

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

 APPLICATION NOTE

REJ05C0005-0202/Rev.2.02 January 2008 Page 1 of 40

Serial EEPROM of HN58X25xxx Series
Control Using Clock Synchronous Serial I/O (UART) of M16C

Introduction
This document should be used for reference when implementing control of the HN58X25xxx Series serial EEPROM
manufactured by Renesas Technology Corp., using the clock synchronous serial communication interface (hereafter
referred to as UART) of the M16C family manufactured by Renesas Technology Corp.

The M16C family incorporates a clock synchronous serial I/O. The HN58X25xxx Series serial EEPROM can be
controlled through the clock synchronous serial I/O and software.

This document describes sample programs for controlling the HN58X25xxx Series serial EEPROM by using the clock
synchronous serial I/O.

Target Device
The application examples described in this document are applicable when the following MCU and condition are used.

• MCU: M16C family
• Condition: Clock synchronous serial I/O is used
• Software Version: Ver.1.21

The programs can be executed by any M16C family MCU with the serial I/O.

Note however that since some functions may be altered by function addition, etc., the functions should be confirmed
against the MCU manual.

Be sure to perform evaluation sufficiently when using this application note.

Contents

1. Control Method for HN58X25xxx Series Serial EEPROM.. 2

2. Sample Programs ... 23

Serial EEPROM of HN58X25xxx Series
Control Using Clock Synchronous Serial I/O (UART) of M16C

REJ05C0005-0202/Rev.2.02 January 2008 Page 2 of 40

1. Control Method for HN58X25xxx Series Serial EEPROM

1.1 Overview of Operation
Control of the HN58X25xxx Series serial EEPROM is implemented by using the clock synchronous Serial I/O in the
M16C.

The sample programs execute the following control operations.

• Connects the S# pin of the serial EEPROM to a M16C port and controls it using output of the M16C general port.
• Controls data input/output by the clock synchronous serial I/O (using the internal clock).

Assign the clock synchronous serial I/O pins for which CMOS output is possible and set the CMOS output to them,
in order to implement the high-speed operation.
In order to control the data transmission, the empty of transmit buffer is detected and interrupt is not used but
transmit interrupt request bit is used.
Therefore the register setting related to interrupt is described below.
⎯ Set the interrupt priority level to 000b (Level 0; Interrupt disable).
⎯ Set the transmit interrupt cause select bit to 0 (No data present in transmit buffer). (Set the DMA request cause

to UART transmit interrupt request if DMA is used.)
• Control data transmission using DMAC as option.

 Refer to the data sheets of the MCU and serial EEPROM and specify a usable clock frequency.

The connection method is described below.

Figure 1.1 Serial EEPROM Connection Example

M16C

CLK

TxD

RxD

Port

HN58X25

Series

Serial

EEPROM

Vcc

C

D

Q

HOLD#

W#

S#

Pull the pin up with an external resistor.

Assign pins for which CMOS
output is possible.

Otherwise, a pull-up resistor
is required, and low current
consumption and high-speed
operation may not be
achieved in some cases.

Pull up with an
external resistor.

Serial EEPROM of HN58X25xxx Series
Control Using Clock Synchronous Serial I/O (UART) of M16C

REJ05C0005-0202/Rev.2.02 January 2008 Page 3 of 40

1.2 Signal Timing Generation of Clock Synchronous Serial I/O
Signals are generated at the following timing to satisfy the serial EEPROM timing.

Figure 1.2 Timing for Clock Synchronous Serial I/O of M16C

Check the data sheets of the MCU and serial EEPROM for the maximum clock frequency that can be used.

1.3 Control of S# Pin of Serial EEPROM
The S# pin of the serial EEPROM is connected to a M16C port and controlled using output of the M16C general port.

The period from the falling edge of the S# pin (port of M16C) of the serial EEPROM to the falling edge of the C pin
(CLK of M16C) is controlled by inserting software wait cycles.

The period from the rising edge of the C pin (CLK of M16C) to the rising edge of the S# pin (port of M16C) is
controlled by inserting software wait cycles.

Check the data sheet of the serial EEPROM and set the software wait time according to the system.

1.4 Processing after function operating
When function processing is begun, S# pin (Port of M16C) of EEPROM is set to high level first by setting the port
function, and, next, C pin (CLK of M16C) of EEPROM is set to high level. Next, Serial I/O function is enabled and
clock synchronous I/O mode is set. Command code etc. are output using serial I/O function after S# pin (Port of M16C)
of EEPROM is set to low level.

After function processing is finished, S# pin (Port of M16C) of EEPROM is set to high level first and, next, Serial I/O
function is disabled and changed to the function of general port, and next, Port/CLK/TxD/RxD pins are set to high level.

CLK ...

TxD D7 D6 D5 ... D0

RxD D7 D6 D5 ... D0

• Transmission from MCU to serial EEPROM: Transmit data output at fall of transfer clock
• Reception from serial EEPROM to MCU: Receive data input at rise of transfer clock
• Transfer in MSB-first

The CLK pin level is high when transfer is not taking place.

Serial EEPROM of HN58X25xxx Series
Control Using Clock Synchronous Serial I/O (UART) of M16C

REJ05C0005-0202/Rev.2.02 January 2008 Page 4 of 40

1.5 MCU Hardware Resources in Use
The hardware resources to be used are shown below.

In order to control the data transmission, the empty of transmit buffer is detected and interrupt is not used but transmit
interrupt request bit is used.

Therefore the register setting related to interrupt is described below.

⎯ Set the interrupt priority level to 000b (Level 0; Interrupt disable).
⎯ Set the transmit interrupt cause select bit to 0 (No data present in transmit buffer).

 (Set the DMA request cause to UART transmit interrupt request if DMA is used.)

Table 1.1 Hardware Resources in Use

Resource in Use Number of Used Resources
Clock synchronous serial I/O One channel (essential)
Port (for control of the S# pin of serial EEPROM) One port (essential)
DMAC One channel (option)

The accessing mode between RAM and UART (transmit buffer or receive buffer) using DMAC is prepared as option.

Serial EEPROM of HN58X25xxx Series
Control Using Clock Synchronous Serial I/O (UART) of M16C

REJ05C0005-0202/Rev.2.02 January 2008 Page 5 of 40

1.6 M16C SFR (Peripheral Device Control Register) Setting - Clock Synchronous
Serial I/O and Interrupt control Register

Set up the clock synchronous serial I/O as shown below to satisfy the serial EEPROM specifications/timing.

In order to control the data transmission, the empty of transmit buffer is detected and interrupt is not used but transmit
interrupt request bit is used.

Therefore the register setting related to interrupt is described below.

⎯ Set the interrupt priority level to 000b (Level 0; Interrupt disable).
⎯ Set the transmit interrupt cause select bit to 0 (No data present in transmit buffer).

(Set the DMA request cause to UART transmit interrupt request if DMA is used.)

Serial EEPROM of HN58X25xxx Series
Control Using Clock Synchronous Serial I/O (UART) of M16C

REJ05C0005-0202/Rev.2.02 January 2008 Page 6 of 40

1.6.1 M32C/87
An example of setting based on the register descriptions of (Table 17.2 Registers to Be Used and Setting in Clock
Synchronous Serial I/O Mode) in the M32C/87 Group Hardware Manual Rev. 1.00 is shown in the table below.

Clock synchronous serial I/O other than UART2 (N channel open drain output) to be used are recommended.

Continuous receive mode should be disabled. The details please refer to the technical update TN-16C-A162A/J.

Table 1.2 Clock Synchronous Serial I/O Mode Settings

Register Bit Function and Setting
UiTB 7 to 0 Set the transmit data in these bits.

7 to 0 The receive data is read from these bits. UiRB
OER Overrun error flag

UiBRG 7 to 0 Set the transfer speed in these bits.
Clock frequency that can transfer data is different depending on the MCU.

SMD2 to SMD0 Write 001b to these bits. (Clock synchronous serial I/O mode)
CKDIR Write 0 to this bit. (Internal clock)

Set the clock frequency to UiBRG.

UiMR

IOPOL Write 0 to this bit. (No reverse)
CKS1, CKS0 Select the count source of UiBRG register in these bits.
CRS Write 0 to this bit. (This function is disabled because of CRD=1.)
TXEPT Transmit register empty flag (Read only)
CRD Write 1 to this bit. (CTS# and RTS# functions are disabled.)
NCH Write 0 to this bit. (CMOS output)
CKPOL Write 0 to this bit.

Transmit data is output at falling edge of transfer clock and receive data is
input at rising edge.

UiC0

UFORM Write 1 to this bit. (MSB first)
TE 0 is written to this bit at initialization. (Transmission disabled)

Write 1 to this bit when transmission should be enabled.
TI Transmit buffer empty flag (Read only)
RE 0 is written to this bit at initialization. (Reception disabled)

Write 1 to this bit when reception should be enabled.
RI Receive complete flag (Read only)
UiIRS Write 0 to this bit at initialization.

(No data present in UiTB register: TI=1)
UiRRM Write 0 to this bit. (Continuous receive mode is disabled)
UiLCH Write 0 to this bit. (Data logic is not reversed)

SCLKSTPB UiC1
UiSMR 7 to 0(Note 1) Write 00 to these bits.
UiSMR2 7 to 0(Note 1) Write 00 to these bits.
UiSMR3 7 to 0(Note 1) Write 00 to these bits.
UiSMR4 7 to 0(Note 1) Write 00 to these bits.
Note 1: Sample program doesn’t set 00 data to these registers because initial values of these registers after

reset are 00.

