader launches and erases the initial firmware.
[3] Use the bootloader to program the initial firmware (must be input externally) and to verify the firmware

after it has been programmed to the on-chip flash memory. If the verification completes successfully, the
operation is complete.

buffer
[BLANK]

bootloader

user program
[firmware update]

bootloader

user program
[initial firmware]

bootloader

[2] Erase initial firmware.[1] Initial state. [2] Program firmware update.

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 15 of 84
Dec.28.22

1.4 Firmware Update Communication Control on OS-Less System
1.4.1 Firmware Update with Module-Internal Communication Control
In this type of system, processing from firmware reception to signature verification is implemented internally
by APIs of the firmware update module (via the R_FWUP_Operation function).

An overview of the firmware update operation incorporated into the user program is shown below.

Open firmware update module
R_FWUP_Open()

Yes

Update finished?

main()

Firmware update processing
from user program

R_FWUP_Operation()

Close firmware update
moduleR_FWUP_Close()

No

End

API function

Receive firmware update

Yes

Reception of
firmware finished?

R_FWUP_Operation()

Program firmware to
flash memory

R_FWUP_WriteBlock()

Verify firmware signature
FWUP_CheckFileSignature()

No

Return ret

Initial processing?

Yes

No

Code flash status check and
initialization

Set ret to “update in progress”
(FWUP_IN_PROGRESS)

Set ret to “update complete”
(FWUP_SUCCESS)

Figure 1.10 Firmware Update Operation on OS-Less System

The system comprises processing for opening the firmware update module (R_FWUP_Open), firmware
update processing (R_FWUP_Operation), and closing the firmware update module (R_FWUP_Close).

In addition to communication control, the R_FWUP_Operation function handles a sequence of firmware
update processing, including initialization of the flash memory, programming of the flash memory, and
verification of the signature of the firmware.

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 16 of 84
Dec.28.22

1.4.2 Firmware Update with Module-External Communication Control
In this type of system, firmware reception processing is handled by the user program and the received data
is programmed to the flash memory by APIs of the firmware update module.

An overview of firmware update operation on an OS-less system (with module-external communication
control) is shown below.

API function

Open firmware update module
R_FWUP_Open()

Yes

Update finished?

main()

Program firmware to
flash memory

R_FWUP_PutFirmwareChunk()

Close firmware update module
R_FWUP_Close()

No

End

Code flash status check and
initialization

R_FWUP_Initialize()

Reception of firmware update
(SCICH6)

Flow control (transmission stop)

Initialize UART

Verify firmware signature
FWUP_CheckFileSignature()

Flow control (transmission restart)

Figure 1.11 Firmware Update Operation on OS-Less System
(with Module-External Communication Control)

The OS-less (module-external communication control) system comprises processing for opening the
firmware update module (R_FWUP_Open), checking the status of and initializing the code flash
(R_FWUP_Initialize), programming the flash memory (R_FWUP_PutFirmwareChunk), closing the firmware
update module (R_FWUP_Close), and verifying the signature of the firmware
(R_FWUP_CheckFileSigunature).

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 17 of 84
Dec.28.22

Processing such as initializing communication settings and receiving the firmware data (including flow
control) are handled by the user program, which must control communication.

Regarding flow control, refer to the following code from the demo project (fwup_main_owSciDrv).

Flow control (transmission stop) is implemented within the UART receive callback function
(uart_receive_fileblock).

Figure 1.12 Flow Control (Transmission Stop)

Immediately before flash memory programming (R_FWUP_PutFirmwareChunk), the processing waits for
data to be received (R_BSP_SoftwareDelay). The standby duration is specified by
FWUP_CFG_SCI_RECEIVE_WAIT, which is defined in r_fwup_config.h.

Flow control (transmission restart) takes place immediately after flash memory programming
(R_FWUP_PutFirmwareChunk).

Figure 1.13 Flow Control (Transmission Restart)

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 18 of 84
Dec.28.22

1.5 API Overview
Table 1.3 lists the API functions included in the firmware update module.

Table 1.3 API Functions

Function Function Description

Firmware Update Module B
ootloader M

odule

OS present OS-less

Free R
TO

S
(O

TA
)

A
zure (A

D
U

)

M
odule-External

C
om

m
unication

C
ontrol *

1

M
odule-Internal

C
om

m
unication

C
ontrol

R_FWUP_Open Performs processing to open the
module.

R_FWUP_Close Performs processing to close the
module.

R_FWUP_Initialize Checks status of and erases code
flash.

R_FWUP_Operation Performs firmware update
processing from the user program.

R_FWUP_PutFirmwareChunk Writes a data block at the
specified offset.

R_FWUP_SoftwareReset Applies a software reset.
R_FWUP_DirectUpdate*2 Performs a firmware update

without using a buffer area.
 ― ―

R_FWUP_SetEndOfLife Performs end of life (EOL)
processing for the user program.

R_FWUP_SecureBoot Performs secure boot processing
using the bootloader.

R_FWUP_ExecuteFirmware Transfers processing to the
installed or updated firmware.

R_FWUP_Abort Stops OTA update processing.
R_FWUP_CreateFileForRx Applies initial settings for OTA.
R_FWUP_CloseFile Closes the specified file.
R_FWUP_WriteBlock Writes a data block to the

specified file at the specified
offset.

R_FWUP_ActivateNewImage Activates or launches the new
firmware image.

R_FWUP_ResetDevice The software resets. Then the new
firmware boots via the boot loader.

R_FWUP_SetPlatformImageState Sets the life cycle status to the
status specified by an argument.

R_FWUP_GetPlatformImageState Returns the current life cycle
status.

R_FWUP_CheckFileSignature
[OS-less usage]

Checks the signature of the
firmware programmed to the flash
memory.

R_FWUP_CheckFileSignature
[OTA usage]

Checks the signature of the
firmware programmed to the flash
memory.

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 19 of 84
Dec.28.22

Function Function Description

Firmware Update Module B
ootloader M

odule

OS present OS-less

Free R
TO

S
(O

TA
)

A
zure (A

D
U

)

M
odule-External

C
om

m
unication

C
ontrol *

1

M
odule-Internal

C
om

m
unication

C
ontrol

R_FWUP_ReadAndAssumeCertificate Reads and returns the specified
signer certificate from the file
system.

R_FWUP_GetVersion Returns the version number of the
module.

Notes: 1. Module-external communication control operation has been verified only for the partial overwrite
method (CC-RX) on the RX66T.

 2. Operation of the R_FWUP_DirectUpdate function has been verified only for the full overwrite
method (CC-RX) on the RX66T.

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 20 of 84
Dec.28.22

2. API Information
The FIT module has been confirmed to operate under the following conditions.

2.1 Hardware Requirements
• Flash memory
• Serial communications interface: optional
• Ethernet: optional
• System timer module

2.2 Software Requirements
The driver is dependent upon the following FIT module:

• Board support package (r_bsp)
• Byte queue buffer module (r_byteq)
• Compare match timer (r_cmt_rx)
• Flash module (r_flash_rx)
• Serial communications interface (SCI: asynchronous/clock synchronous) (r_sci_rx): optional
• Ethernet module (r_ether_rx): optional
• System timer module (r_sys_time_rx)

2.3 Supported Toolchain
The driver has been confirmed to work with the toolchain listed in 5.1, Confirmed Operation Environment.

2.4 Header Files
All API calls and their supporting interface definitions are located in r_fwup_if.h.

2.5 Integer Types
The project uses ANSI C99. These types are defined in stdint.h.

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 21 of 84
Dec.28.22

2.6 Compile Settings
The configuration option settings of the FIT module are contained in r_fwup_config.h.

The names of the options and descriptions of their setting values are listed in Table 2.1.

Table 2.1 Configuration Settings

Configuration options in r_fwup _config.h
FWUP_CFG_IMPLEMENTATION
_ENVIRONMENT
Note: The default is 0.

Specifies the user program environment where the FIT module will be
implemented.
The API functions that can be used differ depending on the implementation
target.
Enter one of the following setting values.
0: Implement in bootloader program (default).
1: Implement in user program firmware update program (OS-less system).
2: Implement in user program firmware update program (OS-less system with

module-external communication control).
3: Implement in FreeRTOS (OTA) program.
4: Implement in Azure (ADU) program.

More setting values can be added for additional implementation environments.

FWUP_CFG_COMMUNICATION
_FUNCTION
Note: The default is 0.

This configuration setting specifies the communication channel used to obtain
the new version of the firmware used by the user program for the firmware
update.
Enter one of the following setting values.
0: Connection via SCI communication (default)
1: Connection via Ethernet communication
2: Connection via USB*1
3: Connection via SDHI*1
4: Connection via QSPI*1

More setting values can be added for additional communication channels.

FWUP_CFG_BOOT_PROTECT
_ENABLE
Note: The default is 0.

Turns boot protection on or off.
0: Boot protection disabled (default).
1: Boot protection enabled.*2

FWUP_CFG_OTA_DATA
_STORAGE
Note: The default is 0.

Specifies the storage destination for FreeRTOS (OTA) data.
This setting is valid when OTA updating of FreeRTOS is performed. Also,
ensure that the settings in the boot program and FreeRTOS (OTA) program
match.
0: Data flash (default)
1: Code flash

FWUP_CFG_NO_USE_BUFFER
Note: The default is 0.

Specifies the method of programming the firmware update.
0: Partial overwrite method (default)
1: Full overwrite method

FWUP_CFG_BOOTLOADER
_LOG_DISABLE
Note: The default is 0.

Suppresses display of character strings by sending printf statements to the
terminal software in order to minimize ROM usage.
This setting is enabled when
FWUP_CFG_IMPLEMENTATION_ENVIRONMENT is set to “0”.
0: Display character strings in terminal software (default).
1: Do not display character strings in terminal software.

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 22 of 84
Dec.28.22

Configuration options in r_fwup _config.h
FWUP_CFG_LOG_LEVEL
Note: The default is 3.

Specifies the log output level.
This setting is valid when FWUP_CFG_IMPLEMENTATION_ENVIRONMENT
is set to 1.
0: No log output
1: Output of error messages only
2: Output of warnings and error messages
3: Information, warnings, and error messages (default)
4: All log output

FWUP_CFG_SERIAL_TERM_SCI
Note: The default is 8.

Specifies the SCI channel used to download the firmware.

FWUP_CFG_SERIAL_TERM_SCI
_BITRATE
Note: The default is 115,200.

Specifies the UART baud rate setting used to download the firmware.

FWUP_CFG_SERIAL_TERM_SCI
_INTERRUPT_PRIORITY
Note: The default is 15.

Specifies the SCI interrupt priority level used when downloading the
firmware.

FWUP_CFG_SCI_RECEIVE_WAIT
Note: The default is 300.

Specifies the UART receive wait time after transmit ends (RTS set to HIGH).
The setting unit is microseconds.

FWUP_CFG_PORT_SYMBOL
Note: The default is PORTC on the

RSK-RX231.

Specifies the port symbol of the I/O port used for RTS, the UART receive
request pin.

FWUP_CFG_BIT_SYMBOL
Note: The default is B4 on the

RSK-RX231.

Specifies the bit symbol of the I/O port used for RTS, the UART receive request
pin.

Notes: 1. This item is unsupported, so entering this setting value has no effect.
 2. This function prevents the area where the bootloader is stored from being overwritten.

Once boot protection is enabled it may not be possible to change the setting back to “boot
protection disabled,” or to change the accessible area or startup area protection function settings,
depending on the environment. Exercise due caution regarding the handling of the boot protection
setting.

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 23 of 84
Dec.28.22

Some combinations of the configuration option settings FWUP_CFG_IMPLEMENTATION_ENVIRONMENT
and FWUP_CFG_COMMUNICATION_FUNCTION are allowed and others are not. The allowed
combinations are shown below.

Table 2.2 Allowable Compile Setting Combinations

 FWUP_CFG_COMMUNICATION_FUNCTION
 0: SC

I

1: Ethernet

2: U
SB

3: SD
H

I

4: Q
SPI

FW
U

P_C
FG

_IM
PLE

M
EN

TATIO
N

_EN
VIR

O
N

M
EN

T

0: Bootloader program 0
1: User program firmware update program

(OS-less system)
2: User program firmware update program

(OS-less system with module-external
communication control)

1 2*1 3*1

3: FreeRTOS (OTA) program 4*1 5 6*1 7*1
4: Azure (ADU) program 8

Note: In the table above, a numeral represents the setting value of
FWUP_ENV_COMMUNICATION_FUNCTION, and a dash () represents an invalid combination of
settings.
This item is unsupported, so entering this setting value has no effect.

The conditions constituting a valid combination of the implementation environment setting and
communication channel setting are retained as macros in r_fwup_private.h.

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 24 of 84
Dec.28.22

Table 2.3 Valid Combination Macro Values

Macro Value Description
FWUP_COMM_SCI_BOOTLOADER 0 Connect a PC (COM port) to the SCI, and perform

bootloader processing.
FWUP_COMM_SCI_PRIMITIVE 1 Connect a PC (COM port) to the SCI, and obtain the

new version of the firmware via terminal software.
FWUP_COMM_USB_PRIMITIVE 2 Connect a PC (COM port) to the USB, and obtain the

new version of the firmware via terminal software.
FWUP_COMM_QSPI_PRIMITIVE 3 Connect an external storage device (an SD card) to

the QSPI, and obtain the new version of the firmware.
FWUP_COMM_SCI_AFRTOS 4 Connect a wireless module (SX-ULPGN, BG96, etc.)

to the SCI, and obtain the new version of the firmware
using FreeRTOS over-the-air (OTA) updates.

FWUP_COMM_ETHER_AFRTOS 5 Connect via Ethernet, and obtain the new version of
the firmware using FreeRTOS over-the-air (OTA)
updates.

FWUP_COMM_USB_AFRTOS 6 Connect an LTE modem to the USB, and obtain the
new version of the firmware using FreeRTOS over-
the-air (OTA) updates.

FWUP_COMM_SDHI_AFRTOS 7 Connect a wireless module (Type 1DX, etc.) to the
SDHI, and obtain the new version of the firmware
using FreeRTOS over-the-air (OTA) updates.

FWUP_COMM_ETHER_AZURE 8 Connect via Ethernet (or Wi-Fi) and obtain the new
version of the firmware from Azure (ADU).

When additional combinations of the implementation environment setting and communication channel
setting are added, additional macro settings can be added.

ex.)
##define FWUP_COMM_SCI_BOOTLOADER 0 // Used for Bootloader with SCI connection from COM port.
#define FWUP_COMM_SCI_PRIMITIVE 1 // SCI connection from COM port using primitive R/W.
#define FWUP_COMM_USB_PRIMITIVE 2 // USB connection from COM port using primitive R/W.
#define FWUP_COMM_QSP_PRIMITIVE 3 // Connect external storage (SD card) to QSPI using primitive R/W.
#define FWUP_COMM_SCI_AFRTOS 4 // Connect wireless module to SCI with Amazon FreeRTOS.
#define FWUP_COMM_ETHER_AFRTOS 5 // Connect Eathernet with Amazon FreeRTOS.
#define FWUP_COMM_USB_AFRTOS 6 // Connect LTE modem to USB with Amazon FreeRTOS.
#define FWUP_COMM_SDHI_AFRTOS 7 // Connect wireless module to SDHI with Amazon FreeRTOS.
#define FWUP_COMM_ETHER_AZURE 8 // Connect Eathernet with Azure ADU.