Serial EEPROM of HN58X25xxx Series
Control Using Clock Synchronous Serial I/O (UART) of M16C

REJ05C0005-0202/Rev.2.02 January 2008 Page 7 of 40

The setting example of interrupt control register is shown in the table bellow.

In order to control the data transmission, the empty of transmit buffer is detected and interrupt is not used but transmit
interrupt request bit is used.

Table 1.3 Interrupt Control Register Settings

Register Bit Function and Setting
ILVL2 to ILVL0 Write 000b to these bits. (Level 0: Interrupt is disabled.) SiTIC
IR If this bit is 1, Interrupt is requested.

Write 0 to this bit according to the needs.

Serial EEPROM of HN58X25xxx Series
Control Using Clock Synchronous Serial I/O (UART) of M16C

REJ05C0005-0202/Rev.2.02 January 2008 Page 8 of 40

1.6.2 M16C/80
An example of setting based on the register descriptions in the M16C/80 Group Hardware Manual Rev. 1.00 is shown
in the table below.

Clock synchronous serial I/O other than UART2 (N channel open drain output) to be used are recommended.

Continuous receive mode should be disabled. The details please refer to the technical update TN-16C-A162A/J.

Table 1.4 Clock Synchronous Serial I/O Mode Settings

Register Bit Function and Setting
UiTB 7 to 0 Set the transmit data in these bits.

7 to 0 The receive data is read from these bits. UiRB
OER Overrun error flag

UiBRG 7 to 0 Set the transfer speed in these bits.
Clock frequency that can transfer data is different depending on the MCU.

SMD2 to SMD0 Write 001b to these bits. (Clock synchronous serial I/O mode)
CKDIR Write 0 to this bit. (Internal clock)

Set the clock frequency to UiBRG.

UiMR

SLEP
 (U0MR, U1MR)
IOPOL
 (U2MR to U4MR)

Write 0 to this bit.

Write 0 to this bit. (No reverse)

CKS1, CKS0 Select the count source of UiBRG register in these bits.
CRS Write 0 to this bit. (This function is disabled because of CRD=1.)
TXEPT Transmit register empty flag (Read only)
CRD Write 1 to this bit. (CTS# and RTS# functions are disabled.)
NCH Write 0 to this bit. (CMOS output)
CKPOL Write 0 to this bit.

Transmit data is output at falling edge of transfer clock and receive data is
input at rising edge.

UiC0

UFORM Write 1 to this bit. (MSB first)
TE 0 is written to this bit at initialization. (Transmission disabled)

Write 1 to this bit when transmission should be enabled.
TI Transmit buffer empty flag (Read only)
RE 0 is written to this bit at initialization. (Reception disabled)

Write 1 to this bit when reception should be enabled.
RI Receive complete flag (Read only)

U0C1,
U1C1

7 to 4 These bits are always read as 0. The write value should always be 0.

Serial EEPROM of HN58X25xxx Series
Control Using Clock Synchronous Serial I/O (UART) of M16C

REJ05C0005-0202/Rev.2.02 January 2008 Page 9 of 40

TE 0 is written to this bit at initialization. (Transmission disabled)
Write 1 to this bit when transmission should be enabled.

TI Transmit buffer empty flag (Read only)
RE 0 is written to this bit at initialization. (Reception disabled)

Write 1 to this bit when reception should be enabled.
RI Receive complete flag (Read only)
UiIRS (i; 2 to 4)
(Note 1)

0 is written to this bit at initialization.
(No data present in transmit buffer: TI=1)

UiRRM (i; 2 to 4)
(Note 1)

Write 0 to this bit. (Continuous receive mode is disabled.)

UiLCH (i; 2 to 4) Write 0 to this bit. (Data logic is not reversed.)

U2C1 to
U4C1

UiERE (i; 2 to 4) Write 0 to this bit. (Error signal output disabled)
U0IRS Write it as follows when UART0 is used.

Write 0 to this bit at initialization.
(No data present in transmit buffer: TI=1)

U1IRS Write it as follows when UART1 is used.
Write 0 to this bit at initialization. (No data present in transmit buffer: TI=1)

U0RRM (Note 2) Write 0 to this bit. (Continuous receive mode is disabled.)
U1RRM (Note 2) Write 0 to this bit. (Continuous receive mode is disabled.)
5 to 4 The read data are invalid. The write value should always be 0.
RCSP Write 0 to this bit. (This function is disabled because of CRD are disabled.)

UCON

7 The read data is invalid. The write value should always be 0.
UiSMR 7 to 0(Note 3) Write 00 to these bits.
UiSMR2 7 to 0(Note 3) Write 00 to these bits.
UiSMR3 7 to 0(Note 4) Write 00 to these bits.
Note 1: Set it similarly to UCON (UART transmit and reception control register 2) as for UART0 and UART1.
Note 2: Set it similarly to UiC1 (UART transmit and reception control register 1) for UART2 to UART4.
Note 3: Sample program doesn’t set 00 data to these registers because initial values of them after reset are

00.
Note 4: Sample program doesn’t set 00 data to these registers other than U2SMR3 because initial values of

them after reset are 00. Write 000b from DL2 to DL0 bits for U2SMR3.

The setting example of interrupt control register is shown in the table bellow.

In order to control the data transmission, the empty of transmit buffer is detected and interrupt is not used but transmit
interrupt request bit is used.

Table 1.5 Interrupt Control Register Settings

Register Bit Function and Setting
ILVL2 to ILVL0 Write 000b to these bits. (Level 0: Interrupt is disabled.) SiTIC
IR If this bit is 1, Interrupt is requested.

Write 0 to this bit according to the needs.

Serial EEPROM of HN58X25xxx Series
Control Using Clock Synchronous Serial I/O (UART) of M16C

REJ05C0005-0202/Rev.2.02 January 2008 Page 10 of 40

1.6.3 M16C/62P
An example of setting based on the register descriptions of (Table 17.2 Registers to Be Used and Setting in Clock
Synchronous Serial I/O Mode) in the M16C/62P Group Hardware Manual Rev. 2.41 is shown in the table below.

Clock synchronous serial I/O other than UART2 (N channel open drain output) to be used are recommended.

Don’t use UART3 and UART4.

Table 1.6 Clock Synchronous Serial I/O Mode Settings

Register Bit Function and Setting
UiTB 7 to 0 Set the transmit data in these bits.

7 to 0 The receive data is read from these bits. UiRB
OER Overrun error flag

UiBRG 7 to 0 Set the transfer speed in these bits.
Clock frequency that can transfer data is different depending on the MCU.

SMD2 to SMD0 Write 001b to these bits. (Clock synchronous serial I/O mode)
CKDIR Write 0 to this bit. (Internal clock)

Set the clock frequency to UiBRG.

UiMR

IOPOL Write 0 to this bit. (No reverse)
CKS1, CKS0 Select the count source of UiBRG register in these bits.
CRS Write 0 to this bit. (This function is disabled because of CRD=1.)
TXEPT Transmit register empty flag (Read only)
CRD Write 1 to this bit. (CTS# and RTS# functions are disabled.)
NCH Write 0 to this bit. (CMOS output)
CKPOL Write 0 to this bit.

Transmit data is output at falling edge of transfer clock and receive data is
input at rising edge.

UiC0

UFORM Write 1 to this bit. (MSB first)
TE 0 is written to this bit at initialization. (Transmission disabled)

Write 1 to this bit when transmission should be enabled.
TI Transmit buffer empty flag (Read only)
RE 0 is written to this bit at initialization. (Reception disabled)

Write 1 to this bit when reception should be enabled.
RI Receive complete flag (Read only)
5 to 4 The read data are invalid. The write value should always be 0.
U0LCH/U1LCH Write 0 to this bit. (Data logic is not reversed.)

U0C1,
U1C1

U0ERE/U1ERE Write 0 to this bit. (Error signal output disabled.)

Serial EEPROM of HN58X25xxx Series
Control Using Clock Synchronous Serial I/O (UART) of M16C

REJ05C0005-0202/Rev.2.02 January 2008 Page 11 of 40

TE 0 is written to this bit at initialization. (Transmission disabled)
Write 1 to this bit when transmission should be enabled.

TI Transmit buffer empty flag (Read only)
RE 0 is written to this bit at initialization. (Reception disabled)

Write 1 to this bit when reception should be enabled.
RI Receive complete flag (Read only)
U2IRS (Note1) Write 0 to this bit at initialization.

(No data present in transmit buffer: TI=1)
U2RRM (Note1) Write 0 to this bit at initialization. (Continuous receive mode is disabled.)

Select UART2 continuous receive mode according to the usage.
U2LCH Write 0 to this bit. (Data logic is not reversed.)

U2C1

U2ERE Write 0 to this bit. (Error signal output disabled)
UiSMR 7 to 0(Note 3) Write 00 to these bits.
UiSMR2 7 to 0(Note 3) Write 00 to these bits.
UiSMR3 7 to 0(Note 3) Write 00 to these bits.
UiSMR4 7 to 0(Note 3) Write 00 to these bits.

U0IRS Set it as follows when UART0 is used.
Write 0 to this bit at initialization.
(No data present in transmit buffer: TI=1)

U1IRS Set it as follows when UART1 is used.
Write 0 to this bit at initialization. (No data present in transmit buffer: TI=1)

U0RRM (Note 2) Set it as follows when UART0 is used.
Write 0 to this bit at initialization. (Continuous receive mode is disabled.)
Select UART0 continuous receive mode according to the usage.