2.6.1 Note on Compiling for RX130 and RX140 Environment
To use the FIT module on the RSK RX130 or RX140, change the setting of the board support package
(BSP) configuration option for the user stack size (BSP_CFG_USTACK_BYTES) from the default value to
0x1000 (4 KB).

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 25 of 84
Dec.28.22

2.7 Code Size
The code sizes associated with the FIT module are listed in the table below.

One representative device is listed for each flash type.*1

Table 2.4 Code Sizes

ROM, RAM, and Stack Code Sizes

Device Category

Memory Used

Remarks

C/C++ Compiler
Package
for RX Family

GCC for
Renesas RX

IAR CC++
Compiler
for RX

RX65N
(flash type 4)

ROM 3,213 bytes 3,220 bytes 3,052 bytes boot_loader project
4,560 bytes 3,891 bytes 3,243 bytes fwup_main project
4,560 bytes 3,891 bytes 1,579 bytes eol_main project
5,342 bytes 4,251 bytes ― aws_demos project

RAM 36,968 bytes 36,957 bytes 36,946 bytes boot_loader project
3,261 bytes 3,257 bytes 3,246 bytes fwup_main project
3,261 bytes 3,257 bytes 2,222 bytes eol_main project
1,504 bytes 1,500 bytes ― aws_demos project

Max. stack
size used

1,184 bytes 836 bytes 1,527 bytes boot_loader project
2,712 bytes 2,356 bytes 2,480 bytes fwup_main project
2,712 bytes 2,356 bytes 1,284 bytes eol_main project
1,880 bytes 1,736 bytes ― aws_demos project

RX66T
(flash type 3)

ROM 4,448 bytes 3,476 bytes 3,274 bytes boot_loader project
4,194 bytes 3,573 bytes 3,132 bytes fwup_main project
4,192 bytes 3,573 bytes 1,528 bytes eol_main project

2,999 bytes ― ― fwup_main woSciDrv
project

RAM 36,969 bytes 36,957 bytes 36,946 bytes boot_loader project
3,257 bytes 3,253 bytes 3,242 bytes fwup_main project
3,257 bytes 3,253 bytes 2,218 bytes eol_main project

3,257 bytes ― ― fwup_main woSciDrv
project

Max. stack
size used

1,412 bytes 864 bytes 1,560 bytes boot_loader project
2,672 bytes 2,332 bytes 2,472 bytes fwup_main project
2,668 bytes 2,332 bytes 1,276 bytes eol_main project

RX231
(flash type 1)

ROM 1,088 bytes ― ― boot_loader project
4,329 bytes 3,393 bytes 3,266 bytes fwup_main project
4,335 bytes 3,686 bytes 3,134 bytes eol_main project

RAM 4,335 bytes 3,686 bytes 1,529 bytes boot_loader project
6,249 bytes 6,237 bytes 6,226 bytes fwup_main project
3,257 bytes 3,253 bytes 3,242 bytes eol_main project

Max. stack
size used

3,257 bytes 3,253 bytes 2,218 bytes boot_loader project
1,412 bytes 856 bytes 1,556 bytes fwup_main project
2,668 bytes 2,344 bytes 2,468 bytes eol_main project

Note: 1. Refer to the application note RX Family Flash Module Using Firmware Integration Technology
(R01AN2184) for a detailed description of flash types.

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 26 of 84
Dec.28.22

[Conditions]

C/C++ Compiler Package for RX Family

• Optimization level: Level 2
• Link module optimization: Checked
• Optimization method: Code size optimization
• Remove unreferenced variables/functions: Unchecked
• FWUP_CFG_BOOTLOADER_LOG_DISABLE (Config): 1

GCC for Renesas RX

• Optimization level: Optimize size (-Os)
• Debug level: None
• Link options: -Wl,--no-gc-sections
• FWUP_CFG_BOOTLOADER_LOG_DISABLE (Config): 1

IAR C/C++ Compiler for RX
• Optimization level: High (Size)
• FWUP_CFG_BOOTLOADER_LOG_DISABLE (Config): 1

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 27 of 84
Dec.28.22

Reference: ROM and RAM usage of bootloader

The ROM and RAM usage of the bootloader project on various products is listed below for reference.

Table 2.5 ROM and RAM Usage of Bootloader

ROM and RAM Usage of Bootloader

Device Category

Memory Used
C/C++ Compiler
Package for RX Family

GCC for
Renesas RX

IAR C/C++
Compiler

RX130 ROM 36,240 bytes 52,092 bytes 25,298 bytes
 RAM 11,304 bytes 11,140 bytes 12,457 bytes
RX140 ROM 31,167 bytes 48,288 bytes 23,319 bytes
 RAM 11,803 bytes 11,684 bytes 15,183 bytes
RX231 ROM 35,516 bytes 50,324 bytes 24,747 bytes
 RAM 12,388 bytes 12,164 bytes 15,516 bytes
RX671 ROM 36,838 bytes 55,541 bytes 30,466 bytes
 RAM 41,230 bytes 40,868 bytes 45,724 bytes
RX65N ROM 30,370 bytes 54,762 bytes 27,097 bytes
 RAM 41,186 bytes 43,388 bytes 43,660 bytes
RX66T ROM 37,310 bytes 53,036 bytes 25,377 bytes
 RAM 43,628 bytes 43,268 bytes 45,403 bytes
RX660 ROM 38,840 bytes 51,932 bytes 24,722 bytes
 RAM 42,935 bytes 42,660 bytes 44,944 bytes
RX72N ROM 39,296 bytes 55,818 bytes 30,730 bytes
 RAM 41,350 bytes 40,996 bytes 45,828 bytes

[Conditions]

C/C++ Compiler Package for RX Family

• Optimization level: Level 2
• Link module optimization: Checked
• Optimization method: Code size optimization
• Remove unreferenced variables/functions: Unchecked
• I/O function: Basic version
• FWUP_CFG_BOOTLOADER_LOG_DISABLE (Config): 1

GCC for Renesas RX

• Optimization level: Optimize size (-Os)
• Debug level: None
• Link options: -Wl,--no-gc-sections
• FWUP_CFG_BOOTLOADER_LOG_DISABLE (Config): 1

IAR C/C++ Compiler for RX
• Optimization level: High (Size)
• FWUP_CFG_BOOTLOADER_LOG_DISABLE (Config): 1

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 28 of 84
Dec.28.22

2.8 Arguments
Regarding structures used as API function arguments, the file context settings for the Amazon FreeRTOS
(OTA) 202002.00 environment are used for other environments as well.

The reused structure is shown below.

Note: Settings that apply to Amazon FreeRTOS when using over-the-air (OTA) updates may change due to
version upgrades or the like. You will therefore need to check for any setting changes when applying
version upgrades.
Location of declaration in FreeRTOS environment using over-the-air (OTA) updates:
aws_demos¥libraries¥ota_for_aws¥source¥include¥ota_private.h

Table 2.6 OTA File Context

typedef struct
{
 uint16_t size; /*!< @brief Size, in bytes, of the signature. */
 uint8_t data[kOTA_MaxSignatureSize]; /*!< @brief The binary signature data. */
} Sig256_t;

typedef struct OtaFileContext
{
 uint8_t * pFilePath; /*!< @brief Update file pathname. */
 uint16_t filePathMaxSize; /*!< @brief Maximum size of the update file path */
 #if defined(WIN32) || defined(__linux__)
 FILE * pFile; /*!< @brief File type is stdio FILE structure after file is open for
write. */
 #else
 uint8_t * pFile; /*!< @brief File type is RAM/Flash image pointer after file is open
for write. */
 #endif
 uint32_t fileSize; /*!< @brief The size of the file in bytes. */
 uint32_t blocksRemaining; /*!< @brief How many blocks remain to be received (a code
optimization). */
 uint32_t fileAttributes; /*!< @brief Flags specific to the file being received (e.g. secure,
bundle, archive). */
 uint32_t serverFileID; /*!< @brief The file is referenced by this numeric ID in the OTA
job. */
 uint8_t * pJobName; /*!< @brief The job name associated with this file from the job
service. */
 uint16_t jobNameMaxSize; /*!< @brief Maximum size of the job name. */
 uint8_t * pStreamName; /*!< @brief The stream associated with this file from the OTA
service. */
 uint16_t streamNameMaxSize; /*!< @brief Maximum size of the stream name. */
 uint8_t * pRxBlockBitmap; /*!< @brief Bitmap of blocks received (for deduplicating and
missing block request). */
 uint16_t blockBitmapMaxSize; /*!< @brief Maximum size of the block bitmap. */
 uint8_t * pCertFilepath; /*!< @brief Pathname of the certificate file used to validate the
receive file. */
 uint16_t certFilePathMaxSize; /*!< @brief Maximum certificate path size. */
 uint8_t * pUpdateUrlPath; /*!< @brief Url for the file. */
 uint16_t updateUrlMaxSize; /*!< @brief Maximum size of the url. */
 uint8_t * pAuthScheme; /*!< @brief Authorization scheme. */
 uint16_t authSchemeMaxSize; /*!< @brief Maximum size of the auth scheme. */
 uint32_t updaterVersion; /*!< @brief Used by OTA self-test detection, the version of
Firmware that did the update. */
 bool isInSelfTest; /*!< @brief True if the job is in self test mode. */
 uint8_t * pProtocols; /*!< @brief Authorization scheme. */

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 29 of 84
Dec.28.22

 uint16_t protocolMaxSize; /*!< @brief Maximum size of the supported protocols string. */
 uint8_t * pDecodeMem; /*!< @brief Decode memory. */
 uint32_t decodeMemMaxSize; /*!< @brief Maximum size of the decode memory. */
 uint32_t fileType; /*!< @brief The file type id set when creating the OTA job. */
 Sig256_t * pSignature; /*!< @brief Pointer to the file's signature structure. */
} OtaFileContext_t;

2.9 Return Values
This section describes return values of API functions. This enumeration is located in r_fwup_if.h as are the
prototype declarations of API functions.

Table 2.7 API Return Value Settings

typedef enum e_fwup_err
{
 FWUP_SUCCESS = 0, // Normally terminated.
 FWUP_FAIL, // Illegal terminated.
 FWUP_IN_PROGRESS, // Firmware update is in progress.
 FWUP_END_OF_LIFE, // End Of Life process finished.
 FWUP_ERR_ALREADY_OPEN, // Firmware Update module is in use by another process.
 FWUP_ERR_NOT_OPEN, // R_FWUP_Open function is not executed yet.
 FWUP_ERR_IMAGE_STATE, // Platform image status not suitable for firmware update.
 FWUP_ERR_LESS_MEMORY, // Out of memory.
 FWUP_ERR_FLASH, // Detect error of r_flash module.
 FWUP_ERR_COMM, // Detect error of communication module.
 FWUP_ERR_STATE_MONITORING, // Detect error of state monitoring module.
} fwup_err_t;

2.10 Adding the FIT Module to Your Project
The module must be added to each project in which it is used. Renesas recommends the method using the
Smart Configurator described in (1) below. However, the Smart Configurator only supports some RX
devices. Please use the methods of (2) for RX devices that are not supported by the Smart Configurator.

(1) Adding the FIT module to your project using the Smart Configurator in e2 studio
By using the Smart Configurator in e2 studio, the FIT module is automatically added to your project.
Refer to “RX Smart Configurator User’s Guide: e2 studio (R20AN0451)” for details.

(2) Adding the FIT module to your project using the FIT Configurator in e2 studio

By using the FIT Configurator in e2 studio, the FIT module is automatically added to your project. Refer to
“RX Family Adding Firmware Integration Technology Modules to Projects (R01AN1723)” for details.

(3) Adding the FIT module to your project using the FIT Configurator in the IAR Embedded Workbench for

Renesas RX environment
If you want to add a FIT module in the IAR Embedded Workbench for Renesas RX environment, use the
RX Smart Configurator to add the FIT module to your project. Refer to “RX Smart Configurator User’s
Guide: IAREW (R20AN0535)” for details.

(4) Deleting unnecessary modules

When you add the firmware update FIT module to your project using Smart Configurator, additional
dependent modules are added as well.
When adding the firmware update module to an OS-less system using module-external communication
control, modules such as r_sys_time_rx and r_sci_rx are added because it is assumed that they may be
used by the user application, even if they are not used by the firmware update module. You can delete
any unnecessary modules if you wish.

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 30 of 84
Dec.28.22

2.11 Note on Status Transition Monitoring Using System Timer
The module uses the system timer to perform status transition monitoring, and the specification stipulates
that an error end occurs when more than the specified duration elapses without a status transition. The
default value is one minute. Take appropriate measures to ensure that the status does not remain fixed for
longer than the specified duration.

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 31 of 84
Dec.28.22

3. API Functions

3.1 R_FWUP_Open Function

Table 3.1 R_FWUP_Open Function Specifications

Format fwup_err_t R_FWUP_Open (void)
Description Performs processing to open the firmware update module and bootloader module.

Performs processing to open the resources used by the firmware update module and
bootloader module, makes OS initial settings (when using an OS), and initializes variables.

Parameters None
Return
Values

FWUP_SUCCESS : Normal end
FWUP_ERR_ALREADY_OPEN : Already open

 FWUP_ERR_FLASH : Flash module error
 FWUP_ERR_COMM : Communication module error
 FWUP_ERR_STATE_MONITORING : Status transition monitoring module error
Special
Notes

3.2 R_FWUP_Close Function

Table 3.2 R_FWUP_Close Function Specifications

Format fwup_err_t R_FWUP_Close (void)
Description Performs processing to close the firmware update module and bootloader module.

Performs processing to close the resources used by the firmware update module and
bootloader module, and makes OS end settings (when using an OS).

Parameters None
Return
Values

FWUP_SUCCESS : Normal end
FWUP_ERR_NOT_OPEN : Not open

Special
Notes

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 32 of 84
Dec.28.22

3.3 R_FWUP_Initialize Function

Table 3.3 R_FWUP_Initialize Function Specifications

Format fwup_err_t R_FWUP_Initialize (void)
Description Checks the status of the flash memory and erases the flash memory before the firmware

update is performed by the user program.
• If the status of the flash memory to be updated is other than VALID or

INITIAL_FIRM_INSTALLING, the firmware cannot be updated, so a value of
FWUP_ERR_IMAGE_STATE is returned.

• If the return value is FWUP_IN_PROGRESS, the function ends normally. Use
FirmwareChunk()function to continue firmware update processing.

Parameters None
Return
Values

FWUP_IN_PROGRESS : Normal end
Continue firmware update.