U1RRM (Note 2) Set it as follows when UART1 is used.
Write 0 to this bit at initialization. (Continuous receive mode is disabled.)
Select UART1 continuous receive mode according to the usage.

CLKMD0 Write 0 to this bit. (This function is disabled because of CLKMD1=1)
CLKMD1 Write 0 to this bit. (CLK is output from only CLK1.)
RCSP Write 0 to this bit. (This function is disabled because of CRD are disabled.)

UCON

7 The read data is invalid. The write value should always be 0.
Note 1: Set it similarly to UCON (UART transmit and reception control register 2) for UART0 and UART1.
Note 2: Set it similarly to U2C1 (UART transmit and reception control register 1) for UART2.
Note 3: Sample program doesn’t set 00 data to these registers because initial values of them after reset are

00.

The setting example of interrupt control register is shown in the table bellow.

In order to control the data transmission, the empty of transmit buffer is detected and interrupt is not used but transmit
interrupt request bit is used.

Table 1.7 Interrupt Control Register Settings

Register Bit Function and Setting
ILVL2 to ILVL0 Write 000b to these bits. (Level 0: Interrupt is disabled.) SiTIC
IR If this bit is 1, Interrupt is requested.

Write 0 to this bit according to the needs.

Serial EEPROM of HN58X25xxx Series
Control Using Clock Synchronous Serial I/O (UART) of M16C

REJ05C0005-0202/Rev.2.02 January 2008 Page 12 of 40

1.6.4 M16C/30P
An example of setting based on the register descriptions of (Table 15.2 Registers to Be Used and Setting in Clock
Synchronous Serial I/O Mode) in the M16C/30P Group Hardware Manual Rev. 1.11 is shown in the table below.

Clock synchronous serial I/O other than UART2 (N channel open drain output) to be used are recommended.

Table 1.8 Clock Synchronous Serial I/O Mode Settings

Register Bit Function and Setting
UiTB 7 to 0 Set the transmit data in these bits.

7 to 0 The receive data is read from these bits. UiRB
OER Overrun error flag

UiBRG 7 to 0 Set the transfer speed in these bits.
Clock frequency that can transfer data is different depending on the MCU.

SMD2 to SMD0 Write 001b to these bits. (Clock synchronous serial I/O mode)
CKDIR Write 0 to this bit. (Internal clock)

Set the clock frequency to UiBRG.

UiMR

IOPOL Write 0 to this bit. (No reverse)
CLK1, CLK0 Select the count source of UiBRG register in these bits.
CRS Write 0 to this bit. (This function is disabled because of CRD=1.)
TXEPT Transmit register empty flag (Read only)
CRD Write 1 to this bit. (CTS# and RTS# functions are disabled.)
NCH Write 0 to this bit. (CMOS output)
CKPOL Write 0 to this bit.

Transmit data is output at falling edge of transfer clock and receive data is
input at rising edge.

UiC0

UFORM Write 1 to this bit. (MSB first)
TE 0 is written to this bit at initialization. (Transmission disabled)

Write 1 to this bit when transmission should be enabled.
TI Transmit buffer empty flag (Read only)
RE 0 is written to this bit at initialization. (Reception disabled)

Write 1 to this bit when reception should be enabled.
RI Receive complete flag (Read only)
5 to 4 The read data are invalid. The write value should always be 0.
U0LCH/U1LCH Write 0 to this bit. (Data logic is not reversed.)

U0C1,
U1C1

U0ERE/U1ERE Write 0 to this bit. (Error signal output disabled)

Serial EEPROM of HN58X25xxx Series
Control Using Clock Synchronous Serial I/O (UART) of M16C

REJ05C0005-0202/Rev.2.02 January 2008 Page 13 of 40

TE 0 is written to this bit at initialization. (Transmission disabled)
Write 1 to this bit when transmission should be enabled.

TI Transmit buffer empty flag (Read only)
RE 0 is written to this bit at initialization. (Reception disabled)

Write 1 to this bit when reception should be enabled.
RI Receive complete flag (Read only)
U2IRS (Note1) Write 0 to this bit at initialization.

(No data present in transmit buffer: TI=1)
U2RRM (Note1) Write 0 to this bit at initialization. (Continuous receive mode is disabled.)

Select UART2 continuous receive mode according to the usage.
U2LCH Write 0 to this bit. (Data logic is not reversed.)

U2C1

U2ERE Write 0 to this bit. (Error signal output disabled)
UiSMR 7 to 0(Note 3) Write 00 to these bits.
UiSMR2 7 to 0(Note 3) Write 00 to these bits.
UiSMR3 7 to 0(Note 3) Write 00 to these bits.
UiSMR4 7 to 0(Note 3) Write 00 to these bits.

U0IRS Set it as follows when UART0 is used.
Write 0 to this bit at initialization. (No data present in transmit buffer: TI=1)

U1IRS Set it as follows when UART1 is used.
Write 0 to this bit at initialization. (No data present in transmit buffer: TI=1)

U0RRM (Note 2) Set it as follows when UART0 is used.
Write 0 to this bit at initialization. (Continuous receive mode is disabled.)
Select UART0 continuous receive mode according to the usage.

U1RRM (Note 2) Set it as follows when UART1 is used.
Write 0 to this bit at initialization. (Continuous receive mode is disabled.)
Select UART1 continuous receive mode according to the usage.

CLKMD0 Write 0 to this bit. (This function is disabled because of CLKMD1=1.)
CLKMD1 Write 0 to this bit. (CLK is output from only CLK1.)
RCSP Write 0 to this bit. (This function is disabled because of CRD are disabled.)

UCON

7 The read data is invalid. The write value should always be 0.
Note 1: Set it similarly to UCON (UART transmit and reception control register 2) for UART0 and UART1.
Note 2: Set it similarly to U2C1 (UART transmit and reception control register 1) for UART2.
Note 3: Sample program doesn’t set 00 data to these registers because initial values of them after reset are

00.

The setting example of interrupt control register is shown in the table bellow.

In order to control the data transmission, the empty of transmit buffer is detected and interrupt is not used but transmit
interrupt request bit is used.

Table 1.9 Interrupt Control Register Settings

Register Bit Function and Setting
ILVL2 to ILVL0 Write 000b to these bits. (Level 0: Interrupt is disabled.) SiTIC
IR If this bit is 1, Interrupt is requested.

Write 0 to this bit according to the needs.

Serial EEPROM of HN58X25xxx Series
Control Using Clock Synchronous Serial I/O (UART) of M16C

REJ05C0005-0202/Rev.2.02 January 2008 Page 14 of 40

1.6.5 M16C/29
An example of setting based on the register descriptions of (Table 14.2 Registers to Be Used and Setting in Clock
Synchronous Serial I/O Mode) in the M16C/29 Group Hardware Manual Rev. 1.00 is shown in the table below.

Don’t use UART3 and UART4.

Table 1.10 Clock Synchronous Serial I/O Mode Settings

Register Bit Function and Setting
UiTB 7 to 0 Set the transmit data in these bits.

7 to 0 The receive data is read from these bits. UiRB
OER Overrun error flag

UiBRG 7 to 0 Set the transfer speed in these bits.
Clock frequency that can transfer data is different depending on the MCU.

SMD2 to SMD0 Write 001b to these bits. (Clock synchronous serial I/O mode)
CKDIR Write 0 to this bit. (Internal clock)

Set the clock frequency to UiBRG.

UiMR

7 Write 0 to this bit.
CKS1, CKS0 Select the count source of UiBRG register in these bits.
CRS Write 0 to this bit. (This function is disabled because of CRD=1.)
TXEPT Transmit register empty flag (Read only)
CRD Write 1 to this bit. (CTS# and RTS# functions are disabled.)
NCH Write 0 to this bit. (CMOS output)
CKPOL Write 0 to this bit.

Transmit data is output at falling edge of transfer clock and receive data is
input at rising edge.

UiC0

UFORM Write 1 to this bit. (MSB first)
TE 0 is written to this bit at initialization. (Transmission disabled)

Write 1 to this bit when transmission should be enabled.
TI Transmit buffer empty flag (Read only)
RE 0 is written to this bit at initialization. (Reception disabled)

Write 1 to this bit when reception should be enabled.
RI Receive complete flag (Read only)

U0C1,
U1C1

7 to 4 These bits are always read as 0. The write value should always be 0.
TE 0 is written to this bit at initialization. (Transmission disabled)

Write 1 to this bit when transmission should be enabled.
TI Transmit buffer empty flag (Read only)
RE 0 is written to this bit at initialization. (Reception disabled)

Write 1 to this bit when reception should be enabled.
RI Receive complete flag (Read only)
U2IRS (Note 1) Write 0 to this bit at initialization. (No data present in transmit buffer: TI=1)
U2RRM (Note 1) Write 0 to this bit at initialization. (Continuous receive mode is disabled.)

Select UART2 continuous receive mode according to the usage.
U2LCH Write 0 to this bit. (Data logic is not reversed.)

U2C1

U2ERE Write 0 to this bit. (Error signal output disabled.)

Serial EEPROM of HN58X25xxx Series
Control Using Clock Synchronous Serial I/O (UART) of M16C

REJ05C0005-0202/Rev.2.02 January 2008 Page 15 of 40

U2SMR 7 to 0(Note 3) Write 00 to these bits.
U2SMR2 7 to 0(Note 3) Write 00 to these bits.
U2SMR3 7 to 0(Note 3) Write 00 to these bits.
U2SMR4 7 to 0(Note 3) Write 00 to these bits.

U0IRS Set it as follows when UART0 is used.
Write 0 to this bit at initialization. (No data present in transmit buffer: TI=1)

U1IRS Set it as follows when UART1 is used.
Write 0 to this bit at initialization. (No data present in transmit buffer: TI=1)

U0RRM (Note 2) Set it as follows when UART0 is used.
Write 0 to this bit at initialization. (Continuous receive mode is disabled.)
Select UART0 continuous receive mode according to the usage.

U1RRM (Note 2) Set it as follows when UART1 is used.
Write 0 to this bit at initialization. (Continuous receive mode is disabled.)
Select UART1 continuous receive mode according to the usage.

CLKMD0 Write 0 to this bit. (This function is disabled because of CLKMD1=1.)
CLKMD1 Write 0 to this bit. (CLK is output from only CLK1).
RCSP Write 0 to this bit. (This function is disabled because of CRD are disabled.)

UCON

7 The read data is invalid. The write value should always be 0.
Note 1: Set it similarly to UCON (UART transmit and reception control register 2) for UART0 and UART1.
Note 2: Set it similarly to U2C1 (UART transmit and reception control register 1) for UART2.
Note 3: Sample program doesn’t set 00 data to these registers because initial values of them after reset are

00.

The setting example of interrupt control register is shown in the table bellow.

In order to control the data transmission, the empty of transmit buffer is detected and interrupt is not used but transmit
interrupt request bit is used.

Table 1.11 Interrupt Control Register Settings

Register Bit Function and Setting
ILVL2 to ILVL0 Write 000b to these bits. (Level 0: Interrupt is disabled.) SiTIC
IR If this bit is 1, Interrupt is requested.

Write 0 to this bit according to the needs.

Serial EEPROM of HN58X25xxx Series
Control Using Clock Synchronous Serial I/O (UART) of M16C

REJ05C0005-0202/Rev.2.02 January 2008 Page 16 of 40

1.6.6 R8C/25
An example of setting based on the register descriptions of (Table 15.2 Registers to Be Used and Setting in Clock
Synchronous Serial I/O Mode) in the R8C/25 Group Hardware Manual Rev. 2.00 is shown in the table below.

UART1can’t be used, because it is not supported Clock synchronous.

Table 1.12 Clock Synchronous Serial I/O Mode Settings

Register Bit Function and Setting
UiTB 7 to 0 Set the transmit data in these bits.

7 to 0 The receive data is read from these bits. UiRB
OER Overrun error flag

UiBRG 7 to 0 Set the transfer speed in these bits.
Clock frequency that can transfer data is different depending on the MCU.

SMD2 to SMD0 Write 001b to these bits. (Clock synchronous serial I/O mode)
CKDIR Write 0 to this bit. (Internal clock)

Set the clock frequency to UiBRG.

UiMR

7 Write 0 to this bit.
CKS1, CKS0 Select the count source of UiBRG register in these bits.
2 Write 0 to this bit.
TXEPT Transmit register empty flag (Read only)
4 This bit is always read as 0. The write value should always be 0.
NCH Write 0 to this bit. (CMOS output)
CKPOL Write 0 to this bit.

Transmit data is output at falling edge of transfer clock and receive data is
input at rising edge.

UiC0

UFORM Write 1 to this bit. (MSB first)
TE 0 is written to this bit at initialization. (Transmission disabled)

Write 1 to this bit when transmission should be enabled.
TI Transmit buffer empty flag (Read only)
RE 0 is written to this bit at initialization. (Reception disabled)

Write 1 to this bit when reception should be enabled.
RI Receive complete flag (Read only)
UiIRS Write 0 to this bit at initialization. (No data present in transmit buffer: TI=1)
UiRRM Write 0 to this bit at initialization. (Continuous receive mode is disabled.)

Select UARTi continuous receive mode according to the usage.

UiC1

7 to 6 These bits are always read as 0. The write value should always be 0.
The setting example of interrupt control register is shown in the table bellow.

In order to control the data transmission, the empty of transmit buffer is detected and interrupt is not used but transmit
interrupt request bit is used.

Table 1.13 Interrupt Control Register Settings

Register Bit Function and Setting
ILVL2 to ILVL0 Write 000b to these bits. (Level 0: Interrupt is disabled.) SiTIC
IR If this bit is 1, Interrupt is requested.

Write 0 to this bit according to the needs.

Serial EEPROM of HN58X25xxx Series
Control Using Clock Synchronous Serial I/O (UART) of M16C

REJ05C0005-0202/Rev.2.02 January 2008 Page 17 of 40

1.7 M16C SFR (Peripheral Device Control Register) Setting - DMAC and Interrupt
control Register

High-speed data transmission is possible using DMAC. The accessing mode between RAM and UART (transmit buffer
or receive buffer) using DMAC is prepared as option.

Serial EEPROM of HN58X25xxx Series
Control Using Clock Synchronous Serial I/O (UART) of M16C

REJ05C0005-0202/Rev.2.02 January 2008 Page 18 of 40

1.7.1 M32C/87
An example of setting based on the register descriptions in the M32C/87 Group Hardware Manual Rev. 1.00 is shown
in the table below.

The DMAC-related registers are CPU internal registers. Use LDC command when data are written to registers.

Table 1.14 DMAC Settings

Register Bit Function and Setting
DSEL4 to DSEL0 Select either UARTi transmit interrupt request or UARTi receive interrupt

request according to the transfer mode.
Change these bits while MDi0 and MDi1 bits are set to 00 (DMA inhibit).
Write 1 to DRQ bit at the same time when settings are changed.

DSR Write 0 to this bit. Because software trigger is not used
6 This bit is always read as 0. The write value should always be 0.

UMiSL

DRQ Don’t write 0 to this bit.
MD01 to MD00 Write 01b to these bits when DMA channel 0 is used. (Single transfer)
BW0 Write 0 to this bit when DMA channel 0 is used. (8 bit)
RW0 Set the value according to the transmission or reception when DMA

channel 0 is used.
MD11 to MD10 Write 01b to these bits when DMA channel 1 is used. (Single transfer)
BW1 Write 0 to this bit when DMA channel 1 is used. (8 bit)

DMD0

RW1 Set the value according to the transmission or reception when DMA
channel 1 is used.

MD21 to MD20 Write 01b to these bits when DMA channel 2 is used. (Single transfer)
BW2 Write 0 to this bit when DMA channel 2 is used. (8 bit)
RW2 Set the value according to the transmission or reception when DMA

channel 2 is used.
MD31 to MD30 Write 01b to these bits when DMA channel 3 is used. (Single transfer)
BW3 Write 0 to this bit when DMA channel 3 is used. (8 bit)

DMD1

RW3 Set the value according to the transmission or reception when DMA
channel 3 is used.

DCTi 15 to 0 Set the number of transfer count of transfer counter.
DRCi 15 to 0 Reload value of transfer count register. Set the number of transfer count.
DMAi 23 to 0 Set the source address or destination address.
DSAi 23 to 0 Set the source address or destination address.
DRAi 23 to 0 Reload value of memory address register. Set the source address or

destination address.

The setting example of interrupt control register is shown in the table bellow.

Table 1.15 Interrupt Control Register Settings

Register Bit Function and Setting
ILVL2 to ILVL0 Write 000b to these bits. (Level 0: Interrupt is disabled.) DMiIC
IR If this bit is 1, Interrupt is requested.

Write 0 to this bit according to the needs.
This sample program for M32C/87 disables DMA control.

Serial EEPROM of HN58X25xxx Series
Control Using Clock Synchronous Serial I/O (UART) of M16C

REJ05C0005-0202/Rev.2.02 January 2008 Page 19 of 40

1.7.2 M16C/80
An example of setting based on the register descriptions in the M16C/80 Group Hardware Manual Rev. 1.00 is shown
in the table below.

The DMAC-related registers are CPU internal registers. Use LDC command when data are written to registers.

Table 1.16 DMAC Settings

Register Bit Function and Setting
DSEL4 to DSEL0 Select either UARTi transmit or UARTi receive according to the transfer

mode.
Change these bits while MDi0 and MDi1 bits are set to 00 (DMA inhibit).
Write 1 to DRQ bit at the same time when settings are changed.

DSR Write 0 to this bit. Because software trigger is not used
6 This bit is always read as 0. The write value should always be 0.

UMiSL

DRQ Don’t write 0 to this bit.
MD01 to MD00 Write 01b to these bits when DMA channel 0 is used. (Single transfer)
BW0 Write 0 to this bit when DMA channel 0 is used. (8 bit)
RW0 Set the value according to the transmission or reception when DMA

channel 0 is used.
MD11 to MD10 Write 01b to these bits when DMA channel 1 is used. (Single transfer)
BW1 Write 0 to this bit when DMA channel 1 is used. (8 bit)

DMD0

RW1 Set the value according to the transmission or reception when DMA
channel 1 is used.

MD21 to MD20 Write 01b to these bits when DMA channel 2 is used. (Single transfer)
BW2 Write 0 to this bit when DMA channel 2 is used. (8 bit)
RW2 Set the value according to the transmission or reception when DMA

channel 2 is used.
MD31 to MD30 Write 01b to these bits when DMA channel 3 is used. (Single transfer)
BW3 Write 0 to this bit when DMA channel 3 is used. (8 bit)

DMD1

RW3 Set the value according to the transmission or reception when DMA
channel 3 is used.