FWUP_ERR_IMAGE_STATE : Updating not possible in current flash memory status
 FWUP_ERR_FLASH : Flash module error
Special
Notes

3.4 R_FWUP_Operation Function

Table 3.4 R_FWUP_Operation Function Specifications

Format fwup_err_t R_FWUP_Operation (void)
Description Performs firmware update processing from the user program.

Obtains the firmware data to be applied as an update from the communication channel
specified in the configuration settings, programs the flash memory, and performs signature
verification.
• If the status of the flash memory to be updated is other than VALID or INITIAL_FIRM_

INSTALLING, the firmware cannot be updated, so a value of
FWUP_ERR_IMAGE_STATE is returned.

• If the return value is FWUP_IN_PROGRESS, a firmware update is currently in progress,
so call this function again later.

• If the return value is FWUP_SUCCESS, the firmware update is complete. Call the
R_FWUP_SoftwareReset function. Processing transitions to the new firmware after a
software reset is applied.

• If the return value is FWUP_FAIL, the firmware update failed. Cancel the error and call
this function again.

Parameters None
Return
Values

FWUP_SUCCESS : Firmware update normal end
FWUP_FAIL : Firmware update error occurred

 FWUP_IN_PROGRESS : Firmware update in progress
 FWUP_ERR_NOT_OPEN : Not open
 FWUP_ERR_IMAGE_STATE : Updating not possible in current flash status
 FWUP_ERR_FLASH : Flash module error
 FWUP_ERR_STATE_MONITORING : Firmware update status has not changed for more

than specified duration
Special
Notes

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 33 of 84
Dec.28.22

3.5 R_FWUP_PutFirmwareChunk Function

Table 3.5 R_FWUP_PutFirmwareChunk Function Specifications

Format fwup_err_t R_FWUP_PutFirmwareChunk (uint32_t ulOffset, uint8_t * const pData,
 uint32_t ulBlockSize)

Description Writes a data block at the specified offset.
When the operation is successful, returns FWUP_IN_PROGRESS.

Parameters ulOffset : Code flash write destination offset
* pData : Write data
ulBlockSize : Write data size

Return
Values

FWUP_IN_PROGRESS : Normal end
FWUP_FAIL : Error writing to code flash

Special
Notes

When using this function in an OS-less environment it is necessary to set the ulOffset and
ulBlockSize to a multiple of the minimum program size of the target area in the flash
memory. In addition, ulBlockSize has a maximum value of 1024.

3.6 R_FWUP_SoftwareReset Function

Table 3.6 R_FWUP_SoftwareReset Function Specifications

Format void R_FWUP_SoftwareReset (void)
Description Applies a software reset.
Parameters None
Return
Values

None

Special
Notes

3.7 R_FWUP_DirectUpdate Function

Table 3.7 R_FWUP_DirectUpdate Function Specifications

Format fwup_err_t R_FWUP_DirectUpdate (void)
Description Starts firmware update processing.

Sets the status of the currently running firmware to BLANK and causes a reset to be
generated.
After the reset is cleared, the bootloader erases the current firmware and performs
processing to apply the firmware update.

Parameters None
Return
Values

FWUP_FAIL A firmware update error occurred.

Special
Notes

This function is only used by the full overwrite method.
When processing finishes successfully, the function generates a reset internally and does
not return any values.
When an error occurs, FWUP_FAIL is returned.

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 34 of 84
Dec.28.22

3.8 R_FWUP_SetEndOfLife Function

Table 3.8 R_FWUP_SetEndOfLife Function Specifications

Format fwup_err_t R_FWUP_SetEndOfLife (void)
Description Performs end of life processing for the user program.

[Note]
When the status is normal end (FWUP_SUCCESS) after this function is called, end of life
(EOL) processing is not yet complete.
To finish end of life (EOL) processing after this function runs, it is necessary to call the
R_FWUP_SoftwareReset function to apply a software reset (software reset with bank swap
in dual bank mode), and to execute the remaining end of life processing using the
bootloader.

Parameters None
Return
Values

FWUP_SUCCESS : Normal end
FWUP_ERR_NOT_OPEN : Not open

 FWUP_ERR_FLASH : Flash module error
Special
Notes

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 35 of 84
Dec.28.22

3.9 R_FWUP_SecureBoot Function

Table 3.9 R_FWUP_SecureBoot Function Specifications

Format int32_t R_FWUP_SecureBoot (void)
Description Performs secure boot processing using the bootloader.

• Performs signature verification to check for tampering before allowing the newly installed
firmware to run.

• If no firmware is installed, the function obtains the firmware data to be applied as an
update from the communication channel specified in the configuration settings, programs
the flash memory, and performs signature verification.

• If the firmware to be applied as an update is specified by the user program, it is
substituted as the startup firmware.

• If end of life (EOL) processing is specified by the user program, this function erases the
firmware.

• If the return value is FWUP_IN_PROGRESS, a secure boot is currently in progress, so
call this function again later.

• If the return value is FWUP_SUCCESS, the secure boot is complete. Call the
R_FWUP_ExecuteFirmware function to transition processing to the newly installed or
updated firmware.

• If the return value is “FWUP_END_OF_LIFE”, the processing at the end of life (EOL) of
the user program is complete.

• If the return value is FWUP_FAIL, the secure boot failed. If necessary, cancel the error
and call this function again.

For full overwrite method
• When the full overwrite method is used, the acquired firmware is written directly to the

execution area in the code flash. If programming of the code flash and signature
verification fail, the code flash is erased and FWUP_FAIL is returned. (At the next startup,
the bootloader requests the initial firmware.)

Parameters None
Return
Values

FWUP_SUCCESS : Secure boot normal end
FWUP_FAIL : Secure boot error occurred

 FWUP_IN_PROGRESS : Secure boot in progress
 FWUP_END_OF_LIFE : End of life (EOL) processing completed
 FWUP_ERR_NOT_OPEN : Not open
 FWUP_ERR_STATE_MONITORING : Firmware update status has not changed for more

than specified duration
Special
Notes

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 36 of 84
Dec.28.22

3.10 R_FWUP_ExecuteFirmware Function

Table 3.10 R_FWUP_ExecuteFirmware Function Specifications

Format void R_FWUP_ExecuteFirmware (void)
Description Transfers processing to the installed or updated firmware.

[Note]
The start address of the firmware to which processing is transferred may differ depending on
the MCU family or series.
It may be necessary to implement processing to obtain the firmware start address to match
the implementation environment.
[Example: RX65N]
Transfer processing to the address set in macro USER_RESET_VECTOR_ADDRESS.

Parameters None
Return
Values

None

Special
Notes

3.11 R_FWUP_Abort Function

Table 3.11 R_FWUP_Abort Function Specifications

Format OtaPalStatus_t R_FWUP_Abort (OTA_FileContext_t * const C)
Description Stops OTA update processing.
Parameters * C : File context
Return
Values

OtaPalSuccess : Normal end
OtaPalFileClose : File context close error

Special
Notes

3.12 R_FWUP_CreateFileForRx Function

Table 3.12 R_FWUP_CreateFileForRx Function Specifications

Format OtaPalStatus_t R_FWUP_CreateFileForRx (OTA_FileContext_t * const C)
Description Applies initial settings for OTA.

Creates a file to store the received data.
Parameters * C : File context
Return
Values

OtaPalSuccess : Normal end
OtaPalRxFileCreateFailed : File creation error

Special
Notes

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 37 of 84
Dec.28.22

3.13 R_FWUP_CloseFile Function

Table 3.13 R_FWUP_CloseFile Function Specifications

Format OtaPalStatus_t R_FWUP_CloseFile (OTA_FileContext_t * const C)
Description Closes the specified file.

Performs signature verification on the firmware image downloaded to a buffer area in a
temporary area.
Writes header information for the buffer area in the temporary area.

Parameters * C : File context
Return
Values

OtaPalSuccess : Normal end
OtaPalFileClose : File close error

 OtaPalSignatureCheckFailed : Signature verification error
Special
Notes

3.14 R_FWUP_WriteBlock Function

Table 3.14 R_FWUP_WriteBlock Function Specifications

Format int16_t R_FWUP_WriteBlock (OTA_FileContext_t * const C,
 uint32_t ulOffset,
 uint8_t * const pacData,
 uint32_t ulBlockSize)

Description Writes a data block to the specified file at the specified offset.
When the operation is successful, returns the number of bytes written.

Parameters * C : File context
ulOffset : Code flash write destination offset

 * pacData : Write data
 ulBlockSize : Write data size
Return
Values

R_OTA_ERR_QUEUE_SEND_FAIL (-2) : Error writing to code flash
Other than above: : Number of bytes written to code flash

Special
Notes

3.15 R_FWUP_ActivateNewImage Function

Table 3.15 R_FWUP_ActivateNewImage Function Specifications

Format OtaPalStatus_t R_FWUP_ActivateNewImage (void)
Description Activates or launches the new firmware image.

Calls the R_FWUP_ResetDevice() function to apply a software reset.
Parameters None
Return
Values

OtaPalSuccess : Normal end

Special
Notes

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 38 of 84
Dec.28.22

3.16 R_FWUP_ResetDevice Function

Table 3.16 R_FWUP_ResetDevice Function Specifications

Format OtaPalStatus_t R_FWUP_ResetDevice (void)
Description Calling this function generates a software reset, after which the new firmware is launched

through processing by the bootloader.
Parameters None
Return
Values

OtaPalSuccess : Normal end

Special
Notes

Close all open peripheral circuits before calling this function.
This function does not return because a software reset occurs.
If it returns, the system has not been reset or has an error.

3.17 R_FWUP_SetPlatformImageState Function

Table 3.17 R_FWUP_SetPlatformImageState Function Specifications

Format OtaPalStatus_t R_FWUP_SetPlatformImageState (OTA_ImageState_t eState)
Description Sets the life cycle status to the status specified by a parameter.

When updating to the new firmware finishes, the function erases the buffer area in the
temporary area.

Parameters eState : Specified status
Return
Values

OtaPalSuccess : Normal end
OtaPalCommitFailed : Commit error

 OtaPalBadImageState : The state of the specified OTA image is out of range
Special
Notes

3.18 R_FWUP_GetPlatformImageState Function

Table 3.18 R_FWUP_GetPlatformImageState Function Specifications

Format OtaPalImageState_t R_FWUP_GetPlatformImageState (void)
Description Returns the current life cycle status.
Parameters None
Return
Values

OtaPalImageStatePendingCommit : Waiting for update
OtaPalImageStateValid : Valid

 OtaPalImageStateInvalid : Invalid
Special
Notes

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 39 of 84
Dec.28.22

3.19 R_FWUP_CheckFileSignature Function [OS-Less Usage]

Table 3.19 R_FWUP_CheckFileSignature Function Specifications

Format fwup_err_t R_FWUP_CheckFileSignature(void)
Description Verifies the signature of the firmware programmed to the flash memory.
Parameters None
Return
Values

FWUP_SUCCESS : Normal end
FWUP_FAIL : Signature verification error

Special
Notes

3.20 R_FWUP_CheckFileSignature Function [OTA Usage]

Table 3.20 R_FWUP_CheckFileSignature Function Specifications

Format OtaPalStatus_t R_FWUP_CheckFileSignature (OTA_FileContext_t * const C)
Description Verifies the signature of the firmware programmed to the flash memory.
Parameters * C : File context
Return
Values

OtaPalSuccess : Normal end
OtaPalSignatureCheckFailed : Signature verification error

 OtaPalBadSignerCert : The signer certificate was unreadable or was zero in
length

Special
Notes

3.21 R_FWUP_ReadAndAssumeCertificate Function

Table 3.21 R_FWUP_ReadAndAssumeCertificate Function Specifications

Format uint8_t * R_FWUP_ReadAndAssumeCertificate (const uint8_t * const pucCertName
uint32_t * const ulSignerCertSize)

Description Reads and returns the specified signer certificate from the file system.
Parameters * pucCertName : Certificate file name
 * ulSignerCertSize : Certificate size
Return
Values

Pointer to certificate data

Special
Notes

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 40 of 84
Dec.28.22

3.22 R_FWUP_GetVersion Function

Table 3.22 R_FWUP_GetVersion Function Specifications

Format uint32_t R_FWUP_GetVersion (void)
Description Returns the version number of the FIT module.
Parameters None
Return
Values

Version number

Special
Notes

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 41 of 84
Dec.28.22

4. Demo Project
The demo project is a sample program that shows how to implement firmware update functionality using the
serial communications interface (SCI).

The demo project comprises the FIT module, modules dependent on it, and a main() function that
implements the firmware update demonstration. Versions of the demo project for the devices and compilers
listed in 4.1 are provided.

The firmware update demo consists of the following projects.

Dual mode folder structure: Under \dualbank\ \

Linear mode (partial overwrite) folder structure: Under \non-dualbank2\ \

Linear mode (full overwrite) folder structure: Under \non-dualbank3\ \

 : Device name

 : Compiler (ccrx/gcc/iar)

• boot_loader: Bootloader program

This program runs first after a reset. It verifies that the user program has not been tampered with and
then, if verification is successful, launches the user program.

• fwup_main: User program (initial firmware/firmware update)

This is a user program (initial firmware) that downloads the firmware update. This program can also be
edited so that it can be used as the user program (firmware update).

• eol_main

This program performs EOL processing. To ensure that the system is discarded safely, the EOL
processing erases both the user program in the code flash and the contents of the data flash.