DCTi 15 to 0 Set the number of transfer count of transfer counter.
DRCi 15 to 0 Reload value of transfer count register. Set the number of transfer count.
DMAi 23 to 0 Set the source address or destination address.
DSAi 23 to 0 Set the source address or destination address.
DRAi 23 to 0 Reload value of memory address register. Set the source address or

destination address.

The setting example of interrupt control register is shown in the table bellow.

Table 1.17 Interrupt Control Register Settings

Register Bit Function and Setting
ILVL2 to ILVL0 Write 000b to these bits. (Level 0: Interrupt is disabled.) DMiIC
IR If this bit is 1, Interrupt is requested.

Write 0 to this bit according to the needs.
This sample program for M16C/80 disables DMA control.

Serial EEPROM of HN58X25xxx Series
Control Using Clock Synchronous Serial I/O (UART) of M16C

REJ05C0005-0202/Rev.2.02 January 2008 Page 20 of 40

1.7.3 M16C/62P
An example of setting based on the register descriptions in the M16C/62P Group Hardware Manual Rev. 2.41 is shown
in the table below.

Table 1.18 DMAC Settings

Register Bit Function and Setting
DSEL3 to DSEL0 Select either UARTi transmit or UARTi receive according to the transfer

mode.
Write 0 to DMS bit because the factor is UART transmit or UART reception.

5 to 4 These bits are always read as 0. The write value should always be 0.
DMS Write 0 to this bit because the factor is UART transmit or UART reception.

UMiSL

DSR Write 0 to this bit because software trigger is not used
DMBIT Write 1 to this bit. (8 bit)
DMASL Write 0 to these bits. (Single transfer)
DMAS DMA request bit.

Write 0 to this bit at initialization. (DMA Not requested)
DMAE Write 0 to this bit at initialization. (Disable)

Write 1 to this bit when DMA is enabled
DSD 0 is written to this bit at initialization. (Fixed)

Select according to the source address
DAD 0 is written to this bit at initialization. (Fixed)

Select according to the destination address

DMiCON

7 to 6 These bits are always read as 0. The write value should always be 0.
19 to 0 Set the source address of transfer. SARi
23 to 20 These bits are always read as 0. The write value should always be 0.

DARi 19 to0 Set the destination address of transfer.
 23 to 20 These bits are always read as 0. The write value should always be 0.
TCRi 15 to 0 Set the transfer count –1.

The setting example of interrupt control register is shown in the table bellow.

Table 1.19 Interrupt Control Register Settings

Register Bit Function and Setting
ILVL2 to ILVL0 Write 000b to these bits. (Level 0: Interrupt is disable.) DMiIC
IR If this bit is 1, Interrupt is requested.

Write 0 to this bit according to the needs.
Note: UART1 is recommended not to use when DMA transfer is used.

When UART1 is in transmit state, DMA request factor select register is assigned to DMA0. When
UART1 is in reception state, DMA request factor select register is assigned to DMA1. In order to DMA
transfer is implemented, Both DMA0 and DMA1 have to be used and software has to be modified.

Serial EEPROM of HN58X25xxx Series
Control Using Clock Synchronous Serial I/O (UART) of M16C

REJ05C0005-0202/Rev.2.02 January 2008 Page 21 of 40

1.7.4 M16C/30P
An example of setting based on the register descriptions in the M16C/30P Group Hardware Manual Rev. 1.11 is shown
in the table below.

Table 1.20 DMAC Settings

Register Bit Function and Setting
DSEL3 to DSEL0 Select either UARTi transmit or UARTi receive according to the

transfer mode.
Write 0 to DMS bit because the factor is UART transmit or UART
reception.

5 to 4 These bits are always read as 0. The write value should always be 0.
DMS Write 0 to this bit because the factor is UART transmit or UART

reception.

UMiSL

DSR Write 0 to this bit because software trigger is not used
DMBIT Write 1 to this bit. (8 bit)
DMASL Write 0 to these bits. (Single transfer)
DMAS DMA request bit.

Write 0 to this bit at initialization. (DMA Not requested)
DMAE Write 0 to this bit at initialization. (Disable)

Write 1 to this bit when DMA is enabled
DSD 0 is written to this bit at initialization. (Fixed)

Select according to the source address
DAD 0 is written to this bit at initialization. (Fixed)

Select according to the destination address

DMiCON

7 to 6 These bits are always read as 0. The write value should always be 0.
19 to 0 Set the source address of transfer. SARi
23 to 20 These bits are always read as 0. The write value should always be 0.

DARi 19 to0 Set the destination address of transfer.
 23 to 20 These bits are always read as 0. The write value should always be 0.
TCRi 15 to 0 Set the transfer count –1.

The setting example of interrupt control register is shown in the table bellow.

Table 1.21 Interrupt Control Register Settings

Register Bit Function and Setting
ILVL2 to ILVL0 Write 000b to these bits. (Level 0: Interrupt is disabled.) DMiIC
IR If this bit is 1, Interrupt is requested.

Write 0 to this bit according to the needs.
Note: UART1 is recommended not to use when DMA transfer is used.

When UART1 is in transmit state, DMA request factor select register is assigned to DMA0. When
UART1 is in reception state, DMA request factor select register is assigned to DMA1. In order to DMA
transfer is implemented, Both DMA0 and DMA1 have to be used and software has to be modified.

Serial EEPROM of HN58X25xxx Series
Control Using Clock Synchronous Serial I/O (UART) of M16C

REJ05C0005-0202/Rev.2.02 January 2008 Page 22 of 40

1.7.5 M16C/29
An example of setting based on the register descriptions in the M16C/29 Group Hardware Manual Rev. 1.00 is shown
in the table below.

Table 1.22 DMAC Settings

Register Bit Function and Setting
DSEL3 to DSEL0 Select either UARTi transmit or UARTi receive according to the transfer

mode.
Write 0 to DMS bit because the cause is UART transmit or UART
reception.

5 to 4 These bits are always read as 0. The write value should always be 0.
DMS Write 0 to this bit because the cause is UART transmit or UART reception.

UMiSL

DSR Write 0 to this bit because software trigger is not used
DMBIT Write 1 to this bit. (8 bit)
DMASL Write 0 to these bits. (Single transfer)
DMAS DMA request bit.

Write 0 to this bit at initialization. (DMA Not requested)
DMAE Write 0 to this bit at initialization. (Disable)

Write 1 to this bit when DMA is enabled
DSD 0 is written to this bit at initialization. (Fixed)

Select according to the source address
DAD 0 is written to this bit at initialization. (Fixed)

Select according to the destination address

DMiCON

7 to 6 These bits are always read as 0. The write value should always be 0.
19 to 0 Set the source address. SARi
23 to 20 These bits are always read as 0. The write value should always be 0.

DARi 19 to0 Set the destination address.
 23 to 20 These bits are always read as 0. The write value should always be 0.
TCRi 15 to 0 Set the transfer count –1.

The setting example of interrupt control register is shown in the table bellow.

Table 1.23 Interrupt Control Register Settings

Register Bit Function and Setting
ILVL2 to ILVL0 Write 000b to these bits. (Level 0: Interrupt is disabled.) DMiIC
IR If this bit is 1, Interrupt is requested.

Write 0 to this bit according to the needs.
Note 1: UART1 is recommended not to use when DMA transfer is used.

When UART1 is in transmit state, DMA request cause select register is assigned to DMA0. When
UART1 is in reception state, DMA request cause select register is assigned to DMA1. In order to
DMA transfer is implemented, Both DMA0 and DMA1 have to be used and software has to be
modified.

1.7.6 R8C/25
There isn’t any DMAC function.

Serial EEPROM of HN58X25xxx Series
Control Using Clock Synchronous Serial I/O (UART) of M16C

REJ05C0005-0202/Rev.2.02 January 2008 Page 23 of 40

2. Sample Programs
Two or more of the same devices can be connected to the serial bus and controlled.

The sample programs execute the following:

• Data read processing
• Data write processing
• Write-protection processing through software protection
• Status read processing

2.1 Overview of Software Operations
The operations roughly described below are performed.

(1) The driver initialization processing acquires the resources to be used by the driver and initializes them.
At this point, control signals (Port/CLK/TxD) connected to the serial EEPROM come to High.

(2) Function calls perform the following operations.
(a) The signals of pins connected to the serial EEPROM output to make serial EEPROM inactive state.
(b) Execute the processing of each function.
(c) Control signals (Port/CLK/TxD) connected to the serial EEPROM come to high.

Serial EEPROM of HN58X25xxx Series
Control Using Clock Synchronous Serial I/O (UART) of M16C

REJ05C0005-0202/Rev.2.02 January 2008 Page 24 of 40

2.2 Detailed Description of Functions
2.2.1 Driver Initialization Processing

Function Name
EEPROM driver initialization processing
void eep_Init_Driver(void)
Arguments
None
Return Values
None
Operations
Initializes the EEPROM driver.
Initializes the SFR for EEPROM control.
Performs the following processing for each device.

-Opens the EEPROM control ports.
-Initializes the EEPROM control RAM.

Call this function once at system activation.
Notes
None

Start

eep_Set_Interrupt_1(): Sets the interrupt.

eep_Init_Ram(DevNo): Clears the used RAM.

End

eep_Init_Sfr(): Initializes UART-related registers.

Serial EEPROM of HN58X25xxx Series
Control Using Clock Synchronous Serial I/O (UART) of M16C

REJ05C0005-0202/Rev.2.02 January 2008 Page 25 of 40

2.2.2 Write-Protection Setting Processing

Function Name
Write-protection setting processing
signed short eep_Write_Protect(unsigned char DevNo, unsigned char WpSts)
Arguments
unsigned char DevNo ; Device number
unsigned char WpSts ; Write-protection setting data
Return Values
Returns the write-protection setting result.
EEP_OK ; Successful operation
EEP_ERR_PARAM ; Parameter error
EEP_ERR_OTHER ; Other error
Operations
Makes the write-protection setting.
Set the write-protection setting data (WpSts) as follows:
EEP_WP_NONE ; No protection
EEP_WP_UPPER_QUART ; Upper-quarter protection setting
EEP_WP_UPPER_HALF ; Upper-half protection setting
EEP_WP_WHOLE_MEM ; Whole memory protection setting
Notes
None

Start

eep_Set_Interrupt_2(): Sets the interrupt.

eep_Init_Port(DevNo): S#=H, C=H, D=H, Q: Input mode

eep_Write_StsReg(DevNo,&StsReg):
 Writes to the status register.

End

EEP_UART_EI(): Enables the UART and set UART parameters.

eep_Init_Sfr(): Initializes UART-related SFR.

Serial EEPROM of HN58X25xxx Series
Control Using Clock Synchronous Serial I/O (UART) of M16C

REJ05C0005-0202/Rev.2.02 January 2008 Page 26 of 40

2.2.3 Data Read Processing

Function Name
Data read processing
signed short eep_Read_Data(unsigned char DevNo, unsigned short RAddr, unsigned short RCnt, unsigned
char * pData)
Arguments
unsigned char DevNo ; Device number
unsigned short RAddr ; Read start address
unsigned short RCnt ; Number of bytes to be read
unsigned char FAR* pData ; Read data storage buffer pointer
Return Values
Returns the read result.
EEP_OK ; Successful operation
EEP_ERR_PARAM ; Parameter error
EEP_ERR_HARD ; Hardware error
EEP_ERR_OTHER ; Other error
Operations
Reads data from EEPROM in bytes.
Reads data from the specified address for the specified number of bytes.
Notes
The maximum write address is EEPROM size − 1.

Start

eep_Init_Port(DevNo): S#=H, C=H, D=H, Q: Input mode

EEP_UART_EI(): Enables the UART and set UART parameters.

eep_Cmd_READ(RAddr): Command issuance
mtl_wait_lp() Software wait

End

EEP_SET_CS(Dev, EEP_HI): S#=H
eep_Init_Sfr(): Initializes UART-related SFR.

EEP_SET_CS(Dev, EEP_LOW): S#=L
mtl_wait_lp(): Software wait

mtl_wait_lp() : Software wait

eep_XXX_DataIn(): Data read

eep_Set_Interrupt_2(): Sets the interrupt.

Serial EEPROM of HN58X25xxx Series
Control Using Clock Synchronous Serial I/O (UART) of M16C

REJ05C0005-0202/Rev.2.02 January 2008 Page 27 of 40

2.2.4 Data Write Processing

Function Name
Data write processing
signed short eep_Write_Data(unsigned char DevNo, unsigned short WAddr, unsigned short WCnt, unsigned
char FAR* pData)
Arguments
unsigned char DevNo ; Device number
unsigned short WAddr ; Write start address
unsigned short WCnt ; Number of bytes to be written
unsigned char FAR* pData ; Write data storage buffer pointer
Return Values
Returns the write result.
EEP_OK ; Successful operation
EEP_ERR_PARAM ; Parameter error
EEP_ERR_HARD ; Hardware error
EEP_ERR_WP ; Write-protection error
EEP_ERR_OTHER ; Other error
Operations
Writes data to EEPROM in bytes.
Writes data from the specified address for the specified number of bytes.
Notes
EEPROM can be written to only when write-protection has been canceled.
The maximum write address is EEPROM size − 1.
In a write to the serial EEPROM, address translation is performed and the page rewrite method is used.

Start

eep_Init_Port(DevNo): S#=H, C=H, D=H, Q: Input mode

EEP_UART_EI(): Enables the UART and set UART parameters.

eep_Write_Page(DevNo, Waddr, AbyteCnt, pData): Writes.

End

EEP_SET_CS(Dev, EEP_HI) - S#=H
eep_Init_Sfr(): Initializes UART-related registers.

eep_Read_StsReg(Dev,&StsReg): Confirms write-protection.

Writes page calculation processing.

eep_Set_Interrupt_2(): Sets the interrupt.

Serial EEPROM of HN58X25xxx Series
Control Using Clock Synchronous Serial I/O (UART) of M16C

REJ05C0005-0202/Rev.2.02 January 2008 Page 28 of 40

2.2.5 Status Read Processing

Function Name
Status read processing
signed short eep_Read_Status(unsigned char DevNo, unsigned char * pStatus)
Arguments
unsigned char DevNo ; Device number
unsigned char FAR* pStatus ; Read status storage buffer
Return Values
Returns the status register acquisition result.
EEP_OK ; Successful operation
EEP_ERR_PARAM ; Parameter error
EEP_ERR_HARD ; Hardware error
EEP_ERR_OTHER ; Other error
Operations
Reads the status.
Reads from the status register.
The following information is stored in the read status storage buffer (pStatus).

Memory size ≤ 512 bytes
Bits 7 to 4: Reserved (All 1)
Bits 3, 2: BP1, BP0 00: No protection
 01: Upper-quarter protection
 10: Upper-half protection
 11: Whole memory protection
Bit 1: WEL 0: Write disabled
 1: Write enabled
Bit 0: WIP 1: During write operation

Memory size > 512 bytes
Bit 7: SRWD 0: Status register can be changed
 1: Status register cannot be changed
Bits 6 to 4: Reserved (All 0)
Bits 3, 2: BP1, BP0 00: No protection
 01: Upper-quarter protection
 10: Upper-half protection
 11: Whole memory protection
Bit 1: WEL 0: Write disabled
 1: Write enabled
Bit 0: WIP 1: During write operation
Notes
None

Serial EEPROM of HN58X25xxx Series
Control Using Clock Synchronous Serial I/O (UART) of M16C

REJ05C0005-0202/Rev.2.02 January 2008 Page 29 of 40

2.3 Return Value Definition
#define EEP_OK (signed short)(0) /* Successful operation */
#define EEP_ERR_PARAM (signed short)(-1) /* Parameter error */
#define EEP_ERR_HARD (signed short)(-2) /* Hardware error */
#define EEP_ERR_WP (signed short)(-3) /* Write-protection error */
#define EEP_ERR_OTHER (signed short)(-4) /* Other error */

Start

eep_Init_Port(DevNo): S#=H, C=H, D=H, Q: Input mode

EEP_UART_EI(): Enables the UART and set UART parameters.

End

eep_Init_Sfr(): Initializes UART-related SFR.

eep_Read_StsReg(DevNo,&StsReg)
 : Reads status register.

eep_Set_Interrupt_2(): Sets the interrupt.

Serial EEPROM of HN58X25xxx Series
Control Using Clock Synchronous Serial I/O (UART) of M16C

REJ05C0005-0202/Rev.2.02 January 2008 Page 30 of 40

2.4 User Setting Examples
Setting examples when using the Renesas Technology MCU M16C/62P are shown below.

The location where a setting should be made is indicated by the comment of /** SET **/ in each file.

2.4.1 eep.h
(1) Definition of the number of devices used and device numbers

Specify the number of devices to be used and assign a number for each device.
In the example below, one device is used and 0 is assigned as the device number.
When using three or more, eep_io.h needs to be modified in addition to this file.

/*--*/
/* Define the number of the required serial EEPROM devices.(1 to N devices) */
/* Define the device number in accordance with the number of serial EEPROM devices */
/* to be connected. */
/*--*/
/* Define number of devices */
#define EEP_DEV_NUM 1 /* 1 device */

/* Define No. of slots */
#define EEP_DEV0 0 /* Device 0 */
#define EEP_DEV1 1 /* Device 1 */

(2) Definition of device used

Specify the device to be used.
In the example below, 4k bits device is used.

/*--- */
/* Define the serial EEPROM device. */
/*--- */
//#define EEP_SIZE_002K /* 2kbit (256 Byte) */
#define EEP_SIZE_004K /* 4kbit (512 Byte) */
//#define EEP_SIZE_008K /* 8kbit (1kByte) */
//#define EEP_SIZE_016K /* 16kbit (2kByte) */
//#define EEP_SIZE_032K /* 32kbit (4kByte) */
//#define EEP_SIZE_064K /* 64kbit (8kByte) */
//#define EEP_SIZE_128K /* 128kbit (16kByte) */
//#define EEP_SIZE_256K /* 256kbit (32kByte) */

Serial EEPROM of HN58X25xxx Series
Control Using Clock Synchronous Serial I/O (UART) of M16C

REJ05C0005-0202/Rev.2.02 January 2008 Page 31 of 40

(3) Definitions the way of interrupt setting of UART or DMA

Define the way of transmit interrupt control process.
This software controls the transmission processing by disabling the Interrupt Priority Select Bits and utilizing
Interrupt Request Bit (IR) in Interrupt Control Register of UART or DMA.
The method of the interrupt disabling can be selected by the following three ways.
Select one of them according to the system.
 Case 1. Set in the upper system and not setting in the device driver.
 #define EEP_IC_SETTING0 should be validated.
 Case 2. Set when the device driver is initialized – in executing “eep_Init_Driver()”.
 #define EEP_IC _SETTING1 should be validated.
 Case 3. Set when SI/O transfer – in executing “eep_Read_Data()”, “eep_Write_Data()”.
 #define EEP_IC _SETTING2 should be validated.