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 42 of 84
Dec.28.22

4.1 Demo Project List
The demo projects included in this package are shown below.
+-rx65n-rsk : Demo project set folder using RSK-RX65N starter kit
| | amazon-freertos-gcc.zip : Amazon FreeRTOS (OTA), CC-RX version demo project
| | amazon-freertos.zip : Amazon FreeRTOS (OTA), GCC version demo project
| |
| +-dualbank
| +-ccrx : Update firmware demo set folder : for C/C++ Compiler Package for RX Family
| | boot_loader.zip : Project of boot loader
| | eol_main.zip : Project of EOL processing
| | fwup_main.zip : Project of Firmware update
| |
| +-gcc : Update firmware demo set folder : for GCC for Renesas RX
| | boot_loader_gcc.zip : Project of boot loader
| | eol_main_gcc.zip : Project of EOL processing
| | fwup_main_gcc.zip : Project of Firmware update
| |
| +-iar : Update firmware demo set folder : for IAR C/C++ Compiler for RX
| boot_loader_iar.zip : Project of boot loader
| eol_main_iar.zip : Project of EOL processing
| fwup_main_iar.zip : Project of Firmware update
|
+-rx66t-rsk : Demo project set folder using RSK-RX66T starter kit
| +-non-dualbank2
| | +-ccrx : Update firmware demo set folder : for C/C++ Compiler Package for RX Family
| | | boot_loader.zip : Project of boot loader
| | | eol_main.zip : Project of EOL processing
| | | fwup_main.zip : Project of Firmware update
| | | fwup_main_woSciDrv.zip : Project of Firmware update (w/o SCI Driver)
| | |
| | +-gcc : Update firmware demo set folder : for GCC for Renesas RX
| | | boot_loader_gcc.zip : Project of boot loader
| | | eol_main_gcc.zip : Project of EOL processing
| | | fwup_main_gcc.zip : Project of Firmware update
| | |
| | +-iar : Update firmware demo set folder : for IAR C/C++ Compiler for RX
| | boot_loader_iar.zip : Project of boot loader
| | eol_main_iar.zip : Project of EOL processing
| | fwup_main_iar.zip : Project of Firmware update
| |
| +-non-dualbank3
| +-ccrx : Update firmware demo set folder : for C/C++ Compiler Package for RX Family
| boot_loader.zip : Project of boot loader
| eol_main.zip : Project of EOL processing
| fwup_main.zip : Project of Firmware update
|
+-rx72n-rsk : Demo project set folder using RSK-RX72N starter kit
| +-dualbank
| +-ccrx : Update firmware demo set folder : for C/C++ Compiler Package for RX Family
| | boot_loader.zip : Project of boot loader
| | eol_main.zip : Project of EOL processing
| | fwup_main.zip : Project of Firmware update
| |
| +-gcc : Update firmware demo set folder : for GCC for Renesas RX
| | boot_loader_gcc.zip : Project of boot loader
| | eol_main_gcc.zip : Project of EOL processing
| | fwup_main_gcc.zip : Project of Firmware update
| |
| +-iar : Update firmware demo set folder : for IAR C/C++ Compiler for RX
| boot_loader_iar.zip : Project of boot loader
| eol_main_iar.zip : Project of EOL processing
| fwup_main_iar.zip : Project of Firmware update
|
+-rx130-rsk : Demo project set folder using RSK-RX130 starter kit
| +-non-dualbank2
| +-ccrx : Update firmware demo set folder : for C/C++ Compiler Package for RX Family
| | boot_loader.zip : Project of boot loader
| | eol_main.zip : Project of EOL processing
| | fwup_main.zip : Project of Firmware update
| |
| +-gcc : Update firmware demo set folder : for GCC for Renesas RX
| | boot_loader_gcc.zip : Project of boot loader
| | eol_main_gcc.zip : Project of EOL processing
| | fwup_main_gcc.zip : Project of Firmware update
| |
| +-iar : Update firmware demo set folder : for IAR C/C++ Compiler for RX
| boot_loader_iar.zip : Project of boot loader
| eol_main_iar.zip : Project of EOL processing
| fwup_main_iar.zip : Project of Firmware update

Figure 4.1 Demo Project List (1)

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 43 of 84
Dec.28.22

+-rx140-rsk : Demo project set folder using RSK-RX140 starter kit
| +-non-dualbank2
| +-ccrx : Update firmware demo set folder : for C/C++ Compiler Package for RX Family
| | boot_loader.zip : Project of boot loader
| | eol_main.zip : Project of EOL processing
| | fwup_main.zip : Project of Firmware update
| |
| +-gcc : Update firmware demo set folder : for GCC for Renesas RX
| | boot_loader_gcc.zip : Project of boot loader
| | eol_main_gcc.zip : Project of EOL processing
| | fwup_main_gcc.zip : Project of Firmware update
| |
| +-iar : Update firmware demo set folder : for IAR C/C++ Compiler for RX
| boot_loader_iar.zip : Project of boot loader
| eol_main_iar.zip : Project of EOL processing
| fwup_main_iar.zip : Project of Firmware update
|
+-rx231-rsk : Demo project set folder using RSK-RX231 starter kit
| +-non-dualbank2
| +-ccrx : Update firmware demo set folder : for C/C++ Compiler Package for RX Family
| | boot_loader.zip : Project of boot loader
| | eol_main.zip : Project of EOL processing
| | fwup_main.zip : Project of Firmware update
| |
| +-gcc : Update firmware demo set folder : for GCC for Renesas RX
| | boot_loader_gcc.zip : Project of boot loader
| | eol_main_gcc.zip : Project of EOL processing
| | fwup_main_gcc.zip : Project of Firmware update
| |
| +-iar : Update firmware demo set folder : for IAR C/C++ Compiler for RX
| boot_loader_iar.zip : Project of boot loader
| eol_main_iar.zip : Project of EOL processing
| fwup_main_iar.zip : Project of Firmware update
|
+-rx660-rsk : Demo project set folder using RSK-RX660 starter kit
| +-dualbank
| +-ccrx : Update firmware demo set folder : for C/C++ Compiler Package for RX Family
| | boot_loader.zip : Project of boot loader
| | eol_main.zip : Project of EOL processing
| | fwup_main.zip : Project of Firmware update
| |
| +-gcc : Update firmware demo set folder : for GCC for Renesas RX
| | boot_loader_gcc.zip : Project of boot loader
| | eol_main_gcc.zip : Project of EOL processing
| | fwup_main_gcc.zip : Project of Firmware update
| |
| +-iar : Update firmware demo set folder : for IAR C/C++ Compiler for RX
| boot_loader_iar.zip : Project of boot loader
| eol_main_iar.zip : Project of EOL processing
| fwup_main_iar.zip : Project of Firmware update
|
+-rx671-rsk : Demo project set folder using RSK-RX671 starter kit
 +-dualbank
 +-ccrx : Update firmware demo set folder : for C/C++ Compiler Package for RX Family
 | boot_loader.zip : Project of boot loader
 | eol_main.zip : Project of EOL processing
 | fwup_main.zip : Project of Firmware update
 |
 +-gcc : Update firmware demo set folder : for GCC for Renesas RX
 | boot_loader_gcc.zip : Project of boot loader
 | eol_main_gcc.zip : Project of EOL processing
 | fwup_main_gcc.zip : Project of Firmware update
 |
 +-iar : Update firmware demo set folder : for IAR C/C++ Compiler for RX
 boot_loader_iar.zip : Project of boot loader
 eol_main_iar.zip : Project of EOL processing
 fwup_main_iar.zip : Project of Firmware update

Figure 4.2 Demo Project List (2)

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 44 of 84
Dec.28.22

4.2 Building the Demo Project
Before performing a firmware update, the bootloader program, user program (initial firmware), and user
program (firmware update) must be prepared.

4.2.1 Preparation Beforehand
Perform the following steps beforehand as preparation.

4.2.1.1 Preparing the Integrated Development Environment
The operation of the demo project has been confirmed in the environments described in 5.1. Prepare an
integrated development environment that matches the device, compiler, etc., to be used to implement the
demo.

4.2.1.2 Generating Public Key and Secret Key Information for Signature Verification
To ensure the integrity of the firmware updated by the project, the firmware update is digitally signed
(ECDSA + SHA256), and the signature is used to verify its integrity. Public key information for signature
verification must therefore be incorporated into the various programs.

In addition, secret key information for signature verification (secp256r1.privatekey) is used as a file that is
input to Image Generator, as described in 4.3.

Refer to the webpage linked to below and generate the ECDSA + SHA256 key pair.

https://github.com/renesas/amazon-freertos/wiki/OTA の活用#手順まとめ

Refer to “4. ファームウェア検証に使用する鍵を OpenSSL で作成する” [4. Use OpenSSL to create a key
for firmware verification.] and “5. ファームウェア検証に ECDSA+SHA256 を使用するため、ブートロー

ダに署名検証用の公開鍵=secp256r1.publickey を仕込む” [5. To use ECDSA + SHA256 for firmware
verification, embed the public key for signature verification (secp256r1.publickey) into the bootloader.] on
the above webpage and generate a public key for signature verification (code_signer_public_key.h).

4.2.2 Bootloader Program
Extract the contents of the boot_loader.zip file of the project of your choice, create a workspace for the
bootloader program, and import boot_loader.

Copy the public key for signature verification (code_signer_public_key.h) generated as described in 4.2.1.2
to the boot_loader\src\key folder, then build the project. A file called boot_loader.mot is created in the
HardwareDebug folder. The boot_loader.mot file will be used as an input file by Image Generator (see 4.3).

4.2.3 User Program (Initial Firmware)
Extract the contents of the fwup_main.zip file of the project of your choice, create a workspace for the user
program (initial firmware), and import fwup_main.

Copy the public key for signature verification (code_signer_public_key.h) generated as described in 4.2.1.2
to the boot_loader\src\key folder, then build the project. A file called fwup_main.mot is created in the
HardwareDebug folder. The fwup_main.mot file will be used as an input file by Image Generator (see 4.3).

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 45 of 84
Dec.28.22

4.2.4 User Program (Firmware Update)
Extract the contents of the fwup_main.zip file of the project of your choice, create a workspace for the user
program (firmware update), and import fwup_main.

Copy the public key for signature verification (code_signer_public_key.h) generated as described in 4.2.1.2
to the boot_loader\src\key folder.

Open the file fwup_main\src\main.c and remove the slashes from the left of the commented-out lines to
make them valid.

Build the project. A file called fwup_main.mot is created in the HardwareDebug folder. The fwup_main.mot
file will be used as an input file by Image Generator (see 4.3).

4.3 Using Image Generator to Convert the Firmware Update Image File
Use Image Generator to convert the mot file generated as described in 4.2 into a file configured as a
firmware update image (see 5.4).

To obtain Image Generator, download the entire contents of the mot-file-converter/Renesas Image
Generator/bin/Debug/ folder from the URL below. (The files listed alongside Renesas Image Generator.exe
are also necessary.)

Release mot file converter tool · renesas/mot-file-converter · GitHub

Double-click Renesas Image Generator.exe to launch Image Generator.

https://github.com/renesas/mot-file-converter/tree/master/Renesas%20Image%20Generator/bin/Debug

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 46 of 84
Dec.28.22

4.3.1 Generating a Bootloader and User Program (Initial Firmware) Image File
When the initial settings for the firmware update start from a state where the bootloader and user program
(initial firmware) have already been programmed (Figure 1.4 step [4] for dual mode, Figure 1.6 step [2] for
linear mode (partial overwrite), Figure 1.8 step [2] for linear mode (full overwrite)), the mot file generated by
building the bootloader project (see 4.2.2) and the mot file generated by building the user program (initial
firmware) (see 4.2.3), as well as the ECDSA + SHA256 secret key for signature verification (see 4.2.1.2), are
input to Image Generator and converted into a mot file. Also, refer to 5.5.1 for a description of the image
generation mechanism.

Launch Image Generator, set the parameters as shown below, and generate a mot file. The mot file created
will be used in 4.4.1.

[1] Select the [Initial Firm] tab. ([Initial Firm] is selected by default.)
[2] For Select MCU under Settings, select the target MCU.
[3] For Select Firmware Verification Type under Settings, select sig-sha256-ecdsa.
[4] For Private Key Path under Settings, enter the path of the file generated as described in 4.2.1.2

(secp256r1.privatekey).
[5] For Select Output Format under Settings, select Bank0 User Program + Boot Loader (Motorola S

Format).
[6] For File Path (Motorola Format) under Boot Loader, enter the path of the boot_loader.mot file generated

as described in 4.2.2.
[7] For Firmware Sequence Number under Bank0 User Program, enter 1.
[8] For File Path (Motorola Format) under Bank0 User Program, enter the path of the fwup_main.mot file

generated as described in 4.2.3.
[9] Click the [Generate] button and specify the file path of the userprog.mot (Motrola S format) file to be

generated.

Figure 4.3 Generating a Bootloader and User Program (Initial Firmware) Image File

[1]

[2]
[3]

[4]

[5]

[6]

[7]
[8]

[9]

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 47 of 84
Dec.28.22

4.3.2 Generating a User Program (Firmware Update) RSU Image File
When generating a firmware update, the mot file generated by building the user program (firmware update)
(see 4.2.4) and the ECDSA + SHA256 secret key for signature verification (see 4.2.1.2) are input to Image
Generator and converted into an RSU file. Also, refer to 5.5.2 for a description of the image generation
mechanism.

Launch Image Generator, set the parameters as shown below, and generate a RSU file. The RSU file
created will be used in 4.4.

[1] Select the [Update Firm] tab. ([Initial Firm] is selected by default.)
[2] For Select MCU under Settings, select the target MCU.
[3] For Select Firmware Verification Type under Settings, select sig-sha256-ecdsa.
[4] For Private Key Path under Settings, enter the path of the file generated as described in 4.2.1.2

(secp256r1.privatekey).
[5] For Firmware Sequence Number under Bank0 User Program, enter 1.
[6] For File Path (Motorola Format) under Bank0 User Program, enter the path of the fwup_main.mot file

generated as described in 4.2.4.
[7] Click the [Generate] button and specify the file path of the userprog.rsu (Renesas Secure Update) file to

be generated.

Figure 4.4 Generating a User Program (Firmware Update) RSU Image File

[1]

[2]

[3]

[4]

[5]

[6]

[7]

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 48 of 84
Dec.28.22

4.3.3 Generating a User Program (Initial Firmware) RSU Image File
When the initial settings for the firmware update start from a state where the bootloader has already been
programmed (Figure 1.4 step [1] for dual mode, Figure 1.6 step [1] for linear mode (partial overwrite),
Figure 1.8 step [1] for linear mode (full overwrite)), first the mot file generated by building the bootloader
project (see 4.2.2) is written to the MCU board using Flash Programmer. Next, the mot file generated by
building the user program (initial firmware) (see 4.2.3) and the ECDSA + SHA256 secret key for signature
verification (see 4.2.1.2) are input to Image Generator and converted into an RSU file. Also, refer to 5.5.3 for
a description of the image generation mechanism.

Launch Image Generator, set the parameters as shown below, and generate a RSU file. The RSU file
created will be used in 4.4.

[1] Select the [Initial Firm] tab. ([Initial Firm] is selected by default.)
[2] For Select MCU under Settings, select the target MCU.
[3] For Select Firmware Verification Type under Settings, select sig-sha256-ecdsa.
[4] For Private Key Path under Settings, enter the path of the file generated as described in 4.2.1.2

(secp256r1.privatekey).
[5] For Select Output Format under Settings, select Bank0 User Program (Binary Format).
[6] For Firmware Sequence Number under Bank0 User Program, enter 1.
[7] For File Path (Motorola Format) under Bank0 User Program, enter the path of the fwup_main.mot file

generated as described in 4.2.3.
[8] Click the [Generate] button and specify the file path of the userprog.rsu (Renesas Secure Update) file to

be generated.

Figure 4.5 Generating a User Program (Initial Firmware) RSU Image File

[1]

[2]
[3]

[4]

[5]

[6]
[7]

[8]

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 49 of 84
Dec.28.22

4.4 Firmware Update Using Serial Communications Interface (SCI)
This section describes implementation of a firmware update demo using the serial communications interface
(SCI) and dual mode, linear mode (partial overwrite), or linear mode (full overwrite). The firmware updating
process involves communication with terminal software via SCI channels configured as a UART.

4.4.1 Dual Mode Firmware Update
In the example described below, the firmware update demo uses the serial communications interface (SCI)
of the RX65N, which is mounted on the RSK RX65N starter kit board.

4.4.1.1 Preparing the Execution Environment
The firmware update demo uses serial port SCI6, which interfaces with the PMOD1. The PMOD1 connector
is connected to a serial converter board.

A PC running terminal software is required for data input and output.

Table 4.1 Device Configuration

No. Device Description
1 Development PC The PC used for development.
2 Evaluation board

(Renesas Starter Kit for RX65N)

3 Host PC (running terminal software
such as TeraTerm)

PC running serial communication software that supports
XMODEM/SUM transfer protocol (The development PC
may also be used for this purpose.)
The operation of the demo has been confirmed using
TeraTerm version 4.105.

4 USB serial converter board Converts the serial I/O signals of the Renesas Starter Kit
for RX65N to and from USB serial format and connects to
the host PC via a USB cable.

5 USB cable Implements a USB connection between the USB serial
converter board and the host PC.

Figure 4.6 RSK RX65N Device Connection Diagram

USB cable

Renesas Starter Kit for RX65N

PMOD1

RX65N

E2 Lite AC adaptor

Host PC
(Serial communications software)

Development
PC

USB serial
converter board

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 50 of 84
Dec.28.22

Table 4.2 Communication Specifications

Item Description
Communication system Asynchronous communication
Bit rate 115,200 bps
Data length 8 bits
Parity None
Stop bit 1 bit
Flow control None

4.4.1.2 Programming the Bootloader and User Program (Initial Firmware)
When the initial settings for the firmware update start from a state where the bootloader and initial firmware
have already been programmed (Figure 1.4 step [4]), the mot file of the bootloader and user program (initial
firmware) generated as described in 4.3.1 is written to the MCU board using Flash Programmer. After
programming is completed, the board should be powered off and disconnected from the emulator, etc.

4.4.1.3 Executing the Firmware Update
The initial firmware waits for the firmware update to be transferred via serial communication. The transferred
program is then written to the code flash. After the transfer completes and the signature of the transferred
firmware update has been verified, the firmware is updated (see 1.3.1).

Perform the steps below to apply the firmware update.

1. Connect the USB port of the PC to the USB serial converter board and the USB serial converter board to
the PMOD1 connector of the RSK board as shown in Figure 4.6, RSK RX65N Device Connection
Diagram.

2. Launch the terminal emulation program (TeraTerm 4.105) on the PC. Then select the serial COM port
assigned to the USB serial converter board.

3. Enter serial communication settings in the terminal software to match the settings of the sample
application: 115,200 bps, 8 data bits, no parity, 1 stop bit, no flow control.

4. Power on the board. The following message is output.

Select the “send file” function in the terminal software, and send the firmware update (.RSU file)
generated as described in 4.3.2. (Make sure to select the binary transfer option.) Please start sending
files within 1 minute. The following messages are output while the .RSU file data is being received and
written to the code flash.

5. When installation and signature verification of the firmware update finish, execution jumps to the firmware

update following a bank swap and other processing.

6. The firmware update outputs the following message indicating that the demo has completed successfully.

jump to user program
[INFO] Receive file created.
--
FIRMWARE UPDATE demo version 0.1.1
FWUP FIT module version 1.06
--
The firmware update will start.

[INFO] Flash Write: Address = 0xFFE00000, length = 1024byte ... OK
[INFO] Flash Write: Address = 0xFFE00400, length = 1024byte ... OK
[INFO] Flash Write: Address = 0xFFE00800, length = 1024byte ... OK
[INFO] Flash Write: Address = 0xFFE00C00, length = 1024byte ... OK

jump to user program
[INFO] Receive file created.

[FWUP_main DEMO] Firmware update demonstration completed.

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 51 of 84
Dec.28.22

4.4.1.4 Programming the User Program (Initial Firmware)
When the initial settings for the firmware update start from a state where the bootloader has already been
programmed (Figure 1.4 step [1]), the bootloader (mot file) built as described in 4.2.2 must be written to the
MCU board beforehand using Flash Programmer.

Powering on the board launches the bootloader, which then waits for the initial firmware to be transferred via
serial communication.

The transferred program is then written to the code flash, and after the transfer completes and the signature
has been verified, the initial firmware is launched. After the initial firmware is launched, it waits for the
firmware update. The transferred program is programmed to the code flash. After the transfer completes and
the signature of the transferred firmware update has been verified, the firmware is updated (see 1.3.1).
Perform the steps below to apply the firmware update.

1. Connect the USB port of the PC to the USB serial converter board and the USB serial converter board to
the PMOD1 connector of the RSK board as shown in Figure 4.6, RSK RX65N Device Connection
Diagram.

2. Launch the terminal emulation program on the PC. Then select the serial COM port assigned to the USB
serial converter board.

3. Enter serial communication settings in the terminal software to match the settings of the sample
application: 115,200 bps, 8 data bits, no parity, 1 stop bit, no flow control.

4. When the software is run, the following message is displayed.

Select the “send file” function in the terminal software, and send the firmware update (.RSU file)
generated as described in 4.3.3. (Make sure to select the binary transfer option.) The following messages
are output while the .RSU file data is being received and written to the code flash.

5. When installation and signature verification finish, the initial firmware is launched, and a message

prompting you to input the firmware application is output.

Select the “send file” function in the terminal software, and send the firmware update (.RSU file)
generated as described in 4.3.2. (Make sure to select the binary transfer option.) Please start sending
files within 1 minute. The following messages are output while the .RSU file data is being received and
written to the code flash.

6. When installation and signature verification of the firmware update finish, execution jumps to the firmware

update following a bank swap and other processing.

7. The firmware update outputs the following message indicating that the demo has completed successfully.

send "userprog.rsu" via UART.

installing firmware...0%(1/960KB).
installing firmware...0%(2/960KB).
installing firmware...0%(3/960KB).
installing firmware...0%(4/960KB).

jump to user program
[INFO] Receive file created.
--
FIRMWARE UPDATE demo version 0.1.1
FWUP FIT module version 1.06
--
The firmware update will start.

[INFO] Flash Write: Address = 0xFFE00000, length = 1024byte ... OK
[INFO] Flash Write: Address = 0xFFE00400, length = 1024byte ... OK
[INFO] Flash Write: Address = 0xFFE00800, length = 1024byte ... OK
[INFO] Flash Write: Address = 0xFFE00C00, length = 1024byte ... OK

jump to user program
[INFO] Receive file created.

[FWUP_main DEMO] Firmware update demonstration completed.

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 52 of 84
Dec.28.22

4.4.2 Firmware Update Using Linear Mode (Partial Overwrite)
In the example described below, the firmware update demo uses the serial communications interface (SCI)
of the RX66T, which is mounted on the RSK RX66T starter kit board.

4.4.2.1 Preparing the Execution Environment
The firmware update demo uses serial port SCI6, which interfaces with the PMOD1. The PMOD1 connector
is connected to a serial converter board.

A PC running terminal software is required for data input and output.

Table 4.3 Device Configuration

No. Device Description
1 Development PC The PC used for development.
2 Evaluation board

(Renesas Starter Kit for RX66T)
Short-circuit the J7 setting as a 5V power supply is
required.

3 Host PC (running terminal software
such as TeraTerm)

PC running serial communication software that supports
XMODEM/SUM transfer protocol (The development PC
may also be used for this purpose.)
The operation of the demo has been confirmed using
TeraTerm version 4.105.

4 USB serial converter board Converts the serial I/O signals of the Renesas Starter Kit
for RX66T to and from USB serial format and connects to
the host PC via a USB cable. *1

5 USB cable Implements a USB connection between the USB serial
converter board and the host PC.

Note: 1. This demonstration project uses Digilent's Pmod USBUART for operation. Pmod USBUART and

PMOD1 should be connected as follows.

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 53 of 84
Dec.28.22

Figure 4.7 RSK RX66T Device Connection Diagram

Table 4.4 Communication Specifications

Item Description
Communication system Asynchronous communication
Bit rate 115,200 bps
Data length 8 bits
Parity None
Stop bit 1 bit
Flow control RTS/CTS

4.4.2.2 Programming the Bootloader and User Program (Initial Firmware)
When the initial settings for the firmware update start from a state where the bootloader and initial firmware
have already been programmed (Figure 1.6 step [2]), the mot file of the bootloader and user program (initial
firmware) generated as described in 4.3.1 is written to the MCU board using Flash Programmer. After
programming is completed, the board should be powered off and disconnected from the emulator, etc.

4.4.2.3 Executing the Firmware Update
The initial firmware waits for the firmware update to be transferred via serial communication. The transferred
program is then written to the code flash. After the transfer completes and the signature of the transferred
firmware update has been verified, the firmware is updated (see 1.3.2.1).

Perform the steps below to apply the firmware update.

1. Connect the USB port of the PC to the USB serial converter board and the USB serial converter board to
the PMOD1 connector of the RSK board as shown in Figure 4.7, RSK RX66T Device Connection
Diagram.

2. Launch the terminal emulation program (TeraTerm 4.105) on the PC. Then select the serial COM port
assigned to the USB serial converter board.

3. Enter serial communication settings in the terminal software to match the settings of the sample
application: 115,200 bps, 8 data bits, no parity, 1 stop bit, flow control (RTS/CTS).

4. Power on the board. The following message is output.

PMOD1

RX66T

E2 Lite AC adaptor

USB serial
converter board

USB cable

Renesas Starter Kit for RX66T

Host PC
(Serial communications software)

Development
PC

jump to user program
[INFO] Receive file created.
--
FIRMWARE UPDATE demo version 0.1.1
FWUP FIT module version 1.06
--
The firmware update will start.

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 54 of 84
Dec.28.22

Select the “send file” function in the terminal software, and send the firmware update (.RSU file)
generated as described in 4.3.2. (Make sure to select the binary transfer option.) Please start sending
files within 1 minute. The transferred file data is received and written to user program area 1 by the initial
firmware. The following messages are output while data is being received and written.

5. When installation and signature verification of the firmware update finish, the firmware update written to

user program area 1 is copied to user program area 0, after which user program area 1 is erased, user
program area 0 (the firmware update) is launched, and the program runs.

6. The firmware update outputs the following message indicating that the demo has completed successfully.

[INFO] Flash Write: Address = 0xFFF80000, length = 1024byte ... OK
[INFO] Flash Write: Address = 0xFFF80400, length = 1024byte ... OK
[INFO] Flash Write: Address = 0xFFF80800, length = 1024byte ... OK
[INFO] Flash Write: Address = 0xFFF80C00, length = 1024byte ... OK

jump to user program
[INFO] Receive file created.

[FWUP_main DEMO] Firmware update demonstration completed.

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 55 of 84
Dec.28.22

4.4.2.4 Programming the User Program (Initial Firmware)
When the initial settings for the firmware update start from a state where the bootloader has already been
programmed (Figure 1.6 step [1]), the bootloader (mot file) built as described in 4.2.2 must be written to the
MCU board beforehand using Flash Programmer.

Powering on the board launches the bootloader, which then waits for the initial firmware to be transferred via
serial communication.

After the transferred program has been programmed to the code flash and data flash, the signature is
verified and the initial firmware is launched. After the initial firmware is launched, it waits for the firmware
update to be transferred. The transferred program is programmed to the code flash. After the transfer
completes and the signature of the transferred firmware update has been verified, the firmware is updated
(see 1.3.2.1). Perform the steps below to apply the firmware update.

1. Connect the USB port of the PC to the USB serial converter board and the USB serial converter board to
the PMOD1 connector of the RSK board as shown in Figure 4.7, RSK RX66T Device Connection
Diagram.

2. Launch the terminal emulation program on the PC. Then select the serial COM port assigned to the USB
serial converter board.

3. Enter serial communication settings in the terminal software to match the settings of the sample
application: 115,200 bps, 8 data bits, no parity, 1 stop bit, flow control (RTS/CTS).

4. When the software is run, the following message is displayed.

Select the “send file” function in the terminal software, and send the firmware update (.RSU file)
generated as described in 4.3.3. (Make sure to select the binary transfer option.) Please start sending
files within 1 minute. The following messages are output while the .RSU file data is being received and
written to the code flash.

5. When installation and signature verification finish, the initial firmware is launched, and a message

prompting you to input the firmware application is output.

Select the “send file” function in the terminal software, and send the firmware update (.RSU file)
generated as described in 4.3.2. (Make sure to select the binary transfer option.) Please start sending
files within 1 minute. The following messages are output while the .RSU file data is being received and
written to the code flash.

6. When installation and signature verification of the firmware update finish, the firmware update written to

user program area 1 is copied to user program area 0, after which user program area 1 is erased, user
program area 0 (the firmware update) is relaunched, and the program runs.

send "userprog.rsu" via UART.

installing firmware...0%(1/960KB).
installing firmware...0%(2/960KB).
installing firmware...0%(3/960KB).
installing firmware...0%(4/960KB).

jump to user program
[INFO] Receive file created.
--
FIRMWARE UPDATE demo version 0.1.1
FWUP FIT module version 1.06
--
The firmware update will start.

[INFO] Flash Write: Address = 0xFFF80000, length = 1024byte ... OK
[INFO] Flash Write: Address = 0xFFF80400, length = 1024byte ... OK
[INFO] Flash Write: Address = 0xFFF80800, length = 1024byte ... OK
[INFO] Flash Write: Address = 0xFFF80C00, length = 1024byte ... OK

jump to user program
[INFO] Receive file created.

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 56 of 84
Dec.28.22

7. The firmware update outputs the following message indicating that the demo has completed successfully.

4.4.3 Firmware Update Using Linear Mode (Full Overwrite)
In the example described below, the firmware update demo uses the serial communications interface (SCI)
of the RX66T, which is mounted on the RSK RX66T starter kit board.

4.4.3.1 Preparing the Execution Environment
The firmware update demo uses serial port SCI6, which interfaces with the PMOD1. The PMOD1 connector
is connected to a serial converter board.

A PC running terminal software is required for data input and output.

Table 4.5 Device Configuration

No. Device Description
1 Development PC The PC used for development.
2 Evaluation board

(Renesas Starter Kit for RX66T)
Short-circuit the J7 setting as a 5V power supply is
required.

3 Host PC (running terminal software
such as TeraTerm)

PC running serial communication software that supports
XMODEM/SUM transfer protocol (The development PC
may also be used for this purpose.)
The operation of the demo has been confirmed using
TeraTerm version 4.105.

4 USB serial converter board Converts the serial I/O signals of the Renesas Starter Kit
for RX66T to and from USB serial format and connects to
the host PC via a USB cable. *1

5 USB cable Implements a USB connection between the USB serial
converter board and the host PC.

Note: 1. This demonstration project uses Digilent's Pmod USBUART for operation. Pmod USBUART and

PMOD1 should be connected as follows.

[FWUP_main DEMO] Firmware update demonstration completed.