Case 2 and 3 can be validated at the same time.

Precaution
The followings are the interrupt setting sequence when the above Case 2 and/or 3 are selected:

1. Disable interrupt (DI)
2. Disable the Interrupt Priority Select Bits and clear the Interrupt Request Bit (IR) of Interrupt Control Register
for UART or DMA.
3. Enable interrupt (EI)

Be careful when interrupts enable flag (I flag) is managed by a higher system.

/*--*/
/* The setting method of the interrupt when "EEP_IC_SETTING1" and
"EEP_IC_SETTING2" are */
/* selected is as follows. */
/* Interrupt disable (DI) -> interrupt setting -> interrupt enable (EI) */
/* When manage an interrupt enable flag (I flag) by a higher system, please
be careful. */
/* When interrupt it by a higher system and manage it, please choose
"EEP_IC_SETTING0". */
/*--*/
#define EEP_IC_SETTING0 /* Doesn't set in this driver */
//#define EEP_IC_SETTING1 /* When the driver is initialized, it sets */
//#define EEP_IC_SETTING2 /* When the resource is used, it sets */

Serial EEPROM of HN58X25xxx Series
Control Using Clock Synchronous Serial I/O (UART) of M16C

REJ05C0005-0202/Rev.2.02 January 2008 Page 32 of 40

2.4.2 eep_sfr.h
Rename from eep_sfr.h.xxx (the header corresponding to the MCU) to eep_sfr.h and use it.

In the example below, the M16C/62P is used.

The sample program shows a description example in which UART 0 is used as the resource of the clock synchronous
serial I/O. When DMAC is used it shows a description example in which DMA 0 is used.

 (1) UART resource

/*----------------- UART definitions -----------------*/
#define EEP_UART_STIC s0tic /* UART TX interrupt control register */

#define EEP_UART_TXBUF u0tb /* UART transmit buffer register */
#define EEP_UART_TXBUFL u0tbl /* UART transmit buffer register(lower 8bit) */
#define EEP_UART_RXBUF u0rb /* UART receive buffer register */
#define EEP_UART_BRG u0brg /* UART bit rate generator */
#define EEP_UART_MR u0mr /* UART transmit/receive mode register */
#define EEP_UART_C0 u0c0 /* UART transmit/receive control register 0 */
#define EEP_UART_C1 u0c1 /* UART transmit/receive control register 1 */

#define EEP_UART_TXEND txept_u0c0 /* UART TX Reg. empty flag */
#define EEP_UART_TXNEXT ir_s0tic /* UART TX complete flag */
#define EEP_UART_TI ti_u0c1 /* UART TX complete flag */
#define EEP_UART_RXNEXT ri_u0c1 /* UART RX complete flag */
#define EEP_UART_IRS u0irs /* UART transmit interrupt cause select flag */
#define EEP_UART_RRM u0rrm /* UART continuous receive mode enable flag */

If another resource is used, make additions or modify the above program. Accordingly, also make additions or
modify the /* UART setting */ definition with reference to section 1.6, M16C SFR (Peripheral Device Control
Register) Setting - Clock Synchronous serial I/O and Interrupt control Register

(2) DMAC resource
/*----------------- DMAC definitions -----------------*/
#ifdef EEP_DMA_ON
#define EEP_DMA_DMIC dm0ic /* DMA interrupt control register */

#define EEP_DMA_SL dm0sl /* DMA request cause select register */
#define EEP_DMA_CON dm0con /* DMA control register */
#define EEP_DMA_SAR sar0 /* DMA source pointer */
#define EEP_DMA_DAR dar0 /* DMA destination pointer */
#define EEP_DMA_TCR tcr0 /* DMA transfer counter */
#define EEP_DMA_END ir_dm0ic /* DMA interrupt request flag */

If another resource is used, make additions or modify the above program. Accordingly, also make additions or
modify the /* DMA setting */ definition with reference to section 1.7, M16C SFR (Peripheral Device Control
Register) Setting - DMAC and Interrupt control Register

Serial EEPROM of HN58X25xxx Series
Control Using Clock Synchronous Serial I/O (UART) of M16C

REJ05C0005-0202/Rev.2.02 January 2008 Page 33 of 40

2.4.3 eep_io.h
Rename from eep_io.h.xxx (the header corresponding to the MCU) to eep_io.h and use it.

 (1) Definition of resources used by UART or DMA of MCU used
Specify the resources of the MCU to be used.
In the example below, the clock synchronous serial I/O is used.

/*--- */
/* Define the combination of the MCU's resources. */
/*--- */
//#define EEP_OPTION_1 /* Low speed */ /* UART */
#define EEP_OPTION_2 /* High speed */ /* UART + DMAC */

(2) Definition of control ports of MCU used

Specify the control ports of the MCU to be used.
In the example below, RxD, TxD, CLK, and S# of the clock synchronous serial I/O are assigned.
When two devices are connected, make a definition regarding CS1.
When using three or more, eep.h needs to be modified in addition to this file.

/*--*/
/* Define the control port. */
/*--*/
#define EEP_P_DATAO p6_3 /* EEPROM DataOut */
#define EEP_P_DATAI p6_2 /* EEPROM DataIn */
#define EEP_P_CLK p6_1 /* EEPROM CLK */
#define EEP_D_DATAO pd6_3 /* EEPROM DataOut */
#define EEP_D_DATAI pd6_2 /* EEPROM DataIn */
#define EEP_D_CLK pd6_1 /* EEPROM CLK */

#define EEP_P_CS0 p10_5 /* EEPROM CS0 (Negative-true logic) */
#define EEP_D_CS0 pd10_5 /* EEPROM CS0 (Negative-true logic) */
#if (EEP_DEV_NUM > 1)
#define EEP_P_CS1 p10_1 /* EEPROM CS1 (Negative-true logic) */
#define EEP_D_CS1 pd10_1 /* EEPROM CS1 (Negative-true logic) */
#endif /* #if (EEP_DEV_NUM > 1) */

Serial EEPROM of HN58X25xxx Series
Control Using Clock Synchronous Serial I/O (UART) of M16C

REJ05C0005-0202/Rev.2.02 January 2008 Page 34 of 40

2.4.4 mtl_com.h (Common Header File)
Rename from mtl_com.h.xxx (the header corresponding to the MCU) to mtl_com.h and use it.

In the example below, the M16C/62P is used.

 (1) Definition of OS header file
This software is an OS-independent program.
In the example below, the OS is not used. (The system call of MR30 is not used.)

/* In order to use wai_sem/sig_sem/dly_tsk for microITRON (Real-Time OS)-
compatible, */
/* include the OS header file that contains the prototype declaration.
/* When not using the OS, put the following 'define' and 'include' as comments.
 */
//#define MTL_OS_USE /* Use OS */
//#include <RTOS.h> /* OS header file */
//#include "mtl_os.h"

(2) Definition of header file specifying common access area

Includes the header file in which the MCU registers are defined.
This file needs to be included because it is mainly used by the device driver for controlling the ports.
In the example below, the M16C/62P header file is included. Include the header file in accordance with the MCU.

/* In order to use definitions of MCU SFR area, */
/* include the header file of MCU SFR definition. */
#include "sfr62p.h" /* definition of MCU SFR */

(3) Definition of loop timer
 Include the header file below if software timer is used.
 It is mainly used as wait time of device driver.
 When software timer is not used, the define statement below should be a comment.
 In the example below, software timer is used.
/* When not using the loop timer, put the following 'include' as comments. */
#include "mtl_tim.h"

(4) Definition of endian type

This is the setting of FAT file system library for M16C family.
Specify the little endian if M16C family is used.
/* When using M16C or SuperH for Little Endian setting, define it. */
/* When using other MCUs, put 'define' as a comment. */
#define MTL_MCU_LITTLE /* Little endian */

(5) The fast processes of mtl_endi.c
When Little Endian is specified and it is defined, it performs the fast processes of mtl_endi.c.
/* When using M16C, define it. */
/* It performs the fast processes of 'mtl_endi.c'. */
#define MTL_ENDI_HISPEED /* Uses the high-speed function. */

Serial EEPROM of HN58X25xxx Series
Control Using Clock Synchronous Serial I/O (UART) of M16C

REJ05C0005-0202/Rev.2.02 January 2008 Page 35 of 40

(6) Specification of standard library type used
Specify the standard library type used. When the processing below is used in the library provided with the compiler,
the define statement below should be a comment.
The optimized library enabling high-speed processing is prepared.
The following example shows the standard library set with the compiler.

/* Specify the standard library type used. */
/* When the processing below is used in the library provided with the */
/* compiler, the define statement below should be a comment. */
/* memcmp() / memcpy() / memset() / strcat() / strcmp() / strcpy() / strlen()*/
//#define MTL_USER_LIB /* Optimized library usage */

 (7) Definition of RAM area accessed by processing group used
Define the RAM area to be accessed by the user process group.
Standard functions and efficient operations for processes are applied.
If neither of them is defined, error is output when software is compiled
M16C/62P and M16C/29 are possible to define either MTL_MEM_FAR or MTL_MEM_NEAR.
The following is a definition example of MTL_MEM_NEAR when M16C/60, M16C/30, M16C/20 or R8C is used.

/* Define the RAM area to be accessed by the user process. */
/* Efficient operations for standard functions and processes are applied. */
//#define MTL_MEM_FAR /* Supports Far RAM area of M16C/60
#define MTL_MEM_NEAR /* Supports Near RAM area. (Others) */

Set only the above define statement and do not make any other modifications.