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 57 of 84
Dec.28.22

Figure 4.8 RSK RX66T Device Connection Diagram

Table 4.6 Communication Specifications

Item Description
Communication system Asynchronous communication
Bit rate 115,200 bps
Data length 8 bits
Parity None
Stop bit 1 bit
Flow control RTS/CTS

4.4.3.2 Programming the Bootloader and User Program (Initial Firmware)
When the initial settings for the firmware update start from a state where the bootloader and initial firmware
have already been programmed (Figure 1.6 step [2]), the mot file of the bootloader and user program (initial
firmware) generated as described in 4.3.1 is written to the MCU board using Flash Programmer. After
programming is completed, the board should be powered off and disconnected from the emulator, etc.
(When the initial settings for the firmware update start from a state in which only the bootloader has been
programmed, the bootloader (mot file) built as described in 4.2.2 must be written to the MCU board
beforehand using Flash Programmer.)

4.4.3.3 Executing the Firmware Update
Powering on the board launches the initial firmware, after which the image flag for executing the firmware
update to the update file is cleared immediately, and a software reset occurs. The software reset causes the
bootloader to be launched, which erases the user program area and waits for the firmware update to be
transferred. The transferred program is then written to the code flash. After the transfer completes and the
signature of the transferred firmware update has been verified, the firmware is updated (see 1.3.2.2).

Perform the steps below to apply the firmware update.

PMOD1

RX66T

E2 Lite AC adaptor

USB serial
converter board

USB cable

Renesas Starter Kit for RX66T

Host PC
(Serial communications software)

Development
PC

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 58 of 84
Dec.28.22

1. Connect the USB port of the PC to the USB serial converter board and the USB serial converter board to
the PMOD1 connector of the RSK board as shown in Figure 4.8, RSK RX66T Device Connection
Diagram.

2. Launch the terminal emulation program (TeraTerm 4.105) on the PC. Then select the serial COM port
assigned to the USB serial converter board.

3. Enter serial communication settings in the terminal software to match the settings of the sample
application: 115,200 bps, 8 data bits, no parity, 1 stop bit, flow control (RTS/CTS).

4. Power on the board. The following message is output.

Select the “send file” function in the terminal software, and send the firmware update (.RSU file)
generated as described in 4.3.2. (Make sure to select the binary transfer option.) Please start sending
files within 1 minute. The transferred file data is received and written to the user program area by the
bootloader. The following messages are output while data is being received and written.

5. When installation and signature verification of the firmware update finish, execution jumps to the user

program area (the firmware update), and the program runs.

6. The firmware update outputs the following message indicating that the demo has completed successfully.

4.4.3.4 Programming the User Program (Initial Firmware)
When the initial settings for the firmware update start from a state where the bootloader has already been
programmed (Figure 1.8 step [1]), the bootloader (mot file) built as described in 4.2.2 must be written to the
MCU board beforehand using Flash Programmer.

Powering on the board launches the bootloader, which then waits for the initial firmware to be transferred via
serial communication.

Powering on the board launches the initial firmware, after which the image flag for executing the firmware
update to the update file is cleared immediately, and a software reset occurs. The software reset causes the
bootloader to be launched, which erases the user program area and waits for the firmware update to be
transferred. The transferred program is then written to the code flash. After the transfer completes and the
signature of the transferred firmware update has been verified, the firmware is updated (see 1.3.2.2).

Perform the steps below to apply the firmware update.

BOOTLOADER demo version 0.1.1
FWUP FIT module version 1.06

RX66T secure boot program

Checking flash ROM status.
bank 0 status = 0xff [LIFECYCLE_STATE_BLANK]
bank 1 status = 0xff [LIFECYCLE_STATE_BLANK]
start installing user program.
========== install user program phase ==========
erase install area (data flash): OK
erase install area (code flash): OK
send "userprog.rsu" via UART.

installing firmware...0%(1/960KB).
installing firmware...0%(2/960KB).
installing firmware...0%(3/960KB).
installing firmware...0%(4/960KB).

jump to user program
[INFO] Receive file created.

[FWUP_main DEMO] Firmware update demonstration completed.

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 59 of 84
Dec.28.22

1. Connect the USB port of the PC to the USB serial converter board and the USB serial converter board to
the PMOD1 connector of the RSK board as shown in Figure 4.8, RSK RX65N Device Connection
Diagram.

2. Launch the terminal emulation program on the PC. Then select the serial COM port assigned to the USB
serial converter board.

3. Enter serial communication settings in the terminal software to match the settings of the sample
application: 115,200 bps, 8 data bits, no parity, 1 stop bit, flow control (RTS/CTS).

4. When the software is run, the following message is displayed.

Select the “send file” function in the terminal software, and send the firmware update (.RSU file)
generated as described in 4.3.2. (Make sure to select the binary transfer option.) Please start sending
files within 1 minute. The following messages are output while the .RSU file data is being received and
written to the code flash.

5. When installation and signature verification finish, the initial firmware is launched, and a message

prompting you to input the firmware application is output.

Select the “send file” function in the terminal software, and send the firmware update (.RSU file)
generated as described in 4.3.2. (Make sure to select the binary transfer option.) Please start sending
files within 1 minute. The following messages are output while the .RSU file data is being received and
written to the code flash.

6. When installation and signature verification finish, execution jumps to the user program area (the

firmware update), and the program runs.

7. The firmware update outputs the following message indicating that the demo has completed successfully.

send "userprog.rsu" via UART.

installing firmware...0%(1/960KB).
installing firmware...0%(2/960KB).
installing firmware...0%(3/960KB).
installing firmware...0%(4/960KB).

jump to user program
[INFO] Receive file created.
--
FIRMWARE UPDATE demo version 0.1.1
FWUP FIT module version 1.06
--
The firmware update will start.
[INFO] Update ExeHeader ImageFlag : OK
[INFO] Resetting the device.

BOOTLOADER demo version 0.1.1
FWUP FIT module version 1.06

RX66T secure boot program

Checking flash ROM status.
bank 0 status = 0xff [LIFECYCLE_STATE_BLANK]
bank 1 status = 0xff [LIFECYCLE_STATE_BLANK]
start update user program.
========== install user program phase ==========
erase install area (data flash): SKIP
erase install area (code flash): OK
send update firmware via UART.

installing firmware...0%(1/960KB).
installing firmware...0%(2/960KB).
installing firmware...0%(3/960KB).
installing firmware...0%(4/960KB).

jump to user program
[INFO] Receive file created.

[FWUP_main DEMO] Firmware update demonstration completed.

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 60 of 84
Dec.28.22

5. Appendices
5.1 Confirmed Operation Environment
This section describes confirmed operation environment for the FIT module.

Table 5.1 Confirmed Operation Environment (CC-RX)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio 2022 10

C compiler Renesas Electronics C/C++ Compiler for RX Family V3.04.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

Endian order Little endian
Revision of the module Rev.1.06
Board used Renesas Starter Kit+ for RX65N (product No.: RTK50565N2SxxxxxBE)

Renesas Starter Kit+ for RX72N (product No.: RTK5572NNxxxxxxxBE)
Renesas Starter Kit+ for RX671 (product No.: RTK55671EHS10000BE)
Renesas Starter Kit for RX66T (product No.: RTK50566T0S00000BE)
Renesas Starter Kit for RX660 (product No.: RTK556609HCxxxxxBJ)
Renesas Starter Kit+ for RX231 (product No.: R0K505231SxxxBE)
Renesas Starter Kit for RX130-512KB (product No.: RTK5051308SxxxxxBE)
Renesas Starter Kit for RX140-256KB (product No.: RTK551406BxxxxxBJ)

USB serial converter
board

Pmod USBUART (Digilent, Inc.)
https://reference.digilentinc.com/reference/pmod/pmodusbuart/start

Table 5.2 Confirmed Operation Environment (GCC)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio 2022 10

C compiler GCC for Renesas RX 8.3.0.202202
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99

Endian order Little endian
Revision of the module Rev.1.06
Board used Renesas Starter Kit+ for RX65N (product No.: RTK50565N2SxxxxxBE)

Renesas Starter Kit+ for RX72N (product No.: RTK5572NNxxxxxxxBE)
Renesas Starter Kit+ for RX671 (product No.: RTK55671EHS10000BE)
Renesas Starter Kit for RX66T (product No.: RTK50566T0S00000BE)
Renesas Starter Kit for RX660 (product No.: RTK556609HCxxxxxBJ)
Renesas Starter Kit+ for RX231 (product No.: R0K505231SxxxBE)
Renesas Starter Kit for RX130-512KB (product No.: RTK5051308SxxxxxBE)
Renesas Starter Kit for RX140-256KB (product No.: RTK551406BxxxxxBJ)

USB serial converter
board

Pmod USBUART (Digilent, Inc.)
https://reference.digilentinc.com/reference/pmod/pmodusbuart/start

https://reference.digilentinc.com/reference/pmod/pmodusbuart/start
https://reference.digilentinc.com/reference/pmod/pmodusbuart/start

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 61 of 84
Dec.28.22

Table 5.3 Confirmed Operation Environment (IAR)

Item Contents
Integrated development
environment

IAR Embedded Workbench for Renesas RX 4.20.3

C compiler IAR C/C++ Compiler for Renesas RX 4.20.3
Compiler option: The default settings of the integrated development environment

Endian order RX smart configurator V2.14.0
Revision of the module Little endian
Board used Rev.1.06
USB serial converter
board

Renesas Starter Kit+ for RX65N (product No.: RTK50565N2SxxxxxBE)
Renesas Starter Kit+ for RX72N (product No.: RTK5572NNxxxxxxxBE)
Renesas Starter Kit+ for RX671 (product No.: RTK55671EHS10000BE)
Renesas Starter Kit for RX66T (product No.: RTK50566T0S00000BE)
Renesas Starter Kit for RX660 (product No.: RTK556609HCxxxxxBJ)
Renesas Starter Kit+ for RX231 (product No.: R0K505231SxxxBE)
Renesas Starter Kit for RX130-512KB (product No.: RTK5051308SxxxxxBE)
Renesas Starter Kit for RX140-256KB (product No.: RTK551406BxxxxxBJ)

Integrated development
environment

Pmod USBUART (Digilent, Inc.)
https://reference.digilentinc.com/reference/pmod/pmodusbuart/start

https://reference.digilentinc.com/reference/pmod/pmodusbuart/start

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 62 of 84
Dec.28.22

The versions of the FIT modules used by the demo project to confirm firmware update operation are listed
below.

(1) Renesas Electronics C/C++ Compiler Package for RX Family

Table 5.4 FIT Module Versions (CC-RX)

Device Project r_bsp r_byteq
r_flash
_rx r_fwup

r_sys
_time_rx r_sci_rx r_cmt_rx

RX130 boot_loader
fwup_main
eol_main

7.20 2.00 4.90 1.06 1.01 4.40 5.20

RX140 boot_loader
fwup_main
eol_main

7.20 2.00 4.90 1.06 1.01 4.40 5.20

RX231 boot_loader
fwup_main
eol_main

7.20 2.00 4.90 1.06 1.01 4.40 5.20

RX65N boot_loader
fwup_main
eol_main

7.20 2.00 4.90 1.06 1.01 4.40 5.20

aws_demos 7.20 2.00 4.90 1.06 1.01 4.40 5.20
RX66T
(non-

dualbank2)

boot_loader
fwup_main
eol_main

7.20 2.00 4.90 1.06 1.01 4.40 5.20

fwup_main_
woSciDrv

7.20 2.00 4.90 1.06 1.01 4.40 5.20

RX66T
(non-

dualbank3)

boot_loader
fwup_main
eol_main

7.20 2.00 4.90 1.06 1.01 4.40 5.20

RX660 boot_loader
fwup_main
eol_main

7.20 2.00 4.90 1.06 1.01 4.40 5.20

RX671 boot_loader
fwup_main
eol_main

7.20 2.00 4.90 1.06 1.01 4.40 5.20

RX72N boot_loader
fwup_main
eol_main

7.20 2.00 4.90 1.06 1.01 4.40 5.20

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 63 of 84
Dec.28.22

(2) GCC for Renesas RX

Table 5.5 FIT Module Versions (GCC)

Device Project r_bsp r_byteq
r_flash
_rx r_fwup

r_sys_
time_rx r_sci_rx

r_cmt
_rx

RX130 boot_loader_gcc
fwup_main_gcc
eol_main_gcc

7.20 2.00 4.90 1.06 1.01 4.40 5.20

RX140 boot_loader_gcc
fwup_main_gcc
eol_main_gcc

7.20 2.00 4.90 1.06 1.01 4.40 5.20

RX231 boot_loader_gcc
fwup_main_gcc
eol_main_gcc

7.20 2.00 4.90 1.06 1.01 4.40 5.20

RX65N boot_loader_gcc
fwup_main_gcc
eol_main_gcc

7.20 2.00 4.90 1.06 1.01 4.40 5.20

aws_demos 7.00 2.00 4.90 1.06 1.01 4.40 5.20
RX66T boot_loader_gcc

fwup_main_gcc
eol_main_gcc

7.20 2.00 4.90 1.06 1.01 4.40 5.20

RX660 boot_loader
fwup_main
eol_main

7.20 2.00 4.90 1.06 1.01 4.40 5.20

RX671 boot_loader_gcc
fwup_main_gcc
eol_main_gcc

7.20 2.00 4.90 1.06 1.01 4.40 5.20

RX72N boot_loader_gcc
fwup_main_gcc
eol_main_gcc

7.20 2.00 4.90 1.06 1.01 4.40 5.20

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 64 of 84
Dec.28.22

(3) IAR C/C++ Compiler for RX

Table 5.6 FIT Module Versions (IAR)

Device Project r_bsp r_byteq
r_flash
_rx r_fwup

r_sys_
time_rx r_sci_rx

r_cmt
_rx

RX130 boot_loader_gcc
fwup_main_gcc
eol_main_gcc

7.20 2.00 4.90 1.06 1.01 4.40 5.20

RX140 boot_loader_gcc
fwup_main_gcc
eol_main_gcc

7.20 2.00 4.90 1.06 1.01 4.40 5.20

RX231 boot_loader_gcc
fwup_main_gcc
eol_main_gcc

7.20 2.00 4.90 1.06 1.01 4.40 5.20

RX65N boot_loader_gcc
fwup_main_gcc
eol_main_gcc

7.20 2.00 4.90 1.06 1.01 4.40 5.20

RX66T boot_loader_gcc
fwup_main_gcc
eol_main_gcc

7.20 2.00 4.90 1.06 1.01 4.40 5.20

RX660 boot_loader
fwup_main
eol_main

7.20 2.00 4.90 1.06 1.01 4.40 5.20

RX671 boot_loader_gcc
fwup_main_gcc
eol_main_gcc

7.20 2.00 4.90 1.06 1.01 4.40 5.20

RX72N boot_loader_gcc
fwup_main_gcc
eol_main_gcc

7.20 2.00 4.90 1.06 1.01 4.40 5.20

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 65 of 84
Dec.28.22

5.2 Compiler-Dependent Settings
This module supports multiple compilers. To use this module, different settings are required for each
compiler as shown below.

5.2.1 Using Renesas Electronics C/C++ Compiler Package for RX Family
This section describes how to use Renesas Electronics C/C++ Compiler Package for RX Family as the
compiler. The process of setting up the linker sections must be performed in e2 studio.

5.2.1.1 Compiler Options
Add the following option to the default settings of the integrated development environment.

-lang = c99

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 66 of 84
Dec.28.22

5.2.1.2 Changing Address Assignments in Flash Memory
The linker section settings need to be changed in order to assign the bootloader and user program to
execution areas in the flash memory.

1. In the Project Explorer view, click the project to be debugged.
2. Select File → Properties to open the Properties window.
3. In the Properties window, select C/C++ Build → Settings.
4. Select the Tool Settings tab, select Linker → Action, and click the […] button to open the Section

Viewer window.

a)

b)

Figure 5.1 Section Settings in Renesas Electronics C/C++ Compiler Package for RX Family

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 67 of 84
Dec.28.22

5. Change the values of a) and b) in the Section Viewer window to match your environment.
Example: The settings are as follows when using the RX65N in dual mode and the bootloader size is
64 KB.
Code Description Bootloader Settings User Program Settings
a) Start address in flash memory 0xFFFF0000 0xFFF00300
b) Exception vector and reset vector

addresses
0xFFFFFF80
0xFFFFFFFC

0xFFFEFF80
0xFFFEFFFC

5.2.1.3 Settings for Programming Flash Memory
Settings must be configured in order to write the user program and boot program to flash memory. Refer to
the following application note for details of the settings.

Section 5.3.1, Using Renesas Electronics C/C++ Compiler Package for RX Family, in RX Family Flash
Module Using Firmware Integration Technology (R01AN2184).

5.2.2 Using GCC for Renesas RX
This section describes how to use GCC for Renesas RX as the compiler. For the linker settings it is
necessary to edit the linker settings file generated by e2 studio.

5.2.2.1 Compiler Options
1. Compiler options: Add the following option to the default settings of the integrated development

environment.
-std=gnu99

2. Link options: When using the Optimize size (-Os) option, add the following options to the default settings
of the integrated development environment.
-WI,--no-gc-sections
This is a workaround to prevent the linker from mistakenly discarding interrupt handlers declared in FIT
peripheral modules.

3. Compiler options: When debugging the bootloader, add the following option to the default settings of the
integrated development environment.
Optimization level: Optimize for debug (-Og)

5.2.2.2 Changing Address Assignments in Flash Memory
The linker settings need to be changed in order to assign the bootloader and user program to execution
areas in the on-chip flash memory.

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 68 of 84
Dec.28.22

1. In the Project Explorer view, right-click the linker settings file (linker_script.ld) and select Open.
2. In the linker_script.ld window, click the linker_script.ld tab.

Figure 5.2 Section Settings in GCC for Renesas RX (1/2)

3. Change the values of a) to d) below to match your environment.

a)

b)

c)

d)

Figure 5.3 Section Settings in GCC for Renesas RX (2/2)

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 69 of 84
Dec.28.22

Example: The settings are as follows when using the RX65N in dual mode and the bootloader size is
64 KB.
Code Description Bootloader Settings User Program Settings
a) Code flash start address and code

flash size
ORIGIN = 0xFFFF0000
LENGTH = 65536

ORIGIN = 0xFFF00300
LENGTH = 982272

b) Exception vector address 0xFFFFFF80 0xFFFEFF80
c) Reset vector address 0xFFFFFFFC 0xFFFEFFFC
d) Code flash start address = same

address as a)
0xFFFF0000 0xFFF00300

5.2.2.3 Settings for Programming Flash Memory
Settings must be configured in order to write the user program and boot program to flash memory. Refer to
the following application note for details of the settings.

Section 5.3.2, Using GCC for Renesas RX, in RX Family Flash Module Using Firmware Integration
Technology (R01AN2184).

5.2.2.4 Warning Message During Build
When building the FIT module, a warning message may appear indicating that the stack area used by the
function exceeds the byte size specified by the -Wstack-usage option (“warning: stack usage is XXX bytes [-
Wstack-usage=]”). (The default is 100 bytes.) If there is a problem, make appropriate changes to the build
option settings.

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 70 of 84
Dec.28.22

5.2.3 Using IAR C/C++ Compiler for RX
This section describes how to use IAR C/C++ Compiler for RX as the compiler.

5.2.3.1 Compiler Options
In the project option settings of IAR Embedded Workbench for Renesas RX, set the output converter →
output settings to output Motorola S-records.
Change the extension of the output file from the default “* .srec” to “* .mot”.

Figure 5.4 Changing the Extension of the Output File

5.2.3.2 Settings for Programming Flash Memory
Settings must be configured in order to write the user program and boot program to flash memory. Refer to
the following application note for details of the settings.

Section 5.3.3, Using IAR C/C++ Compiler for Renesas RX, in RX Family Flash Module Using Firmware
Integration Technology (R01AN2184).

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 71 of 84
Dec.28.22

5.2.3.3 Changing Address Assignments in Flash Memory
The linker settings file created as described in 5.2.3.2 needs to be changed in order to assign the bootloader
and user program to execution areas in the on-chip flash memory.

1. Open the linker settings file (*.icf) created as described in 5.2.3.2 in an editor.
2. Change the following addresses (a) to (c) according to the user’s environment.

(Example: RX65N boot loader linker configuration file).

a)

b)
c)

The settings are as follows when using the RX65N in dual mode and the bootloader size is 64 KB.
Code Description Bootloader Settings User Program Settings
a) Code flash start address and code

flash size
from 0xFFFF0000
to 0xFFFFFFFF

from 0xFFF00300
to 0xFFFEFFFF

b) Reset vector address 0xFFFFFFFC 0xFFFEFFFC
c) Exception vector address 0xFFFFFF80 0xFFFEFF80

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 72 of 84
Dec.28.22

5.3 Storage Destination for FreeRTOS Data (RX65N-2MB Only)
You can use a configuration option to select between the code flash and data flash as the storage
destination for PKCS11 data (code signing certificate, etc.) used for OTA updating of FreeRTOS. This
selection applies to RX65N-2MB products only.

5.3.1 Storage Destination Selection
The following configuration option is used to select the storage destination for PKCS11 data.

Note that this setting is valid when OTA updating of FreeRTOS is performed. Also, ensure that the settings in
the boot program and FreeRTOS (OTA) program match.

FWUP_CFG_OTA_DATA_STORAGE

0: Data flash (default)

1: Code flash

The storage area in the data flash is 0x00100000 to 0x00107FFF (32 KB).

The storage area in the code flash is 0xFFE00000 to 0xFFE07FFF (32 KB).

5.3.2 Section Settings
When placing the PKCS11 data in the code flash, configure the section settings of the FreeRTOS (OTA)
program as shown in the figure below.

Figure 5.5 Section Settings when Code Flash Selected

When placing the PKCS11 data in the data flash, refer to the section settings in the sample program.

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 73 of 84
Dec.28.22

5.3.3 Conversion to .RSU File when Code Flash Selected
The method of converting to an .RSU file when the code flash is selected is described below.
Build the FreeRTOS (OTA) program, then use Renesas Image Generator to convert the resulting .mot file
into an .RSU file.

In Renesas Image Generator, select the [Initial Firm] tab and set Select MCU to RX65N Flash(Code=2MB,
Data=0KB), then convert the file.

Refer to 4.3.3, Generating a User Program (Initial Firmware) RSU Image File, for the file conversion
procedure.

Figure 5.6 Conversion to .RSU File when Code Flash Selected (Initial Firm Tab)

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 74 of 84
Dec.28.22

In Renesas Image Generator, select the [Update Firm] tab and set Select MCU to RX65N
Flash(Code=2MB, Data=0KB), then convert the file.

Refer to 4.3.2, Generating a User Program (Firmware Update) RSU Image File, for the file conversion
procedure.

Figure 5.7 Conversion to .RSU File when Code Flash Selected (Update Firm Tab)

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 75 of 84
Dec.28.22

5.4 Configuration of Firmware Update Images Created by Image Generator
The firmware update memory configuration differs between dual mode and linear mode.

5.4.1 Memory Configuration in Dual Mode
In dual mode the initial firmware (bootloader and user program) is assigned to the bank 0 area and the user
program update is assigned to the bank 1 area. Note that an RSU header is added at the beginning of the
user program by the Image Generator (see Table 5.7).

Refer to 1.3.1 for the operation specifications for a firmware update in dual mode. The figure below shows
the configuration of the firmware update in the code flash memory (2 MB) of the RX65N as an example.

Note: 1. Copied to boot program area in bank 0 area by bootloader.

Figure 5.8 Firmware Update Memory Configuration in Code Flash Memory (2 MB) of RX65N

User program
(firmware update)

(EFD00H)

0xFFE00000
RSU header

(300H)0xFFE002FF
0xFFE00300

Bootloader program
(mirror)*1
(10000H)

0xFFEEFFFF
0xFFEF0000

RSU header
(300H)

User program
(initial firmware)

(EFD00H)

Bootloader program
(10000H)

0xFFEFFFFF
0xFFF00000

0xFFF002FF

0xFFF00300

0xFFFEFFFF
0xFFFF0000

0xFFFFFFFF

User program area bank 1 (960 KB)

User program area bank 0 (960 KB)

Bootloader area bank 1 (64 KB)

Bootloader area bank 0 (64 KB)

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 76 of 84
Dec.28.22

5.4.2 Memory Configuration in Linear Mode (Partial Overwrite)
In linear mode (partial overwrite) the bootloader is assigned to the lower 64 KB of the code flash memory,
and of the remaining area the upper half (area 1) is assigned to the user program update and the lower half
(area 0) is assigned to the initial user program. Note that an RSU header is added at the beginning of the
user program by the Image Generator (see Table 5.7).

Refer to 1.3.2.1 for the operation specifications for a firmware update in linear mode (partial overwrite).

The figure below shows the configuration of the firmware update in the code flash memory (512 MB) of the
RX66T as an example.

Figure 5.9 Firmware Update Memory Configuration in Code Flash Memory (512 KB) of RX66T

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 77 of 84
Dec.28.22

5.4.3 Memory Configuration in Linear Mode (Full Overwrite)
In linear mode (full overwrite) the bootloader is assigned to the lower 64 KB of the code flash memory, and
the remaining area is assigned to the user program (initial firmware and firmware update). Note that an RSU
header is added at the beginning of the user program by the Image Generator (see Table 5.7).

Refer to 1.3.2.2 for the operation specifications for a firmware update in linear mode (full overwrite).

The figure below shows the configuration of the firmware update in the code flash memory (512 MB) of the
RX66T as an example.

Figure 5.10 Firmware Update Memory Configuration in Code Flash Memory (512 KB) of RX66T

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 78 of 84
Dec.28.22

5.5 Details of Firmware Update Images Created by Image Generator
Using programs generated by building projects such as the bootloader or user program as a basis, Image
Generator creates image files that provide the firmware update memory configuration shown in 5.4. Since
the user program (.mot) file does not contain the information the bootloader needs to verify the signature of
the user program, Image Generator creates the RSU header (0x300h) shown below and adds it at the
beginning of the user program.

Table 5.7 RSU Header Details

Offset Item
Length
(byte) Description

0x00000000 Magic Code 7 Magic code (“Renesas”)
0x00000007 Image Flags 1 Status flag used by the bootloader to verify the

user program
0x00000008 Firmware Verification

Type
32 Identifier specifying the firmware verification

method (specified by Image Generator)
0x00000028 Signature size 4 Data size of signature value, MAC value, hash

value, etc., used for firmware verification
0x0000002C Signature 256 Signature value, MAC value, hash value, etc.,

used for firmware verification
0x0000012C Data Flash Flag 4 Flag indicating whether or not data for the data

flash memory is included
0x00000130 Data Flash Start Address 4 Data flash start address
0x00000134 Data Flash End Address 4 Data flash end address
0x00000138 Reserved(0x00) 200 Reserved area
0x00000200 Sequence Number 4 Sequence number (set to a value specified to

Image Generator)
0x00000204 Start Address 4 Start address in serial flash memory to which the

user program is programmed (set automatically by
Image Generator)

0x00000208 End Address 4 End address in serial flash memory to which the
user program is programmed (set automatically by
Image Generator)

0x0000020C Execution Address 4 Reserved area
0x00000210 Hardware ID 4 Hardware ID decided when a selection is made for

“Select MCU” in Image Generator; used by the
bootloader.

0x00000214 Reserved(0x00) 236 Reserved area

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 79 of 84
Dec.28.22

5.5.1 Details of Image Containing Bootloader and User Program (Initial Firmware)
When the initial settings for the firmware update start from a state where the bootloader and user program
(initial firmware) have already been programmed (Figure 1.4 step [4] for dual mode, Figure 1.6 step [2] for
linear mode (partial overwrite), Figure 1.8 step [2] for linear mode (full overwrite)), the mot file generated by
building the bootloader and user program (initial firmware), as well as the secret key for signature verification
generated as described in 4.2.1.2, are input to Image Generator, which generates a mot file. The resulting
mot file is written to the MCU board using Flash Programmer.

Notes: 1. Data consisting of the value 0xFF is generated for the unused area of the data flash memory.
 2. Image Generator generates the RSU header.
 3. Data consisting of the value 0xFF is generated for the unused area of the code flash memory.

Figure 5.11 Details of Image Containing Bootloader and User Program (Initial Firmware)

Import

boot_loader.mot

User program

Bootloader
program

Build
OFSM

register

Code flash

Import

fwup_main.mot

OFSM
register

Code flash

Data flash

Build

mot file

RSU header
*2

Code flash
*3

Code flash
*3

Image Generator

Initial Firm

Boot Loader

Bank0 User Program

Private Key PathSecret key
for signature
verification

Data flash
*1

OFSM
register

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 80 of 84
Dec.28.22

5.5.2 Details of RSU Image Containing User Program (Firmware Update)
When generating a firmware update, the mot file generated by building the user program (firmware update)
and the secret key for signature verification generated as described in 4.2.1.2 are input to Image Generator,
which generates an RSU file. The resulting RSU file contains the user program (firmware update) that is
programmed by the bootloader.

Notes: 1. Image Generator generates the RSU header.
 2. Data consisting of the value 0xFF is generated for the unused area of the code flash memory.

Figure 5.12 Details of Image Containing User Program (Firmware Update)

5.5.3 Details of RSU Image Containing User Program (Initial Firmware)
When the initial settings for the firmware update start from a state where the bootloader has already been
programmed (Figure 1.4 step [1] for dual mode, Figure 1.6 step [1] for linear mode (partial overwrite), Figure
1.8 step [1] for linear mode (full overwrite)), the mot file generated by building the user program (initial
firmware) and the secret key for signature verification generated as described in 4.2.1.2 are input to Image
Generator, which generates an RSU file. The resulting RSU file contains the user program (initial firmware)
that is programmed by the bootloader.

Notes: 1. Data consisting of the value 0xFF is generated for the unused area of the data flash memory.
 2. Image Generator generates the RSU header.
 3. Data consisting of the value 0xFF is generated for the unused area of the code flash memory.