Serial EEPROM of HN58X25xxx Series
Control Using Clock Synchronous Serial I/O (UART) of M16C

REJ05C0005-0202/Rev.2.02 January 2008 Page 36 of 40

2.4.5 mtl_tim.h
(1) Definition of software timer

Sets the internal software timer used.
The following reference values are obtained at 24-MHz operation without wait.
The setting should be made in accordance with the system.

/* Define the counter value for the timer. */
/* Specify according to the user MCU, clock and wait requirements. */
/* Setting for 24MHz no wait */
#define MTL_T_1US 1 /* loop Number of 1us */
#define MTL_T_2US 2 /* loop Number of 2us */
#define MTL_T_4US 5 /* loop Number of 4us */
#define MTL_T_5US 6 /* loop Number of 5us */
#define MTL_T_10US 13 /* loop Number of 10us */
#define MTL_T_20US 28 /* loop Number of 20us */
#define MTL_T_30US 43 /* loop Number of 30us */
#define MTL_T_50US 72 /* loop Number of 50us */
#define MTL_T_100US 145 /* loop Number of 100us */
#define MTL_T_200US 293 /* loop Number of 200us */
#define MTL_T_300US 439 /* loop Number of 300us */
#define MTL_T_400US (MTL_T_200US * 2) /* loop Number of 400us */
#define MTL_T_1MS 1471 /* loop Number of 1ms */

Serial EEPROM of HN58X25xxx Series
Control Using Clock Synchronous Serial I/O (UART) of M16C

REJ05C0005-0202/Rev.2.02 January 2008 Page 37 of 40

2.5 Usage Notes
The sample programs show description example in which UART 0 is used as the resource of the clock synchronous
serial I/O. When DMAC is used it shows a description example in which DMA 0 is used.

When using another resource, set the software in accordance with the hardware.

2.6 Notes at Embedment
To embed the sample programs, include eep.h.

2.7 Usage of Another M16C Family MCU
Usage of another M16C family MCU is supported easily.

The following files must be prepared.

(1) I/O module common definition equivalent of eep_io.h.xxx
Define the I/O pins to be used with reference to the SFR header of the MCU used.

(2) SFR common definition equivalent of eep_sfr.h.xxx
Define the UART/DMA to be used with reference to the SFR header of the MCU used.

(3) Header definition equivalent of mtl_com.h.xxx
Create and define a header for the MCU used.

Create the above files with reference to the provided programs.

In addition, specify the created header in eep_io.h, eep_sfr.h, and mtl_com.h.

Serial EEPROM of HN58X25xxx Series
Control Using Clock Synchronous Serial I/O (UART) of M16C

REJ05C0005-0202/Rev.2.02 January 2008 Page 38 of 40

2.8 File Configuration
\com <DIR> Directory for common functions
 mtl_com.c Various definitions for common functions
 mtl_com.h.common Common header file
 mtl_com.h.m16c26 Common header file M16C/26
 mtl_com.h.m16C29 Common header file M16C/29
 mtl_com.h.m16C30P Common header file M16C/30P
 mtl_com.h.m16c62n Common header file M16C/62N
 mtl_com.h.m16c62p Common header file M16C/62P
 mtl_com.h.m16c80 Common header file M16C/80
 mtl_com.h.m30245 Common header file M16C/24(M30245)
 mtl_com.h.m32c87 Common header file M32C/87
 mtl_com.h.r8c23 Common header file R8C/23
 mtl_com.h.r8c25 Common header file R8C/25
 mtl_mem.c Common function
 mtl_tim.c mtl_tim.h Common function
 mtl_tim.h.sample Common header file (Reference)
\seep_spi <DIR> Serial EEPROM directory
 eep.h Driver common definition
 eep_io.c I/O module
 eep_io.h.m16c29 I/O module common definition M16C/29
 eep_io.h.m16c30p I/O module common definition M16C/30P
 eep_io.h.m16c62n I/O module common definition M16C/62N
 eep_io.h.m16c62p I/O module common definition M16C/62P
 eep_io.h.m16c80 I/O module common definition M16C/80
 eep_io.h.m30245 I/O module common definition M16C/24(M30245)
 eep_io.h.m32c87 I/O module common definition M32C/87
 eep_io.h.r8c23 I/O module common definition R8C/23
 eep_io.h.r8c25 I/O module common definition R8C/25
 eep_sfr.h.m16c26 SFR common definition M16C/26
 eep_sfr.h.m16c29 SFR common definition M16C/29
 eep_sfr.h.m16c30p SFR common definition M16C/30P
 eep_sfr.h.m16c62n SFR common definition M16C/62N
 eep_sfr.h.m16c62p SFR common definition M16C/62P
 eep_sfr.h.m16c80 SFR common definition M16C/80
 eep_sfr.h.m30245 SFR common definition M16C/24(M30245)
 eep_sfr.h.m32c87 SFR common definition M32C/87
 eep_sfr.h.r8c23 SFR common definition R8C/23
 eep_sfr.h.r8c25 SFR common definition R8C/25
 eep_usr.c Driver user I/F module
\sample <DIR> Sample program directory
 testmain.c Sample program for operation verification

Use this for operation verification.
 common.c common.h Various definitions for common functions

Serial EEPROM of HN58X25xxx Series
Control Using Clock Synchronous Serial I/O (UART) of M16C

REJ05C0005-0202/Rev.2.02 January 2008 Page 39 of 40

Website and Support
Renesas Technology Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/inquiry
csc@renesas.com

Revision Record
Description

Rev.

Date Page Summary

2.01 Jan.22.08 — First edition issued
2.02 Jan.28.08 1 Software Version added

All trademarks and registered trademarks are the property of their respective owners.

Serial EEPROM of HN58X25xxx Series
Control Using Clock Synchronous Serial I/O (UART) of M16C

REJ05C0005-0202/Rev.2.02 January 2008 Page 40 of 40

1. This document is provided for reference purposes only so that Renesas customers may select the appropriate
Renesas products for their use. Renesas neither makes warranties or representations with respect to the
accuracy or completeness of the information contained in this document nor grants any license to any intellectual
property rights or any other rights of Renesas or any third party with respect to the information in this document.

2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out
of the use of any information in this document, including, but not limited to, product data, diagrams, charts,
programs, algorithms, and application circuit examples.

3. You should not use the products or the technology described in this document for the purpose of military
applications such as the development of weapons of mass destruction or for the purpose of any other military
use. When exporting the products or technology described herein, you should follow the applicable export
control laws and regulations, and procedures required by such laws and regulations.

4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and
application circuit examples, is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas products listed in this
document, please confirm the latest product information with a Renesas sales office. Also, please pay regular
and careful attention to additional and different information to be disclosed by Renesas such as that disclosed
through our website. (http://www.renesas.com)

5. Renesas has used reasonable care in compiling the information included in this document, but Renesas
assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information
included in this document.

6. When using or otherwise relying on the information in this document, you should evaluate the information in light
of the total system before deciding about the applicability of such information to the intended application.
Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any
particular application and specifically disclaims any liability arising out of the application and use of the
information in this document or Renesas products.

7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products
are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of
which may cause a direct threat to human life or create a risk of human injury or which require especially high
quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare,
combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. If you
are considering the use of our products for such purposes, please contact a Renesas sales office beforehand.
Renesas shall have no liability for damages arising out of the uses set forth above.

8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:
 (1) artificial life support devices or systems
 (2) surgical implantations
 (3) healthcare intervention (e.g., excision, administration of medication, etc.)
 (4) any other purposes that pose a direct threat to human life
 Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who

elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas
Technology Corp., its affiliated companies and their officers, directors, and employees against any and all
damages arising out of such applications.

9. You should use the products described herein within the range specified by Renesas, especially with respect to
the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or
damages arising out of the use of Renesas products beyond such specified ranges.

10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific
characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions.
Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or
damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and
software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment
for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer
software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

11. In case Renesas products listed in this document are detached from the products to which the Renesas products
are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You
should implement safety measures so that Renesas products may not be easily detached from your products.
Renesas shall have no liability for damages arising out of such detachment.

12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written
approval from Renesas.

13. Please contact a Renesas sales office if you have any questions regarding the information contained in this
document, Renesas semiconductor products, or if you have any other inquiries.

Notes regarding these materials

© 2008. Renesas Technology Corp., All rights reserved.

	Control Method for HN58X25xxx Series Serial EEPROM
	Overview of Operation
	Signal Timing Generation of Clock Synchronous Serial I/O
	Control of S# Pin of Serial EEPROM
	Processing after function operating
	MCU Hardware Resources in Use
	M16C SFR (Peripheral Device Control Register) Setting - Cloc
	M32C/87
	M16C/80
	M16C/62P
	M16C/30P
	M16C/29
	R8C/25

	M16C SFR (Peripheral Device Control Register) Setting - DMAC
	M32C/87
	M16C/80
	M16C/62P
	M16C/30P
	M16C/29
	R8C/25

	Sample Programs
	Overview of Software Operations
	Detailed Description of Functions
	Driver Initialization Processing
	Write-Protection Setting Processing
	Data Read Processing
	Data Write Processing
	Status Read Processing

	Return Value Definition
	User Setting Examples
	eep.h
	eep_sfr.h
	eep_io.h
	mtl_com.h (Common Header File)
	mtl_tim.h

	Usage Notes
	Notes at Embedment
	Usage of Another M16C Family MCU
	File Configuration