Figure 5.13 Details of Image Containing User Program (Initial Firmware)

Import

fwup_main.mot

Build

RSU file

Image Generator

Update Firm

Bank0 User Program

Private Key Path

User program

OFSM
register

Code flash

Data flash

RSU header
*1

Code flash
*2

Secret key
for signature
verification

Import

fwup_main.mot

Build

RSU file

Image Generator

Initial Firm

Bank0 User Program

Private Key Path

User program

OFSM
register

Code flash

Data flash

RSU header
*2

Code flash
*3

Data flash
*1

Secret key
for signature
verification

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 81 of 84
Dec.28.22

Revision History

Rev. Date
Description
Page Summary

1.00 Apr. 16, 2021 First edition issued
1.01 May 11, 2021 Cover RX72N Group, RX66T Group, and RX130 Group added to

Target Devices
4 Content of 1. Overview revised
12 Setting options added to 2.6 Compile Settings

• FWUP_CFG_SERIAL_TERM_SCI
• FWUP_CFG_SERIAL_TERM_SCI_BITRATE
• FWUP_CFG_SERIAL_TERM_SCI_INTERRUPT_PRIORITY
Descriptions revised

15 2.6.1 Note on Compiling for RX130 Environment added
17 Description of OTA file context added to 2.8 Arguments

2.12 “for”, “while” and “do while” Statements deleted as it no
longer applies

24 Special Notes added to 3.13 R_FWUP_ResetDevice Function
32 Additions made to Table 5.1 Confirmed Operation Environment

(Rev. 1.01)
1.02 Oct. 29, 2021 Cover RX671 Group added to Target Devices

6 Description of bootloader module and firmware update module
on OS-less system and system using FreeRTOS over-the-air
(OTA) updates deleted from 1.2 Configuration of Firmware
Update Module
Connections between serial communication FIT module and byte
queue buffer FIT module revised in Figure 1.1

7 Bootloader module added to Figure 1.2
8 RX671 Group added to Table 1.2
9 Explanation added to Figure 1.4
11 Information in Table 1.3 changed

• Information on bootloader module changed
Changed to indicate use of R_FWUP_Open and
R_FWUP_Close by bootloader module

17 Code sizes for other than RX65N “boot_loader project” and
“aws_demos project” added to GCC for Renesas RX column in
2.7 Code Size
Code sizes for GCC for Renesas RX added to 2.7 Code Size

18 Indications of bootloader ROM and RAM usage added
21 Bootloader module added to description in Table 3.1

Bootloader module added to description in Table 3.2
34 Table 5.1 Confirmed Operation Environment revised to Rev. 1.02

in 5.1 Confirmed Operation Environment
35 Table 5.2 and Table 5.3 listing versions of FIT modules used by

the demo project added
Added versions of FIT modules used by the demo project under
GCC on other than the RX65N to Table 5.3

36 5.2 Compiler-Dependent Settings added
38 Added optimization level setting when debugging the bootloader

to 5.2.2.1 Compiler Options

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 82 of 84
Dec.28.22

Rev. Date
Description
Page Summary

1.03 Dec. 28, 2021 Cover Added RX Smart Configurator User’s Guide: IAREW to related
Application Notes
Added IAR C/C++ Compiler for RX to target compiler

11 • Modify R_FWUP_SoftwareReset in Table 1.3
• Corrected an error in the function name in Table 1.3
Fixed from R_FWUP_ActiveNewImage to
R_FWUP_ActivateNewImage

13 Added FWUP_CFG_IMPLEMENTATION_ENVIRONMENT
setting values in Table 2.1

14 Added a note about unsupported combinations that do not work
even if set in Table 2.2

17 Added code size in IAR C/C++ Compiler for RX environment to
Table 2.4

18 Added the conditions of IAR C/C++ Compiler for RX when
measuring the size in Table 2.4.

19 Added the ROM and RAM sizes used by the boot loader in the
IAR C/C++ Compiler for RX environment and the conditions for
the IAR C/C++ Compiler for RX when measuring the size in
Table 2.5.

21 Added how to add FIT module in IAR Embedded Workbench for
Renesas RX environment to "2.10 Adding the FIT Module to
Your Project"

22 Fixed the return value of the R_FWUP_Close function
23 Fixed the return value of the R_FWUP_Operation function
24 • Added description of R_FWUP_SetEndOfLife function

• Fixed the return value of the R_FWUP_SetEndOfLife function
25 Added description of R_FWUP_SecureBoot function and return

value
27 • Fixed the return value of the R_FWUP_CloseFile function

• Corrected an error in the function name
Fixed from R_FWUP_ActiveNewImage to
R_FWUP_ActivateNewImage

28 Fixed the return value of the R_FWUP_SetPlatformImageState
function

29 Fixed the return value of the R_FWUP_CheckFileSignature
function

33 Change source image in src / main.c
36 Added IAR operation check environment to Table 5.2
38 Added a list of FIT module versions to Table 5.5 when checking

the operation in the IAR C/C++ Compiler for RX environment
43 Added chapter "5.2.3 IAR C/C++ Compiler for RX"

1.04 May 24, 2022 Cover Added RX140 Group to Target Devices
 8 Added RX140 Group to Table 1.2

 9 Amended description in 1.3.1 Firmware Update Operation Using
Dual Mode

14, 15 Amended Table 2.1.
Deleted FWUP_CFG_USE_SERIAL_FLASH_FOR_BUFFER
and FWUP_CFG_SIGNATURE_VERIFICATION.
Renamed FWUP_CFG_PRINTF_DISABLE to
FWUP_CFG_BOOTLOADER_LOG_DISABLE.
Added FWUP_CFG_OTA_DATA_STORAGE and
FWUP_CFG_LOG_LEVEL.

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 83 of 84
Dec.28.22

Rev. Date
Description
Page Summary

1.04 May 24, 2022 17 Added information on RX140 to description in section 2.6.1
 20 Added RX140 ROM and RAM sizes to Table 2.5
 21 Modified Table 2.6 OTA File Context
 27 Changed return values of R_FWUP_Abort
 Changed return values of R_FWUP_CreateFileForRx
 28 Changed return values of R_FWUP_CloseFile
 Changed return values of R_FWUP_ActivateNewImage
 29 Changed return values of R_FWUP_ResetDevice
 Changed return values of R_FWUP_SetPlatformImageState
 30 Changed return values of R_FWUP_CheckFileSignature
 33 Modified Figure 4.2
 34 Modified Figure 4.3
 35, 36 Changed log output
 37, 38 Changed Table 5.1, Table 5.2 and Table 5.3 Confirmed

Operation Environment
 39 to 41 Changed Table 5.4, Table 5.5, and Table 5.6 FIT Module

Versions
 49 Added 5.3 Storage Destination for FreeRTOS Data (RX65N-2MB

Only)
1.05 Aug 10, 2022 Cover Added RX660 Group to Target Devices
 8 Added RX660 Group to Table 1.2
 12 Added description of R_FWUP_ResetDevice function to Table

1.3
 14 Added description of

FWUP_CFG_BOOTLOADER_LOG_DISABLE function to Table
1.3

 19 Changed build conditions when measuring code size
 20 Added RX660 ROM/RAM size to Table 1.2
 20 Changed build conditions when measuring ROM/RAM size used

by bootloader
 23 Deleted FWUP_ERR_LESS_MEMORY and

FWUP_ERR_IMAGE_STATE from Return Values of
R_FWUP_Open

 26 Deleted FWUP_ERR_ALREADY_OPEN from Return Value of
R_FWUP_SecureBoot and added description of
FWUP_ERR_NOT_OPEN

 29 Added description to Special Notes for R_FWUP_ResetDevice
 31,32 Added demo project list to Figure 4-1
 34 Added description of demo program
 34 4.2.1 (2) Deleted the description of Base64

(3) Deleted the description of the Key file
 39-41 Added operation check environment for RX660
 42-44 Added description of RX660 to Table 5-7/5-8/5-9 and updated

FIT module version of RX65N, RX671, RX72N
1.06 Dec. 28, 2022 7 Added description related to modules for OS-less systems

without a communication driver
 8 Added Figure 1.2 System Configuration of Firmware Update

Module on OS-less (Module-External Communication Control)
System

 12, 13 Added description of partial overwrite firmware update
 13, 14 Added description of full overwrite firmware update

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0106 Rev.1.06 Page 84 of 84
Dec.28.22

Rev. Date
Description
Page Summary

 15-17 Added 1.4 Firmware Update Communication Control on OS-Less
System

 18, 19 Added OS-less without communication driver and Azure ADU
items to Table 1.3 API Functions

 21 Added member and changed description of 4 under
FWUP_CFG_IMPLEMENTATION_ENVIRONMENT on Table 2.1
Configuration Settings

 23 Added member and changed description of 4 under
FWUP_CFG_IMPLEMENTATION_ENVIRONMENT on Table 2.2
Allowable Compile Setting Combinations

 24 Changed description of 8 and deleted 9 to 11 on Table 2.3 Valid
Combination Macro Values

 25 Added fwup_main_woSciDrv under RX66T on Table 2.4 Code
Sizes

 29 Added “(4) Deleting unnecessary modules” to 2.10 Adding the
FIT Module to Your Project

 32 Added 3.3 R_FWUP_Initialize Function
 33 Added 3.5 R_FWUP_PutFirmwareChunk Function
 Added 3.7 R_FWUP_DirectUpdate Function
 35 Added “For full overwrite method” description to 3.9

R_FWUP_SecureBoot Function
 39 Added [OS-Less Usage] to 3.20 R_FWUP_CheckFileSignature

Function
 42, 43 Changed Figure 4.1 Demo Project List (1) and Figure 4.2 Demo

Project List (2)
 44, 45 Added 4.2 Building the Demo Project
 45-48 Added 4.3 Using Image Generator to Convert the Firmware

Update Image File
 49-57 Revised 4.4
 58 Added Rev. 1.06 as confirmed operation environment to Table

5.1 Confirmed Operation Environment (CC-RX)
Deleted old confirmed operation environments

 Added Rev. 1.06 as confirmed operation environment to Table
5.2 Confirmed Operation Environment (GCC)
Deleted old confirmed operation environments

 59 Added Rev. 1.06 as confirmed operation environment to Table
5.3 Confirmed Operation Environment (IAR)
Deleted old confirmed operation environments

 60 Updated FIT module versions and added fwup_main_woSciDrv
under RX66T on Table 5.4 FIT Module Versions (CC-RX)

 61 Updated FIT module versions on Table 5.5 FIT Module Versions
(GCC)

 62 Updated FIT module versions on Table 5.6 FIT Module Versions
(IAR)

 73-75 Added 5.4 Configuration of Firmware Update Images Created by
Image Generator

 76-78 Added 5.5 Details of Firmware Update Images Created by Image
Generator

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2022 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1 About the Firmware Update Module
	1.2 Configuration of Firmware Update Module
	1.3 Firmware Update Operation
	1.3.1 Firmware Update Operation Using Dual Mode
	1.3.2 Firmware Update Operation Using Linear Mode
	1.3.2.1 Firmware Update Using Partial Overwrite
	1.3.2.2 Firmware Update Using Full Overwrite

	1.4 Firmware Update Communication Control on OS-Less System
	1.4.1 Firmware Update with Module-Internal Communication Control
	1.4.2 Firmware Update with Module-External Communication Control

	1.5 API Overview

	2. API Information
	2.6.1 Note on Compiling for RX130 and RX140 Environment

	3. API Functions
	4. Demo Project
	4.1 Demo Project List
	4.2 Building the Demo Project
	4.2.1 Preparation Beforehand
	4.2.1.1 Preparing the Integrated Development Environment
	4.2.1.2 Generating Public Key and Secret Key Information for Signature Verification

	4.2.2 Bootloader Program
	4.2.3 User Program (Initial Firmware)
	4.2.4 User Program (Firmware Update)

	4.3 Using Image Generator to Convert the Firmware Update Image File
	4.3.1 Generating a Bootloader and User Program (Initial Firmware) Image File
	4.3.2 Generating a User Program (Firmware Update) RSU Image File
	4.3.3 Generating a User Program (Initial Firmware) RSU Image File

	4.4 Firmware Update Using Serial Communications Interface (SCI)
	4.4.1 Dual Mode Firmware Update
	4.4.1.1 Preparing the Execution Environment
	4.4.1.2 Programming the Bootloader and User Program (Initial Firmware)
	4.4.1.3 Executing the Firmware Update
	4.4.1.4 Programming the User Program (Initial Firmware)

	4.4.2 Firmware Update Using Linear Mode (Partial Overwrite)
	4.4.2.1 Preparing the Execution Environment
	4.4.2.2 Programming the Bootloader and User Program (Initial Firmware)
	4.4.2.3 Executing the Firmware Update
	4.4.2.4 Programming the User Program (Initial Firmware)

	4.4.3 Firmware Update Using Linear Mode (Full Overwrite)
	4.4.3.1 Preparing the Execution Environment
	4.4.3.2 Programming the Bootloader and User Program (Initial Firmware)
	4.4.3.3 Executing the Firmware Update
	4.4.3.4 Programming the User Program (Initial Firmware)

	5. Appendices
	5.1 Confirmed Operation Environment
	(1) Renesas Electronics C/C++ Compiler Package for RX Family
	(2) GCC for Renesas RX
	(3) IAR C/C++ Compiler for RX

	5.2 Compiler-Dependent Settings
	5.2.1 Using Renesas Electronics C/C++ Compiler Package for RX Family
	5.2.1.1 Compiler Options
	5.2.1.2 Changing Address Assignments in Flash Memory
	5.2.1.3 Settings for Programming Flash Memory

	5.2.2 Using GCC for Renesas RX
	5.2.2.1 Compiler Options
	5.2.2.2 Changing Address Assignments in Flash Memory
	5.2.2.3 Settings for Programming Flash Memory
	5.2.2.4 Warning Message During Build

	5.2.3 Using IAR C/C++ Compiler for RX
	5.2.3.1 Compiler Options
	5.2.3.2 Settings for Programming Flash Memory
	5.2.3.3 Changing Address Assignments in Flash Memory

	5.3 Storage Destination for FreeRTOS Data (RX65N-2MB Only)
	5.3.1 Storage Destination Selection
	5.3.2 Section Settings
	5.3.3 Conversion to .RSU File when Code Flash Selected

	5.4 Configuration of Firmware Update Images Created by Image Generator
	5.4.1 Memory Configuration in Dual Mode
	5.4.2 Memory Configuration in Linear Mode (Partial Overwrite)
	5.4.3 Memory Configuration in Linear Mode (Full Overwrite)

	5.5 Details of Firmware Update Images Created by Image Generator
	5.5.1 Details of Image Containing Bootloader and User Program (Initial Firmware)
	5.5.2 Details of RSU Image Containing User Program (Firmware Update)
	5.5.3 Details of RSU Image Containing User Program (Initial Firmware)

